07,01

Механизмы высокоскоростной деформации поликристаллической меди

© Р.Г. Чембарисова¹, Ү. Dong², И.В. Александров¹

¹ Уфимский государственный авиационный технический университет, Уфа, Россия ² College of Materials Science and Technology, Nanjing, People's Republic of China E-mail: chroza@yandex.ru

(Поступила в Редакцию 16 августа 2016 г.)

С помощью численного моделирования проанализированы механизмы высокоскоростной деформации ультрамелкозернистой меди, полученной в процессе интенсивной пластической деформации методом равноканального углового прессования, в сравнении с таковыми в случае крупнокристаллической меди. Проведены оценки активности аннигиляционных процессов при неконсервативном движении и двойном поперечном скольжении дислокаций. Показано их влияние на макроскопическое поведение образцов.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках реализации проекта № 16.1969.2017/ПЧ образовательным организациям высшего образования.

DOI: 10.21883/FTT.2017.05.44378.333

1. Введение

Установление механизмов высокоскоростной деформации металлических материалов актуально как с научной точки зрения, так и с точки зрения выявления приемлемых условий их эксплуатации и получения материалов с требуемыми характеристиками. В работе [1] методом компьютерного моделирования проанализировано упругопластическое поведение крупнокристаллической (КК) меди при динамическом нагружении (ДН), которое реализуется в интервале скоростей $10 < \dot{\varepsilon} < 10^4 \, {\rm s}^{-1}$ [2] и объясняется отсутствием аннигиляции при неконсервативном движении дислокаций в границах зерен (ГЗ), уменьшением активности аннигиляционных процессов при двойном поперечном скольжении (ДПС) с увеличением степени деформации, а также активностью механизмов размножения и накопления дислокаций. Размытость ГЗ и малые углы разориентации между соседними зернами объясняются отсутствием аннигиляции дислокаций при их неконсервативном движении в ГЗ, приводящим к увеличению плотности дислокаций леса в них. Этим объясняется также образование вакансий больших концентраций ($C_V \sim 10^{-4}$) при ДН образцов КК-Си. Деформационное двойникование оказывает существенное влияние на характер протекающих в процессе деформации микропроцессов и определяет тем самым деформационное поведение материала на макроскопическом уровне. В то же время механизмы высокоскоростной деформации ультрамелкозернистых (УМЗ) или наноструктурных материалов, полученных методами интенсивной пластической деформации [3], методом компьютерного моделирования до сих пор не исследовались. В настоящей работе проведен сравнительный анализ механизмов деформации в КК-Си

и УМЗ-Си, полученной в результате восьми проходов равноканального углового прессования (РКУП) по маршруту B_c , в процессе их ДН при комнатной температуре (КТ).

Материалы и методика моделирования

Деформационное поведение Си в условиях ДН исследовалось методами численного моделирования с использованием представленной в работе [1] аналитической модели упругопластической среды с учетом кинетики пластической деформации. При моделировании были использованы экспериментальные данные [4] по деформированию образцов со скоростью 1500 s⁻¹ при помощи разрезного стержня Гопкинсона. Для исследований использовалась холоднокатаная электротехническая медь чистотой 99.98%. Для динамических испытаний применялись цилиндрические образцы, размеры которых были равны 10 × 10 mm. Поскольку образцы были достаточно короткими, деформации вдоль них считались однородными. Соответственно было принято, что напряжения в образцах распределены равномерно. Экспериментальные зависимости истинное напряжениеистинная деформация приведены на рис. 1.

