09;15

Электросенсор на основе эффекта электрогирации в кристалле вольфрамата свинца

© М.А. Новиков¹, А.А. Степанов², А.А. Хышов^{1,¶}

¹ Институт физики микроструктур РАН, Нижний Новгород ² Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород [¶] E-mail: khysh@ipmras.ru

Поступило в Редакцию 27 сентября 2016 г.

Представлены оригинальные результаты исследования особенностей оптической электрохиральности в кристалле вольфрамата свинца. В этом кристалле отсутствуют эффект Поккельса и обратный пьезоэффект, что позволяет на его основе создать быстродействующий электросенсор для диагностики быстропротекающих процессов в высоковольтных электросетях. Представлен дистанционный волоконно-оптический вариант такого электросенсора на основе оптических комплектующих, созданных для целей оптоволоконной связи.

DOI: 10.21883/PJTF.2017.08.44530.16496

Явление оптической электрохиральности было открыто более 50 лет назад и до настоящего времени привлекает исследователей [1,2]. Первое предложение использовать эффект электрохиральности для измерения высоковольтных электрических напряжений было сделано в работе [3] на примере кристаллического кварца. Однако константа электрохиральности этого кристалла очень мала, и в настоящее время кварц для этой цели считается неперспективным. Важным с точки зрения практического применения было наблюдение эффекта электрохиральности в центросимметричном кристалле PbMoO4 [4], где константа электрогирации оказалась очень большой. Однако до настоящего времени нам неизвестны работы, в которых бы обсуждались вопросы, связанные с возможностью реального использования эффекта электрогирации для создания приборов для измерения напряжения в высоковольтных электросетях.

17

В настоящей работе впервые приводится исследование дисперсии электрохиральности в кристалле PbWO₄ и рассматривается возможность создания на его основе электрогирационных дистанционных оптоволоконных приборов для высоковольтных электросетей. Вольфрамат свинца, как и кристалл РbMoO4, — центросимметричный кристалл симметрии 4/m, в котором отсутствуют естественная хиральность, эффект Поккельса и обратный пьезоэффект. Последнее обстоятельство позволяет использовать такой прибор для диагностики быстропротекающих процессов в электросетях при ударах молнии и оперативных переключениях, что очень трудно сделать с помощью электросенсоров на основе эффекта Поккельса из-за акустических резонансов, связанных с присутствием обратного пьезоэффекта. Структура этого кристалла подобна кристаллу PbMoO₄, поэтому можно ожидать, что в нем также будет большой эффект электрогирации. Кроме того, в настоящее время в России налажена технология выращивания таких кристаллов больших размеров хорошего оптического качества, связанная с их широким применением для детектирования элементарных частиц [5]. По своим электрофизическим и оптическим свойствам этот кристалл более предпочтителен, чем кристалл PbMoO₄ [6].

Поскольку в этом кристалле имеется центр симметрии, то для феноменологического описания оптических эффектов во внешнем электрическом поле можно использовать известное выражение для тензора обратной диэлектрической проницаемости:

$$\varepsilon_{ij}^{-1}(\mathbf{k}, \mathbf{E}^{ext}) = \varepsilon_{0ij}^{-1} + \gamma_{ijkl} k_k E_l^{ext} + \delta_{ijkl} E_k^{ext} E_l^{ext} + \dots, \qquad (1)$$

где $\varepsilon_{0ij}^{-1}(\omega)$ — тензор обратной диэлектрической проницаемости для невозмущенного кристалла, тензор $\gamma_{ijkl}(\omega)$ описывает электрогирацию, δ_{ijkl} — тензор, ответственный за электрооптический эффект Керра. Из соотношения Онсагера [7] для тензора обратной диэлектрической проницаемости

$$\varepsilon_{ii}^{-1}(\mathbf{k}, \mathbf{E}^{ext}) = \varepsilon_{ii}^{-1}(-\mathbf{k}, \mathbf{E}^{ext}),$$

