13,11

Электронно-микроскопическое исследование кинетики слоевой и островковой кристаллизации аморфных пленок V₂O₃, осажденных импульсным лазерным напылением

© А.Г. Багмут

Национальный технический университет "Харьковский политехнический институт", Харьков, Украина

E-mail: Bagmut@kpi.Kharkov.ua

(Поступила в Редакцию 10 октября 2016 г. В окончательной редакции 15 ноября 2016 г.)

Проведено электронно-микроскопическое исследование кинетики слоевой и островковой кристаллизации аморфных пленок V₂O₃, осажденных лазерным распылением V в атмосфере кислорода. Кристаллизацию инициировали воздействием электронного луча на аморфную пленку в колонне микроскопа. Кинетические кривые строили на основании покадрового анализа видеофильма, снятого в процессе кристаллизации пленки. Установлено, что при слоевой кристаллизации имеет место квадратичная зависимость доли кристаллической фазы x от времени t. При островковой кристаллизации зависимость x от t экспоненциальная. Анализ кинетических кривых островковой кристаллизации проведен на основе α -варианта модели Колмогорова. Типу кристаллизации ставится в соответствие безразмерная относительная единица длины δ_0 , равная отношению характерной единицы длины к параметру, характеризующему элементарную ячейку кристаллизации $\delta_0 \sim 110$.

DOI: 10.21883/FTT.2017.06.44493.376

1. Введение

Проводимые в настоящее время многочисленные теоретические и экспериментальные исследования структуры и свойств полуторной окиси ванадия (V₂O₃) обусловлены наличием фазовых переходов типа металл—изолятор и металл—полупроводник, зависящих от температуры, давления и концентрации легирующих примесей [1–3]. Так, выше 150 К проводимость V₂O₃ возрастает на 7 порядков вследствие перехода изолятор (антиферромагнетик) с моноклинной структурой — металл с ромбоэдрической структурой. Широкий фазовый переход второго рода металл—полупроводник имеет место в интервале температур ~ 450–500 K [3].

Одним из эффективных методов получения пленок V_2O_3 стехиометрического состава является метод импульсного лазерного осаждения (ИЛО). Лазерным распылением в вакууме мишени из спрессованного порошка V_2O_3 были получены эпитаксиальные пленки на подложках (110) и (001) Al_2O_3 при 1023 К [3]. При лазерном распылении мишени в атмосфере Ar также были получены эпитаксиальные пленки V_2O_3 на подложках Al_2O_3 при температуре 873 К [4].

Структура и состав пленок, осажденных импульсным лазерным распылением мишени ванадия в атмосфере кислорода, зависели от угла φ (отсчитываемого от нормали к поверхности подложки) конденсации паро-плазменного потока. Однофазные аморфные пленки V₂O₃ на подложках (001) КС1 при температуре $T_s = 293$ К и давлении кислорода $P(O_2) = 0.13$ Ра формировались тогда, когда $\varphi \ge 19^\circ$. Электронно-лучевая кристаллизация таких пленок приводила к образованию кристаллов V₂O₃, имеющих ромбоэдрическую решетку [5]. Фазовый переход сопровождался увеличением плотности вещества пленки на 9.2%, что инициировало формирование растягивающих напряжений и, как следствие, сферолитный рост кристаллов. Относительное искривление кристаллической решетки растущих в пленке сферолитов V₂O₃ достигало 42 deg · μ m⁻¹.

На основании электронно-микроскопических исследований и анализа литературных данных в [6,7] предложена классификация видов кристаллизации аморфных пленок по структурно-морфологическим признакам. Выделены слоевая, островковая и дендритная полиморфная кристаллизация, а также жидкофазная кристаллизация, происходящая с расслоением среды. Слоевая полиморфная кристаллизация (СПК) аморфной пленки является аналогом слоевого роста на подложке конденсата из паровой фазы (рост по Франку и Ван дер Мерве). В области воздействия электронного луча на поверхности аморфной пленки зарождается и растет единственный плоский кристалл. Островковая полиморфная кристаллизация (ОПК) является аналогом островкового роста пленки на подложке из паровой фазы (рост по Фольмеру и Веберу).

