02

Ионизация молекул глицина *α*-частицами keV-энергий

© В.В. Афросимов¹, А.А. Басалаев^{1,¶}, В.В. Кузьмичев^{1,2}, М.Н. Панов¹, О.В. Смирнов^{1,3}

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург ² Санкт-Петербургский политехнический университет Петра Великого

³ Санкт-Петербургский Академический университет Петр

научно-образовательный центр нанотехнологий РАН

[¶] E-mail: a.basalaev@mail.ioffe.ru

Поступило в Редакцию 18 октября 2016 г.

Методом "многостоповой" времяпролетной масс-спектрометрии исследован механизм радиационных повреждений молекул глицина, находящихся в газовой фазе, при взаимодействии с ионами He^{2+} с энергией $E_p = 4 \text{ keV/a.m.u.}$ Впервые измерены относительные сечения различных элементарных процессов, происходящих при однократных столкновениях молекул глицина с ионами. Обнаружено различие в фрагментации промежуточных двухзарядных ионов, формирующих-ся в процессах захвата одного электрона с ионизацией и двухэлектронного захвата, что объясняется разницей в энергии возбуждения молекулярных ионов.

DOI: 10.21883/PJTF.2017.07.44470.16531

Исследования взаимодействия молекул аминокислот, находящихся в газовой фазе, с различными частицами и излучением обусловлены их биологической значимостью (например, [1] и ссылки в ней). Фрагментация ионов глицина ($C_2H_5NO_2$) — простейшей из протеиногенных аминокислот, изучалась особенно интенсивно, что, в частности, связано с обнаружением этой молекулы в свободном состоянии в межзвездной среде [2] и в образцах пыли кометы 81P/Wild 2, доставленных на Землю космическим зондом [3], а также возможной ролью внеземных аминокислот в возникновении жизни на Земле.

Целью настоящей работы было получение экспериментальных данных, которые могут быть использованы для проверки квантовохимических расчетов, и исследование механизма радиационных повреждений молекулы глицина (Gly) при взаимодействии с ионами, основанное на оценке кинетической энергии образующихся ионов-

63

фрагментов и измерении относительных сечений элементарных процессов (1) изменения зарядового состояния партнеров столкновения

$$He^{2+} + Gly \to He^{(2-s)+} + \{Gly\}^{n+} + (n-s)e^{-} \to He^{(2-s)+} + \Sigma_n Fr_n^+ + \Sigma_i Fr_i^0 + (n-s)e^{-},$$
(1)

где {Gly}^{*n*+} — промежуточное состояние молекулярного иона, образующегося в процессе захвата *s*-электронов ионом He²⁺ (*s* = 1, 2); Fr_n^+ — ионы-фрагменты, как правило, однозарядные; Fr_i^0 — нейтральные фрагменты; (*n* - *s*) — число свободных электронов, возникающих в процессах захвата. При обозначении процессов использованы четыре числа, соответствующих зарядовым состояниям взаимодействующих частиц {2(2 - *s*)0*n*}.

Для проведения исследований была использована экспериментальная методика [4,5], основанная на "многостоповом" времяпролетном анализе зарядового и массового состава ионов-фрагментов, образующихся в процессах (1), при одновременной фиксации заряда налетающего иона после взаимодействия с молекулой. Мишень молекул в газовой фазе с плотностью, обеспечивающей режим однократных столкновений, создавалась при нагреве кристаллического глицина до температуры $146 \pm 1^{\circ}$ С.

Определение относительных величин сечений элементарных процессов проводилось на основе масс-спектров ионов-фрагментов, которые после вычитания фона нормировались на интеграл тока пучка налетающих ионов и количество вещества, прошедшего через область взаимодействия и сконденсировавшегося на датчике кварцевых микровесов за время измерения. Заряд промежуточного молекулярного иона ${Gly}^{n+}$ экспериментально определялся по количеству одновременно образовавшихся ионов-фрагментов и их зарядовому состоянию.