можно легко получить ограничения на тензоры в (1)

$$\varepsilon_{0ij}^{-1}(\omega) = \varepsilon_{0ji}^{-1}(\omega), \quad \gamma_{ijkl} = -\gamma_{jikl}, \quad \delta_{ijkl} = \delta_{jikl} = \delta_{ijlk}.$$

С учетом этого тензор γ_{ijkl} можно записать в следующем виде:

$$\gamma_{ijkl} = i e_{ijm} \gamma_{mkl},$$

где e_{ijm} — единичный антисимметричный тензор, а γ_{mkl} — псевдотензор, в общем случае произвольной симметрии относительно перестановки индексов.

Будем использовать только симметричную по первым индексам $\hat{\gamma}^s$ часть псевдотензора γ_{mkl} , поскольку только эта часть дает вклад в эффект вращения плоскости поляризации.

Псевдотензор $\hat{\gamma}^s$ для кристалла вольфрамата свинца имеет вид

$$\hat{\gamma}^{s} = \gamma_{1}(\mathbf{e}_{1}\mathbf{e}_{3} + \mathbf{e}_{2}\mathbf{e}_{2}\mathbf{e}_{3}) + \gamma_{2}(\mathbf{e}_{3}\mathbf{e}_{1}\mathbf{e}_{1} + \mathbf{e}_{1}\mathbf{e}_{3}\mathbf{e}_{1} + \mathbf{e}_{2}\mathbf{e}_{3}\mathbf{e}_{2} + \mathbf{e}_{3}\mathbf{e}_{2}\mathbf{e}_{2}) + \gamma_{3}(\mathbf{e}_{2}\mathbf{e}_{3}\mathbf{e}_{1} + \mathbf{e}_{3}\mathbf{e}_{2}\mathbf{e}_{1} - \mathbf{e}_{3}\mathbf{e}_{1}\mathbf{e}_{2} - \mathbf{e}_{1}\mathbf{e}_{3}\mathbf{e}_{2}) + \gamma_{4}\mathbf{e}_{3}\mathbf{e}_{3}\mathbf{e}_{3}.$$
(2)

Вид тензора δ_{ijkl} можно найти из [8]. Здесь для записи тензоров в (2) используем инвариантный метод Федорова [9], где единичные векторы \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 направлены вдоль кристаллофизических осей согласно принятым в кристаллографии обозначениям. Решая задачу о распространении волн в кристалле [10], с учетом электрогирации и эффекта Керра при распространении света вдоль оптической оси, получим, что собственные волны будут циркулярно поляризованы, а их показатели преломления равны

$$n_{1,2} = n_o \pm (\pi n_o^4 / \lambda) \gamma_{333} E^{ext} - \frac{1}{2} n_o^3 \delta_{1133} (E^{ext})^2, \qquad (3)$$

где λ — длина волны, n_o — показатель преломления обыкновенной волны, E^{ext} — внешнее поле, приложенное вдоль оптической оси. Как видно из (3), член, ответственный за эффект Керра, в этом случае не вносит анизотропии и поэтому не будет влиять на измерения.

Угол вращения плоскости поляризации в этом случае будет

$$\theta = \pi \Delta n l / \lambda = (2\pi^2 n_o^4 / \lambda^2) \gamma_{333} E^{ext}.$$
 (4)

В поперечном внешнем электрическом поле при распространении света вдоль оптической оси электрогирация отсутствует, но эффект Керра в этом случае может вносить линейное двупреломление. К сожалению, константы эффекта Керра для кристалла PbWO₄ неизвестны. Из литературных данных [11] для кристалла нитрата свинца Pb(NO₃)₂ эта

константа порядка 10^{-21} m²/V². С учетом этих данных, как показывают наши оценки, даже при напряжении 100 kV и длине образца 10 cm вклад в изменение оптической анизотропии за счет эффекта Керра на три порядка меньше, чем оптическая анизотропия за счет электрохиральности. Таким образом, можно считать, что в данной конфигурации электрохиральность проявляется в чистом виде, и это обстоятельство как раз и позволяет создать электросенсоры для измерения полного напряжения в высоковольтных линиях.