Оба типа реакций кристаллизации происходят без изменения химического состава, соответствующего аморфной пленке. Реализация того или иного механизма определяется соотношением между величинами свободной энергии поверхности раздела аморфная фаза–вакуум (σ_a), свободной энергия поверхности раздела кристаллическая фаза–вакуум (σ_c), свободной энергии поверхности раздела аморфная–кристаллическая фаза (σ_{ac}) и энергией деформации растущего кристаллического слоя

Рис. 1. Электронограмма (*a*), электронно-микроскопическое изображение островковой (*b*) и слоевой (*c*) полиморфной кристаллизации аморфной пленки V₂O₃. На вставке (*c*) приведена картина микродифракции от центра сферолита V₂O₃.

 (ε_{d}) [8]. При выполнении соотношения

$$\sigma_{\rm a} \ge \sigma_{\rm c} + \sigma_{\rm ac} + \varepsilon_{\rm d} \tag{1}$$

аморфная пленка кристаллизуется по механизму СПК. В случае выполнения противоположного соотношения

$$\sigma_{\rm a} \le \sigma_{\rm c} + \sigma_{\rm ac} + \varepsilon_{\rm d} \tag{2}$$

реализуется механизм ОПК.

Численные значения σ_a , σ_c , σ_{ac} и ε_d определяются не только природой вещества пленки, но и технологическими условиями в процессе их формирования [9]. Это приводит к тому, что в разных пленках или даже в пределах одной пленки электронно-лучевая кристаллизация может протекать поразному (т.е. по механизму СПК или ОПК). Количественные данные о характере и кинетике электронно-лучевой кристаллизации аморфных пленок V₂O₃ отсутствуют. Поэтому цель данной работы состояла в получении аморфных пленок V₂O₃ методом ИЛО, в исследовании их структуры и в сопоставлении кинетики электронно-лучевой кристаллизации при слоевом и островковом росте кристаллов.

2. Методика эксперимента

Для получения аморфных пленок полуторной окиси ванадия использовали метод ИЛО. Распыление мишени высокочистого V проводили в атмосфере кислорода при давлении ~ 0.13 Ра. Использовали импульсное излучение лазера ЛТИ–ПЧ-5, работавшего в режиме модулированной добротности. Длинна волны и частота следования импульсов составляли $1.06 \,\mu$ m и 25 Hz соответственно. Продукты лазерной эрозии мишени осаждали на подложках (001) КСІ при комнатной температуре. Толщина пленок составляла $25-30 \,\text{nm}$. Подробности метода лазерного напыления изложены в [5].

Пленки отделяли от подложки в дистиллированной воде и переносили на предметные сетки для микроскопических исследований. Кристаллизацию пленки инициировали электронно-лучевым воздействием в колонне микроскопа при токе пучка ~ $20\,\mu$ A. Скорость кристаллизации задавали изменением плотности тока электронов *j* через образец, который составлял 1.1-6.5 A \cdot mm⁻² в зависимости от фокусировки пучка.

Структурный анализ проводили методами электронографии и просвечивающей электронной микроскопии с использованием электронных микроскопов ЭМ-100Л и ПЭМ-100-01, работавших при ускоряющем напряжении 100 kV. Процесс кристаллизации пленки записывали с экрана электронного микроскопа камерой Canon Power Shot G15 в режиме съемки видеофильма при частоте кадров $30 \, {\rm s}^{-1}$ [10]. Данные о кинетике процесса кристаллизации получали путем анализа отдельных кадров видеофильма, снятого *in situ* при фиксированной тангенциальной скорости роста кристаллов v (задаваемой j), определяемой соотношением

$$v = \frac{\Delta D}{\Delta t}.$$
 (3)

В выражении (3) ΔD есть приращение среднего (арифметического) значения диаметра D микрокристаллов V₂O₃ за промежуток времени Δt между кадрами видеофильма, соответствующим временным моментам съемки t и $t + \Delta t$. Размер кристаллов определяли по контрасту их электронно-микроскопического изображения, поскольку он отличен от контраста изображения аморфной матрицы.