Согласно результатам экспериментальных исследований [4], в образцах, подвергнутых ДН, были обнаружены деформационные двойники, плотность ρ_t которых увеличивается с уменьшением среднего размера зерна. В образцах УМЗ-Си наблюдались рекристаллизованные зерна. Их объемная доля составляла 1.6%. После ДН при КТ это число возросло до 3.1%. Заметим, что в то же время высокоскоростная деформация — это

Состояние	$d,\mu{ m m}$		$ ho_{ m tot}\cdot 10^{14},{ m m}^{-2}$		$ ho_t,\%$	
	До ДН	После ДН	До ДН	После ДН	До ДН	После ДН
КК, ДН (298 К)	90	0.6	0.33 ± 0.03	1.76 ± 0.09	0.00	0.37 ± 0.12
УМЗ, ДН (298 K)	0.35	0.3	4.97 ± 0.14	5.65 ± 0.18	0.80 ± 0.20	1.10 ± 0.10

Таблица 1. Экспериментальные данные для образцов Си в КК- и УМЗ-состояниях до и после ДН [4]

Рис. 1. Экспериментальные зависимости истинного напряжения σ от истинной деформации ε в условиях динамического нагружения УМЗ-Си (1) и КК-Си (2) [4].

адиабатический процесс, сопровождающийся увеличением температуры образца [5]. Температура является функцией давления P [5], что было принято во внимание при рассмотрении температурных зависимостей в модели [1,5].

На протекание процесса динамической рекристаллизации (ДР) указывают и профили кривых $\sigma - \varepsilon$. Они приобретают немонотонный характер (рис. 1). Некоторый спад кривых после пиков, возможно, связан с ДР.

После восьми проходов РКУП размер зерна варьировался в широком интервале от ~ 70 до ~ 600 nm. Это указывает на возможность протекания ДР в процессе ДН в локальных областях образца. Температура начала рекристаллизации для чистых металлов составляет $T_r \approx (0.2 - 0.4) T_m$ [6], где T_m — температура плавления, причем чем больше степень деформации и чем меньше размер зерна, тем ниже Т_r. Поскольку ДР легче реализуется в металлах с низким значением энергии дефектов упаковки (ЭДУ), в меди, которая имеет среднее значение ЭДУ, динамический возврат (ДВ) преобладает над ДР, препятствуя образованию дислокационных структур, благоприятствующих началу ДР. В связи с этим наблюдаемый экспериментально спад кривых $\sigma - \varepsilon$ после первого пика (рис. 1) может быть отнесен к началу деформационного двойникования (ДД). Аналогично спад на кривой деформации для КК-Си при КТ после достижения предела текучести также можно связать с моментом начала ДД, так как рекристаллизованные зерна в микроструктуре КК-Си после ДН не были выявлены.

Полученные авторами работы [4] экспериментальные значения среднего размера зерна d, средней плотности дислокаций ρ_{tot} , плотности деформационных двойников ρ_t до и после ДН при температуре 298 К представлены в табл. 1.

В соответствии с условиями экспериментов по ДН образцов предполагалось, что деформация является одноосной. Ось нагружения совпадала с осью Z декартовой системы координат. Оси X, Y и Z — главные оси тензоров напряжений σ_{ik} и деформаций σ_{ik} (рис. 2). При этом

$$\sigma_{xx} = \sigma_{yy}, \qquad \varepsilon_{xx} = \varepsilon_{yy}.$$
 (1)

Тогда тензор полной деформации в главных осях можно представить как сумму тензора упругих деформаций ε_{ik}^{e} и тензора пластических деформаций ε_{ik}^{p}

$$\varepsilon_{ii} = \varepsilon_{11}^e + \varepsilon_{11}^p \qquad (i = x, y, z). \tag{2}$$

Считалось, что пластическая деформация не сопровождается изменением объема образца [7,8]

$$\varepsilon_{xx}^p + \varepsilon_{yy}^p + \varepsilon_{zz}^p = 0. \tag{3}$$

Тензор упругих деформаций связан с тензором напряжений согласно закону Гука [7–9]. Для одноосного

Рис. 2. Ориентация осей декартовой системы координат, связанной с исследуемым образцом (D = h).