В настоящей работе эффект электрогирации экспериментально исследовался в кристалле PbWO₄ при распространении света вдоль оптической оси кристалла в продольном электрическом поле. В эксперименте использовалась стандартная модуляционная однопроходная оптическая схема измерения, обычно применяемая для измерения эффекта Фарадея. Источником излучения служили полупроводниковые лазеры (длины волн от 0.63 до 1.55μ m). Кристалл помещался между металлическими пластинами с дырками, через которые проходило излучение. На пластины подавалось переменное напряжение с амплитудой 300 V и частотой 70 Hz. Свет после прохождения через кристалл и поляризатор, ориентированный под 45° к падающей поляризации, попадает на фотоприемник. Сигнал регистрировался синхронным детектором.

Интенсивность, падающая на фотоприемник, будет равна

$$I = \frac{I_0}{2}(1 + \sin \varphi),$$

где I_0 — интенсивность падающего оптического излучения, $\varphi = \varphi_0 \cos(\Omega t)$, Ω — частота модуляции электрического поля. Так как величина эффекта мала, можно положить $\sin \varphi \approx \varphi$ и таким образом сигнал будет пропорционален константе электрогирации кристалла. Из выражения (4) можно найти эту константу.

Были проведены эксперименты по измерению вращения плоскости поляризации света при прохождении вдоль оптической оси кристаллов в видимом и ближнем ИК-диапазонах света. Результаты измерений приведены на графике (рис. 1, *a*). Также была измерена зависимость эффекта от угла расстройки от оптической оси кристаллов. Результаты измерения представлены на рис. 1, *b*.

На основании этих измерений предложен дистанционный волоконнооптический датчик высокого напряжения с оптической головкой на основе кристалла вольфрамата свинца. Для создания реальных волоконно-

Рис. 1. Экспериментальные результаты: *а* — дисперсия электрогирации; *b* — угловая зависимость электрогирации.

оптических дистанционных датчиков целесообразно использовать двухпроходные оптические схемы отражательного типа. Поскольку при двухкратном прохождении эффект электрохиральности зануляется,

Рис. 2. Двухпроходные оптические схемы измерения напряжения: *а* — с одной четвертьволновой фазовой пластинкой; *b* — с двумя пластинками.

здесь предлагаются две оптические схемы для суммирования эффекта при двухкратном прохождении (рис. 2, *a*, *b*).

Попутно стоит заметить, что в обеих схемах автоматически исключается влияние на показания электросенсора эффекта Фарадея, возникающего за счет магнитных полей, создаваемых силовым током, текущим по высоковольтным линиям.

Матрицы Джонса в этом случае имеют вид, соответствующий линейной фазовой пластике:

$$\hat{\mathbf{M}}_1 = egin{pmatrix} -\sin(2 heta) & \cos(2 heta) \ \cos(2 heta) & \sin(2 heta) \end{pmatrix}, \qquad \hat{\mathbf{M}}_2 = egin{pmatrix} \exp(2i heta) & 0 \ 0 & \exp(-2i heta) \end{pmatrix},$$

Оптическая схема дистанционного волоконного электродатчика приведена на рис. 3. Оптическая схема дистанционного прибора была выполнена по оригинальной методике, впервые предложенной независимо в работах [12,13]. Прибор состоит из приемного модуля, оптической головки и связывающего их двупреломляющего световода. Сенсорная часть оптической головки выполнена из кристалла PbWO₄ по схеме (рис. 2, *b*). Оптическая ось кристалла ориентируется вдоль направления распространения света и силовых линий электрического поля. Входная четвертьволновая пластина ориентируется под углом 45°

Письма в ЖТФ, 2017, том 43, вып. 8

к осям связующего анизотропного световода, а между ними помещается 45-градусная ячейка Фарадея.