3. Результаты исследований

Лазерное испарение V в атмосфере кислорода приводило к формированию на подложке при комнатной температуре аморфной пленки V₂O₃. Воздействие электронного луча инициировало ее кристаллизацию. На рис. 1, *а* приведена электронограмма участка пленки после его полной кристаллизации. Данные расшифровки электронограммы находятся в хорошем согласии с данными таблиц [11] для ромбоэдрической фазы V₂O₃ с параметрами $a_0 = 0.4920$ nm, $c_0 = 1.3883$ nm и $c_0/a_0 = 2.8217$.

Электронно-микроскопическое изображение участка пленки V_2O_3 , где фазовый переход из аморфного состояния в кристаллическое состояние произошел по механизму ОПК, дано на рис. 1, *b*, а по механизму СПК, дано на рис. 1, *c*. В первом случае область закристаллизованной пленки является поликристаллом, а во втором случае — кристаллом (сферолитом). Начало образования сферолита соответствует точке пересечения его изгибных экстинкционных контуров (отмечено кружком на рис. 1, *c*). В этом месте ось зоны направлена по [001] V₂O₃.

На рис. 2 представлены зависимости среднего диаметра D кристаллов V_2O_3 от времени t при островковой (1)

Рис. 2. Зависимость среднего диаметра кристаллов D от времени t при островковой (1) и слоевой (2) полиморфной кристаллизации аморфной пленки V₂O₃. Прямой 1 соответствует скорость роста кристаллов $1.076 \,\mu \text{m} \cdot \text{s}^{-1}$; прямой $2 - 7.321 \,\mu \text{m} \cdot \text{s}^{-1}$.

Рис. 3. Зависимость плотности центров зарождения кристаллов *N* от времени *t* при ОПК аморфной пленки V₂O₃. Линии *1* соответствует скорость роста кристаллов $v = 0.297 \,\mu \text{m} \cdot \text{s}^{-1}$. Линии 2 соответствует $v = 0.479 \,\mu \text{m} \cdot \text{s}^{-1}$.

Таблица 1. Параметры островковой электронно-лучевой кристаллизации аморфных пленок V₂O₃

$v, \ \mu m \cdot s^{-1}$	0.297	0.479	1.076
α , s ⁻¹ · cm ⁻²	$5.51 \cdot 10^8$	$9.38 \cdot 10^{8}$	—
k	1.8	2.0	1.5
n	0.496	0.576	1.165
<i>t</i> ₀ , s	1.48	1.32	0.90
$D_0, \ \mu m$	0.44	0.63	0.97
δ_0	663	949	1461

Примечание. v — тангенциальная скорость роста кристаллов V₂O₃ в аморфной пленке, α — интенсивность зарождения центров кристаллизации, k, n — кинетические параметры кристаллизации, t_0 — характерная единица времени, D_0 — характерная единица длины, δ_0 — относительная единица длины.

и слоевой (2) полиморфной кристаллизации аморфной пленки V_2O_3 . Прямые линии построены по данным измерений D с использованием метода наименьших квадратов. Скорость роста кристаллов определяли по наклону прямых к оси абсцисс. Прямой I (рост по механизму ОПК) соответствует скорость роста $1.076 \,\mu m \cdot s^{-1}$, а прямой 2 (рост по механизму СПК) соответствует скорость роста $7.321 \,\mu m \cdot s^{-1}$.

В процессе ОПК V₂O₃ (рис. 1, *b*). плотность центров зарождения кристаллов N увеличивалась с ростом времени наблюдения *t*. На рис. 3 представлены зависимости *N* от *t* при скорости роста кристаллов $v = 0.297 \,\mu \text{m} \cdot \text{s}^{-1}$ (кривая *I*) и $v = 0.479 \,\mu \text{m} \cdot \text{s}^{-1}$ (прямая 2). Интенсивность зарождения центров кристаллизации α (ст⁻² · s⁻¹) определяли по наклону начального линейного участка линии *I* и по наклону прямой 2 к оси абсцисс. Прямолинейному участку линии *I* соответствует $\alpha = 5.51 \cdot 10^8 \text{ cm}^{-2} \cdot \text{s}^{-1}$; прямой 2 соответствует $\alpha = 9.38 \cdot 10^8 \text{ cm}^{-2} \cdot \text{s}^{-1}$ (табл. 1). В процессе слоевой полиморфной кристаллизации V₂O₃ новая фаза образовывалась из одного центра и со временем распространялась на всю область наблюдения (рис. 1, *c*).