Типичные масс-спектры ионов-фрагментов, образующихся в процессах одноэлектронного захвата {2101}, захвата с ионизацией {2102} и двухэлектронного захвата {2002} приведены на рисунке. Относительная интенсивность наблюдаемых ионов- фрагментов приведена в табл. 1. Идентификация ионов-фрагментов основана на результатах расчетов, выполненных в работе [6], и на исследованиях фотоионизации глицина, в том числе с использованием дейтерированных молекул [7,8]. Однократная ионизация молекулы глицина, как и большинства аминокислот, сопровождается фрагментацией [4–9]. Основной по величине сечения

Масс-спектры ионов-фрагментов, образующихся в процессах одноэлектронного захвата {2101}, захвата с ионизацией {2101} и двухэлектронного захвата {2002}. Часть спектра {2101}, соответствующая массе 30 а.т.и., умножена на 1/8. На вставке изображена структурная формула глицина.

канал процесса фрагментации иона Gly⁺ обусловлен простым разрывом C_{α} -С-связи (вставка на рисунке) и осуществляется при энергии возбуждения молекулярного иона $E_{ex} = 0.36 \text{ eV}$ [6–8]. Основной пик в масс-спектре с m = 30 а.т.u. имеет сателлиты с массами m = 28, 29 и 31 а.т.u., образующиеся благодаря миграции или отрыву атомов водорода. В пик с массой m = 31 а.т.u. дает вклад $\sim 1.5 \text{ rel.u.}$ изотопная составляющая основного пика с m = 30 а.т.u. [10].

В столбце Σ табл. 1 приведены суммарные интенсивности ионов, наблюдаемые во всех исследованных процессах, в том числе захвата одного электрона с двукратной ионизацией {2103} и захвата двух электронов с ионизацией {2003}. Суммарные интенсивности пиков ионовфрагментов, измеренные в работе [9] при взаимодействии молекул глицина с ионами He²⁺ с энергией 6.7 keV/a.m.u. (скорость $V_p = 0.52$ a.u.), хорошо согласуются с полученными в настоящей работе. Следует отметить, что интенсивности пиков ионов-фрагментов, образующихся при фрагментации однозарядного иона глицина, формируемого в процессе

Таблица 1. Относительная интенсивность ионов-фрагментов, образующихся в процессах захвата одного и двух электронов. Интенсивность ионов, образующихся в процессах $\{210n\}$ n = 1, 2 и $\{2002\}$, и суммарная интенсивность зарегистрированных ионов-фрагментов (Σ). Данные нормированы на суммарную интенсивность Σ иона-фрагмента с массой 30 а.т.u.

m/g	ID	{2101}	{2102}	{2002}	Σ	$\Sigma[9]$
1	H^+	6.4	4.7	58.3	90.1	92
2	H_2^+	0.1	0.1	1.2	1.9	1.5
12	C^{+}	1.0	1.0	10.5	15.7	16.3
13	CH^+	0.4	0.4	3.2	5.2	4.2
14	CH_2^+ , N^+	0.7	0.6	4.4	7.5	8.4
16	$\rm NH_2^+, O^+$	1.2	1.2	9.4	15.4	16.4
17	$\rm NH_3^+, OH^+$	0.5	0.3	3.1	5.5	4
24	C_2^+	0.2	0.3	2.9	4.4	4
27	HCN^+	2.3	1.9	7.3	14.7	8.6
28	$HCNH^+$	13.4	3.6	12.5	34.5	39
29	$\rm NH_2 CH^+$	5.4	1.5	5.1	15.0	8.9
30	$\rm NH_2CH_2^+$	96.4	1.3	1.5	100	100
44	CO_2^+	0.6	0.8	1.5	3.7	2
45	$COOH^+$	1.4	1.3	1.0	4.6	4.9
46	$\rm HCOOH^+$	0.6	0.8	0.5	2.4	0.38
74	$(Gly-H)^+$	0.4	0.2		0.6	
75 + 76	Gly^+	5.9			5.9	3.8

одноэлектронного захвата, удовлетворительно согласуются с данными по ионизации глицина электронным ударом [9–11]. Как видно из табл. 1, наблюдается существенная разница между суммарной интенсивностью ионов-фрагментов и интенсивностью ионов-фрагментов, образующихся при фрагментации однозарядного молекулярного иона. Это, очевидно, связано со значительной ролью процессов с многократной ионизацией молекулы мишени. Относительные величины сечений различных элементарных процессов приведены в табл. 2, в которой за 100 rel.u. принято суммарное сечение захвата одного электрона $\Sigma_n \{210n\}$.