Приемная часть датчика выполнена на основе двупреломляющих волоконных компонентов по модуляционной схеме. Источником излучения является суперлюминесцентный диод (SLD) с центральной длиной волны $1.3\,\mu$ m с линейно поляризованным оптическим выходом вдоль быстрой оси световода. Перед пьезоакустическим поляризационным модулятором, выполненным из части связующего световода, делается сварка волокон с поворотом осей на 45° для равного возбуждения поляризационных мод. Поскольку статическое двупреломление модулятора и связного волокна компенсируется вращателем Фарадея, а модуляция поляризации осуществлялась за счет оптической задержки в связующем световоде, эллиптичность поляризации отраженного излучения на сварке 45° определяется суммарным набегом фаз в модуляторе и наведенным электрическим полем набегом фаз между циркулярными собственными волнами сенсорного кристалла.

Реальная демонстрация датчика проводилась при рабочих напряжениях до 10 kV, ограничивающихся электрической стойкостью кристалла длиной 2 ст. В этом диапазоне была линейная зависимость от напряжения. Исходя из экспериментально измеренной фазовой чувствительности приемного модуля $2 \cdot 10^{-6}$ rad·Hz^{-0.5}, для датчика с описанной выше оптической головкой чувствительность по напряжению следует ожидать ~ 5 V·Hz^{-0.5}.

Очевидно, что для оптимальной работы такого прибора, как видно из дисперсии электрогирации (рис. 1, a), нужно было бы выбирать частоту света в видимой области диапазона. Однако для дистанционного варианта оптоволоконного прибора была выбрана длина волны $1.3 \,\mu$ m, поскольку необходимые элементы для оптической схемы имелись только для ИК-диапазона, разработанные для целей оптической связи.

В работе проведено исследование электрогирации в кристаллах вольфрамата свинца. Измерены дисперсия вращения плоскости поляризации света, а также угловая зависимость эффекта при отклонении направления распространения от оптической оси. На основании этих измерений предложен дистанционный вариант электрохирального волоконно-оптического датчика высокого напряжения с оптической головкой на основе кристалла вольфрамата свинца.

Работа поддержана Министерством образования и науки РФ в рамках ФЦП "Исследования и разработки по приоритетным направлениям

развития научно-технологического комплекса России на 2014–2020 годы" (соглашение № 14.578.21.0041 от 21.08.2014 г., уникальный идентификатор: RFMEFI57814X0041).

Список литературы

- [1] Kaminsky W. // Rep. Prog. Phys. 2000. V. 63. P. 1575-1640.
- [2] Eremites A. et al. // J. Appl. Crystallogr. 2011. V. 44. P. 1100-1110.
- [3] Rogers A.J. // Proc. R. Soc. Lond. A. 1977. V. 353. P. 177-192.
- [4] Влох О.Г., Желудев И.С., Климов И.М. // ДАН СССР. 1975. Т. 223. В. 6. С. 1391–1393.
- [5] Baccarj S. et al. // Nucl. Instrum. Methods A. 1997. V. 385. P. 209.
- [6] Kim J.S., Lee H.S., Jeong C.H. // J. Korean Phys. Soc. 2003. V. 42. P. 1042–1045.
- [7] Агранович В.М., Гинзбург В.Л. Кристаллооптика с учетом пространственной дисперсии и теория экситонов. М.: Наука, 1979. 432 с.
- [8] Сиротин Ю.И., Шаскольская М.П. Основы кристаллофизики. М.: Наука, 1975. 680 с.
- [9] Федоров Ф.И. Теория гиротропии. Минск: Наука и техника, 1976. 456 с.
- [10] Най Дж. Физические свойства кристаллов. М.: Мир, 1967. 386 с.
- [11] Weber Y.J., Yaussuhl S. // Zeit. Kristallogr. 1977. V. 146. P. 303-307.
- [12] Уставщиков С.С., Комарова С., Новиков М.А. // Фотон-Экспресс. 2009. V. 78. Р. 154–155.
- [13] Wildermuth S., Bohnert K., Brändle H. // Proc. SPIE. 2009. V. 7503.