Для каждого значения скорости роста кристаллов строили кинетические кривые кристаллизации аморфной фазы, т.е. зависимость доли кристаллической фазы *x* от времени *t*, прошедшего с момента фиксации начала процесса кристаллообразования. Величину *x* определяли как отношение суммарной площади, занятой кристаллической фазой, к общей площади микрофотографии.

На рис. 4, *а* представлены зависимости x(t) для тех участков пленки V₂O₃, которые кристаллизовались по механизму ОПК. Линии *I* соответствует скорость роста кристаллов $v = 0.297 \,\mu m \cdot s^{-1}$; линии *2* соответствует $v = 0.479 \,\mu m \cdot s^{-1}$; линии *3* соответствует $v = 1.076 \,\mu m \cdot s^{-1}$. По этим данным для каждого значения *v* были построены графики зависимости ln[$-\ln(1-x)$] от ln *t*. Они представлены на рис. 4, *b*. Линии построены по экспериментальным значениям ln[$-\ln(1-x)$] с использованием метода наименыших квадратов. Для каждой линии коэффициент корреляции, характеризующий тесноту линейной связи между ln[$-\ln(1-x)$] и ln *t*, близок к единице. Тот факт, что

Рис. 4. Островковая кристаллизация аморфных пленок V₂O₃. *a*) Зависимость доли кристаллической фазы *x* от времени *t*. *b*) Кинетические кривые кристаллизации, представленные как зависимости $\ln[-\ln(1-x)]$ от $\ln t$. Линиям *I* соответствует скорость роста кристаллов $v = 0.297 \,\mu \text{m} \cdot \text{s}^{-1}$; линиям *2* соответствует $v = 0.479 \,\mu \text{m} \cdot \text{s}^{-1}$; линиям *3* соответствует $v = 1.076 \,\mu \text{m} \cdot \text{s}^{-1}$.

кинетические кривые кристаллизации аморфной фазы V_2O_3 в координатах $\ln[-\ln(1-x)] - \ln t$ являются прямыми, указывает на применимость к процессу кристаллизации формулы Джонсона-Мейла-Аврами-Колмогорова (JMAK) [12,13]:

$$x = 1 - \exp(-nt^k), \tag{4}$$

где k и n есть кинетические параметры кристаллизации.

Параметры *k* и *n* определяли по графикам, приведенным на рис. 4, *b*. Для этого выражение (4) записывали в виде

$$\ln[-\ln(1-x)] = k \ln t + \ln n.$$
 (5)

Согласно (5), коэффициент k определяется как тангенс угла наклона прямой к оси абсцисс, a $\ln n$ определяется как точка пересечения прямой с осью ординат. Значения кинетических параметров кристаллизации k и n при разных скоростях роста кристаллов в случае островковой кристаллизации аморфных пленок V_2O_3 приведены в табл. 1.

Кадры видеофильмов, снятых для каждого сеанса кристаллизации аморфных пленок V₂O₃, в целом свидетельствуют о постоянстве скорости роста кристаллов v (рис. 2). По мере кристаллизации пленки доля аморфной фазы уменьшается, а следовательно, уменьшается и интенсивность зарождения центров кристаллизации α (рис. 3, линия 1). Однако в течение времени $t \le 0.4t_0$ (t_0 — характерная единица времени, по прошествии которого объем аморфной фазы уменьшается в 2.718 раз и доля кристаллической фазы x = 0.632) α практически не меняется (рис. 3, линии 1 и 2). Поэтому анализ результатов, касающихся ОПК пленки, целесообразно провести, руководствуясь α -вариантом модели Колмогорова (т. н. К-модели) [14,15]. В этом случае k - 1 есть размерность модели, а

$$n = c\alpha v^{k-1} k^{-1}, \tag{6}$$

где c — константа формы. Согласно [14,15], характерная единица времени t_0 и характерная единица длины D_0 (условный размер кристалла к моменту t_0) в К-модели определяются как

$$t_0 = n^{-\frac{1}{k}} = (c \alpha^{k-1})^{-\frac{1}{k}},\tag{7}$$

$$D_0 = vt_0 = (c\alpha v^{-1})^{-\frac{1}{k}}.$$
(8)

Значения t_0 и D_0 , вычисленные согласно (7) и (8), для пленок, кристаллизующихся по механизму ОПК, приведены в табл. 1.