Из приведенных данных следует, что при фрагментации промежуточных многозарядных молекулярных ионов $\operatorname{Gly}^{n+}(n \ge 2)$ с высокой вероятностью происходит образование легких фрагментов,

Таблица 2. Относительные сечения элементарных процессов $\{2(2-s)0n\}$. Относительное количество протонов, образующихся в процессе $\{2(2-s)0n\}$, от общего числа зарегистрированных протонов

Процесс	Относительное сечение, rel.u.	$N_{s,n}({ m H}^+)/\Sigma_{s,n}N_{s,n}({ m H}^+),$ %
Σ_n {210 <i>n</i> }	100	13.1
{2101}	91.3 ± 5	7.2
{2102}	7.6 ± 1	5.2
{2103}	1.1 ± 0.3	0.7
Σ_n {200 <i>n</i> }	52.4 ± 5	86.9
{2002}	42.1 ± 3	64.7
{2003}	10.2 ± 2	22.2

таких как HCNH⁺ (m = 28 a.m.u.), его сателлитов, группы ионов с массами 12–18 а.m.u. и протонов (табл. 2). Вероятность образования двухзарядных ионов-фрагментов оценивается нами ниже 0.05 геl.u. Незначительная вероятность появления двухзарядных фрагментов с массой m = 28.5 a.m.u. при ионизации глицина электронным ударом отмечалась в работе [11]. При исследовании динамики фрагментации ионов Gly²⁺, образующихся при взаимодействии молекул глицина с ионами Xe²⁵⁺ (Vp = 0.35 a.u.), также с незначительной вероятностью наблюдались пики двухзарядных ионов-фрагментов с массами 28.5. 27.5 и 14.5 а.m.u. [12].

Анализ двумерной карты совпадений, в которой по оси абсцисс отложено время регистрации первого иона-фрагмента, а по оси ординат — второго, позволяет получить данные о сечениях образования пар ионов-фрагментов, которые приведены в табл. 3. Для уменьшения размеров таблицы пары ионов просуммированы по диапазонам масс, соответствующим основным группам фрагментов, наблюдаемым в масс-спектрах (см. рисунок). Как видно из приведенных данных, для процесса захвата двух электронов характерно образование более мелких фрагментов, чем для процесса захвата с ионизацией. Например, как следует из детальной карты совпадений, простой разрыв C_{α} —Ссвязи у молекулярного иона Gly^{2+} , ведущий к образованию пары ионов-фрагментов NH_2CH_2^+ и COOH⁺, для процесса {2102} имеет сечение 0.4 rel.u., а для процесса {2002} — 0.1 rel.u., при том что полное

Процесс	σ {2102}, rel.u.			σ {2002}, rel.u		
m(Ion1) a.m.u	1	12-18	24-31	1	12-18	24-31
m(Ion2) a.m.u						
$ \begin{array}{r} 12-18 \\ 24-31 \\ 37-46 \\ 50-55 \\ 60-65 \\ 73-74 \\ \end{array} $	$\begin{array}{c} 1.4 \\ 1.8 \\ 0.3 \\ \sim 0.03 \\ \sim 0.01 \\ \sim 0.01 \end{array}$	0.4 1.0 0.3	1.4	$12.7 \\ 12.6 \\ 2.3 \\ 0.4 \\ 0.1 \\ \sim 0.03$	3.1 4.4 1.0	2.3 2.3

Таблица 3. Относительные сечения образования пар ионов при фрагментации двухзарядных ионов Gly²⁺, образующихся в процессах захвата электрона с ионизацией {2102} и в процессе двухэлектронного захвата {2002}

сечение процесса $\{2002\}$ в ~ 5.5 раз больше сечения процесса $\{2102\}$ (табл. 2).