На рис. 5, *а* представлены зависимости x(t) для тех участков пленки V₂O₃, которые кристаллизовались по механизму СПК. Линии *1* соответствует скорость роста кристаллов $v = 0.235 \,\mu m \cdot s^{-1}$; линии *2* соответствует $v = 0.355 \,m \cdot s^{-1}$; линии *3* соответствует $v = 7.321 \,\mu m \cdot s^{-1}$. По этим данным для каждого значения *v* были построены графики зависимости *x* от t^2 . Они представлены на рис. 5, *b*. Линии построены по экспериментальным значениям *x* с использованием метода наименьших квадратов. Для каждой линии коэффициент корреляции, характеризующий тесноту линейной связи между *x* и t^2 , близок к единице. Тот факт, что кинетические кривые слоевой кристаллизации аморфной фазы

Таблица 2. Параметры слоевой электронно-лучевой кристаллизации аморфных пленок V₂O₃

$v, \mu m \cdot s^{-1}$	0.235	0.355	7.321
t_0 , s	9.98	6.38	0.29
$D_0, \ \mu \mathrm{m}$	2.34	2.26	2.12
δ_0	4756	4593	4309

Примечание. v — тангенциальная скорость роста кристаллов V₂O₃ в аморфной пленке, t_0 — характерная единица времени, D_0 — характерная единица длины, δ_0 — относительная единица длины.

Рис. 5. Слоевая кристаллизация аморфных пленок V₂O₃. *a*) Зависимость доли кристаллической фазы *x* от времени *t*. *b*) Кинетические кривые кристаллизации, представленные как зависимости *x* от t^2 . Линиям *1* соответствует скорость роста кристаллов $v = 0.235 \,\mu \text{m} \cdot \text{s}^{-1}$; линиям *2* соответствует $v = 0.355 \,\mu \text{m} \cdot \text{s}^{-1}$; линиям *3* соответствует $v = 7.321 \,\mu \text{m} \cdot \text{s}^{-1}$.

 V_2O_3 в координатах $x-t^2$ являются прямыми, указывает на квадратичную зависимость доли кристаллической фазы x от времени t:

$$x = \psi t^2, \tag{9}$$

$$\psi = v^2 D_s^{-2}.\tag{10}$$

В выражении (10) D_s есть эффективный диаметр наблюдаемой в электронном микроскопе области, где происходит кристаллизация пленки (~ 2.9 μ m).

В случае слоевой полиморфной кристаллизации характерные единицы времени t_0 для разных значений v определяли по графику, приведенному на рис. 5, *b*. Характерные единицы длины D_0 определяли как vt_0 . Полученные данные приведены в табл. 2.

4. Обсуждение результатов

Исследования электронно-лучевой кристаллизации аморфных пленок V_2O_3 показали, что в силу локальных неоднородностей осажденного вещества даже в пределах одной пленки фазовое превращение может протекать как по механизму СПК, так и по механизму ОПК, в зависимости от соотношения между σ_a , σ_c , σ_{ac} и ε_d в

исследуемой области пленки (формулы (1) и (2)). Ранее формирование вследствие структурной неоднородности образований различного типа (дендритов, ячеек) в пределах одной пленки наблюдали при электронно-лучевой кристаллизации пленок железо—углерод [9].

Анализ результатов электронно-микроскопических исследований кристаллизации тонких аморфных пленок целесообразно провести, установив безразмерный геометрический критерий характера полиморфного превращения. Критерием может служить относительная единица длины δ_0 , определяемая как

$$\delta_0 = \frac{D_0}{a_0} \tag{11a}$$

в случае СПК, и как

$$\delta_0 = \frac{D_0}{\sqrt[3]{\Omega}} \tag{11b}$$

в случае ОПК. В выражении (11b) Ω есть объем элементарной ячейки растущего кристалла.

В случае СПК в исследуемой области пленки (площадь которой $\sim D_s^2$) со скоростью v растет единственный плоский кристалл (рис. 1, c). Если в плоскости пленки скорость роста постоянна, то кристалл будет иметь форму диска (рис. 6). К моменту времени t_0 его размер в плоскости пленки составит $D_0 = vt_0$. Увеличение диаметра диска (т.е. его рост) можно представить, как последовательное присоединение элементарных ячеек V₂O₃ к границе раздела кристалл-аморфная фаза. Если осью зоны кристалла является [001] V₂O₃ (рис. 1, c), то проекцией элементарной ячейки на плоскость пленки является ромб со стороной $a_0 = 0.4920$ nm и углом при вершине, равным 120° (заштрихованные фигуры на рис. 6). В этом случае, согласно (11а), относительной единицей длины δ_0 будет число параметров ячейки a_0 ,

Рис. 6. Схема роста кристалла V_2O_3 по механизму СПК. Заштрихованные ромбы соответствуют проекциям элементарных ячеек V_2O_3 на плоскость рисунка.

Таблица 3.	Средние значения	характерной еди	иницы длины	$\langle D_0 angle$ i	и относительной	единицы	длины	$\langle \delta_0 angle$ при	и электронно	-лучевой
кристаллиза	ции аморфных плен	юк V_2O_3 и ZrO_2								

Параметр	араметр СПК V2O3 ОПК V2O3 Лазерное Лазерное напыление напыление		ОПК ZrO ₂ Лазерное напыление [10]	ОПК ZrO ₂ Ионно-плазменное напыление [10]	
$\langle D_0 angle, \ \mu{ m m} \ \langle \delta_0 angle$	2.24	0.68	0.46	0.06	
	4553	1024	904	118	

укладывающихся на расстоянии, равном D_0 . Значения δ_0 при разных скоростях роста кристаллов V₂O₃ по механизму СПК приведены в табл. 2. Среднее арифметическое значение этих величин $\langle \delta_0 \rangle = 4553$ (табл. 3).

В случае ОПК в исследуемой области пленки растет множество мелких кристаллов разных ориентаций (рис. 1, *b*). К моменту времени t_0 доля кристаллической фазы x = 0.632, а размер кристаллов сопоставим с характерной единицей длины D_0 (8). Проекциями элементарных ячеек кристаллов на плоскость пленки являются многоугольники с различными сторонами и углами при вершине. Поэтому для определения δ_0 используется величина, имеющая размерность длины и равная кубическому корню из объема элементарной ячейки кристалла (11b). Для полуторной окиси ванадия объем элементарной ячейки $\Omega = 292.74 \, \text{Å}^3$ [11]. При этом $\Omega^{1/3} = 0.6640$ nm. Значения δ_0 при разных скоростях роста кристаллов V2O3 по механизму ОПК, вычисленные по формуле (11b), приведены в табл. 2. Среднее значение этих величин $\langle \delta_0 \rangle = 1024$ (табл. 3).

В табл. 3 также приведены значения $\langle \delta_0 \rangle$, вычисленные согласно (11b) по литературным данным результатов исследований ОПК аморфных пленок ZrO₂, полученных лазерным (четвертый столбец табл. 3) и ионноплазменным (пятый столбец табл. 3) напылением [10]. Для диоксида циркония объем кубической элементарной ячейки $\Omega = 131.87 \text{ Å}^3$ [16]. При этом $\Omega^{1/3} = 0.5090 \text{ nm}$. Согласно табл. 3, значения $\langle \delta_0 \rangle$ весьма близки при ОПК лазерных конденсатов V₂O₃ и ZrO₂. Наибольшее (сорокакратное) отличие $\langle \delta_0 \rangle$ наблюдается при сопоставлении СПК аморфных лазерных конденсатов V₂O₃ и OПК аморфных конденсатов ZrO₂, полученных ионноплазменным напылением.

5. Заключение

При лазерном осаждении V в атмосфере кислорода при давлении ~ 0.13 Ра на подложках при комнатной температуре формируются аморфные пленки V₂O₃. Воздействие электронного луча инициирует их кристаллизацию с образованием кристаллов V₂O₃, имеющих ромбо-эдрическую кристаллическую решетку. Кристаллизация происходит полиморфно (в соответствии с классификацией [17]), при которой аморфное вещество переходит в кристаллических химических соединений. В пределах одного и того же исследуемого тонкопленочного

образца переход в кристаллическое состояние может проходить как по механизму ОПК, так и по механизму СПК (согласно классификации [6]), что обусловлено локальными неоднородностями аморфного состояния.