Заметное различие фрагментации промежуточных двухзарядных ионов Gly^{2+} , формирующихся в процессах захвата одного электрона с ионизацией {2102} и двухэлектронного захвата {2002}, качественно объясняется различием в энергиях их возбуждения, обусловленным, очевидно, тем, что в процессе захвата с ионизацией часть энергии возбуждения может быть унесена эжектированным электроном.

Расчеты динамики фрагментации двухзарядных ионов Gly²⁺ в зависимости от энергии возбуждения в диапазоне $E_{int} = 0.03-4 \text{ eV}$ были проведены в работе [12]. Было показано, что в рамках используемой модели при таких энергиях возбуждения фрагментация должна приводить в основном к образованию пары ионов-фрагментов NH₂CH₂⁺ и COOH⁺. Эксперимент показал, что энергия возбуждения образующихся в процессах {2102} и {2002} ионов Gly²⁺ выше рассмотренного авторами [12] диапазона. Оценки величины максимальной кинетической энергии фрагментов, проведенные в настоящей работе по ширине пиков двумерной карты совпадений, дают для H⁺ ~ 13 eV, для NH₂CH₂⁺ ~ 4 eV и для COOH⁺ ~ 2.7 eV, что удовлетворительно согласуется с данными работы [9].

В работе изучены каналы процесса фрагментации как однозарядных, так и двухзарядных ионов глицина, образующихся при взаимодействии

молекул с ионами He^{2+} . Анализ полученных данных показывает, что основной механизм фрагментации молекулярного иона — электронное возбуждение. Следует отметить, что процесс фрагментации промежуточных многозарядных молекулярных ионов может, с одной стороны, сопровождаться внутримолекулярными процессами, на что указывает высокая вероятность образования молекулярного иона H_2^+ в процессе {2002}. С другой стороны, происходят процессы, ведущие к практически полной атомизации молекулы. Например, образуется ионфрагмент углеродного остова молекулы глицина C_2^+ , который на карте совпадений коррелирует в основном с H^+ и O^+ и/или NH_2^+ и в меньшей степени с ионами N^+ и NH^+ .

Работа выполнена при частичной поддержке гранта РФФИ № 14-03-00367.

Список литературы

- Weinkauf R., Schermann J.-P., de Vries M.S., Kleinermanns K. // Eur. Phys. J. D. 2002. V. 20. P. 309–316.
- [2] Kuan Yi-J, Charnley S.B., Huang H.-Ch. et al. // Astrophys. J. 2003. V. 593. P. 848–867.
- [3] Elsila J.E., Glavin D.P., Dworkin J.P. // Meteor. Planet. Sci. 2009. V. 44. N 9. P. 1323–1330.
- [4] Смирнов О.В., Басалаев А.А., Бойцов В.М. и др. // ЖТФ. 2014. Т. 84. В. 11. С. 121–127.
- [5] Афросимов В.В., Басалаев А.А., Кузьмичев В.В. и др. // ЖТФ. 2016. Т. 86. В. 3. С. 25–30.
- [6] Lu H.-F., Li F.-Y., Lin S.H. // J. Phys. Chem. A. 2004. V. 108. P. 9233–9243.
- [7] Jochims H.-W., Schwell M., Chotin J.-L. et al. // Chem. Phys. 2004. V. 298.
 P. 279–297.
- [8] Schwell M., Jochims H.-W., Baumgärtel H. et al. // Planet. Space Sci. 2006.
 V. 54. P. 1073–1085.
- [9] Bari S., Alvarado F., Postma J. et al. // Eur. Phys. J. D. 2009. V. 51. P. 81-87.
- [10] NIST Mass Spectral Search Program. //http://chemdata.nist.gov
- [11] Tamuliene J, Romanova L.G., Vukstich V.S., Snegursky A.V. // Chem. Phys. 2012. V. 404. P. 36–41.
- [12] Maclot S., Piekarski D.G., Domaracka A. et al. // J. Phys. Chem. Lett. 2013.
 V. 4. P. 3903–3909.