В областях, закристаллизованных по механизму ОПК, формируется поликристаллическая пленка V₂O₃. Зависимость доли кристаллической фазы x от времени tносит экспоненциальный характер, описываемый соотношением (4). В процессе формирования пленки имеет место постоянство скорости роста кристаллов v и постоянство интенсивности зарождения центров кристаллизации, что соответствует α -варианту модели Колмогорова [15]. Характерная единица длины $D_0 \sim 0.44-0.97 \,\mu$ m. Имеет место тенденция увеличения D_0 с ростом v.

В областях, закристаллизованных по механизму СПК, формируется монокристаллическая пленка V₂O₃. Зависимость доли кристаллической фазы от времени носит квадратичный характер, описываемый соотношением (9). Характерная единица длины $D_0 \sim 2.12-2.34 \, \mu$ m. D_0 практически не зависит от v.

Введение, согласно (11а) и (11b), безразмерной относительной единицы длины δ_0 дает возможность численного сопоставления механизмов СПК и ОПК аморфных пленок различных химических соединений (табл. 3). При СПК V₂O₃, в результате которой в области воздействия электронного луча формируется монокристалл (точнее, сферолит), соответствует $\delta_0 \sim 4300-4700$. Мелкокристаллической пленке ZrO₂, сформированной по механизму ОПК, соответствует $\delta_0 \sim 110$. Крупнокристаллическим пленкам V₂O₃ и ZrO₂, сформированным по механизму ОПК (промежуточная область), соответствует $\delta_0 \sim 900-1000$. Границы значений δ_0 могут быть существенно уточнены при расширении круга исследований аморфных пленок, кристаллизующихся полиморфно при электронно-лучевом воздействии.

Список литературы

- [1] D. Grieger, F. Lechermann. Phys. Rev. B 90, 115115 (2014).
- [2] Y. Guo, S.J. Clark, J. Robertson. J. Chem. Phys. 140, 054702 (2014).
- [3] B.S. Allimi, S.P. Alpay, D. Goberman, T. Huang, J.I. Budnick, D.M. Pease, A.I. Frenkel. J. Mater. Res. 22, 2825 (2007).
- [4] J. Sakai, P. Limelette, H. Funakubo. Appl. Phys. Lett. 107, 241901 (2015).
- [5] A.G. Bagmut, V.A. Zhuchkov, V.Yu. Kolosov, V.M. Kosevich, D.V. Melnichenko. Crystallography Rep. 51, S150 (2006).

- [6] А.Г. Багмут. Письма в ЖТФ 38, 79 (2012).
- [7] А.Г. Багмут. Электронная микроскопия пленок, осажденных лазерным испарением. Изд-во НТУ "ХПИ", Харьков (2014). 304 с.
- [8] A.G. Bagmut. J. Surf. Invest. 7, 884 (2013).
- [9] С.М. Жарков, Л.И. Квеглис. ФТТ 46, 938 (2004).
- [10] А.Г. Багмут, В.М. Береснев. ФТТ 59, 144 (2017).
- [11] JCPDS Powder Diffraction File Card No. 26-0278 (International Centre for Diffraction Data, Swarthmore, PA, 1996).
- [12] G. Ruitenberg, A.K. Petford-Long, R.C. Doole. J. Appl. Phys. 92, 3116 (2002).
- [13] Э.Ш. Гаджиев, А.И. Мададзаде, Д.И. Исмаилов. ФТП 43, 1534 (2009).
- [14] А.Н. Колмогоров. Изв. АН СССР. Сер. мат. 3, 355 (1937).
- [15] В.З. Беленький. Геометрико-вероятностные модели кристаллизации. Феноменологический подход. Наука, Москва (1980), 84 с.
- [16] JCPDS Powder Diffraction File Card N 27-0997 (International Centre for Diffraction Data, Swarthmore, PA, 1996).
- [17] U. Köster, U. Herold. Glassy Metals I. Ionic Structure, Electronic Transport and Crystallization. Springer-Verlag, N.Y. (1981). 376 p.