Состояние	a, Å	$\frac{d\ln b}{dP}$, kbar ⁻¹	$\frac{d \ln \gamma_{\rm SF}}{dP}$, kbar ⁻¹
КК КК. ЛН (298 К)	$\begin{array}{c} 3.61679 \pm 0.00019 \\ 3.61558 \pm 0.00021 \end{array}$	$-0.00989 \cdot 10^{-2}$	$-0.19278 \cdot 10^{-2}$
УМЗ VM3 ПН (298 К)	3.61588 ± 0.00020 3.61557 ± 0.00016	$-0.00150 \cdot 10^{-2}$	$-0.175998 \cdot 10^{-2}$

 3.61557 ± 0.00016

Таблица 2. Экспериментальные значения параметра решетки а [4], определяющие изменения величин вектора Бюргерса и ЭДУ в зависимости от давления Р

напряженного состояния с учетом равенств (1)-(3) были записаны следующие определяющие уравнения:

УМЗ, ДН (298 K)

$$\sigma_{xx} = \sigma_{yy} = 0, \quad \sigma_{zz} = E\left(\varepsilon_{zz} - \frac{4}{3}\gamma\right),$$
 (4)

Ε — модуль упругости (модуль Юнга), где $E = 2G(1 + \nu), G$ — модуль сдвига, ν — коэффициент Пуассона.

Сдвиговое напряжение τ и сдвиговая деформация γ определялись путем деления и умножения на фактор Тейлора (М) соответственно

$$\tau = \sigma_{zz}/M, \quad \gamma = \varepsilon_{zz}^p M.$$
 (5)

Для описания эволюции микроструктуры были использованы кинетические уравнения эволюции плотности дислокаций [1], учитывающие возможные механизмы пластической деформации, включая кристаллографическое скольжение, неконсервативное движение и ДПС дислокаций, образование деформационных вакансий и двойников:

$$\frac{d\rho_w}{dt} = \frac{\beta \dot{\gamma}_{dg}}{bd} + \frac{\alpha \dot{\gamma}_{dg} \sqrt{\rho_w}}{b} - k_a \dot{\gamma}_{dg} \rho_w - k_b \dot{\gamma}_{dg} \rho_f, \quad (6)$$

$$\frac{d\rho_f}{dt} = \left(\frac{\beta \dot{\gamma}_{dg}}{bd} + \frac{\alpha \dot{\gamma}_{dg} \sqrt{\rho_w}}{b}\right) P'_f - k_b \dot{\gamma}_{dg} \rho_f, \qquad (7)$$

$$\frac{d\rho_c}{dt} = \alpha^* \, \frac{\sqrt{\rho_w}}{b} \, \dot{\gamma}_{dg} + \frac{\dot{\gamma}_{dg}}{bl} - \beta^* \, \frac{\dot{\gamma}_{dg}}{bd} - k_a \dot{\gamma}_{dg} \rho_c, \qquad (8)$$

где ρ_w — средняя плотность геометрически необходимых дислокаций и дислокаций леса в ГЗ, ρ_f плотность дислокаций леса в них, ρ_c — плотность дислокаций во внутренних областях зерен, $\dot{\gamma_{dg}}$ — скорость пластической деформации, связанной со скольжением дислокаций, *l* — расстояние между двойниками. Слагаемое с коэффициентом β характеризует накопление дислокаций в ГЗ, слагаемое с коэффициентом α размножение дислокаций в ГЗ в результате активности источников Франка–Рида, P'_f — доля дислокаций леса из числа всех дислокаций, поступивших в ГЗ, α^* доля активных источников Франка–Рида в ГЗ, β^* — доля дислокаций, поступающих из внутренних областей зерен в их границы, d — средний размер зерна, b — величина вектора Бюргерса.

Предполагалось, что ДВ, уменьшающий свободную энергию деформированного металла, реализуется путем аннигиляции дислокаций при их неконсервативном движении в ГЗ. Последняя характеризуется коэффициентом аннигиляции $k_b = 1/t_b \gamma_{dg}$, определяющим скорость убывания плотности дислокаций леса в них, где t_b — время аннигиляции дислокаций при их неконсервативном движении с участием вакансий. Также считалось, что ДВ может реализоваться путем аннигиляции винтовых участков дислокаций в результате ДПС, характеризующейся коэффициентом аннигиляции k_a, определяющим скорость аннигиляции винтовых дислокаций [10],

$$k_a = k_a(0)G \exp\left(\frac{kT}{A}\ln\left(\frac{\dot{\gamma}_0}{\dot{\gamma}_{dg}}\right)\right). \tag{9}$$

Параметр А задается формулой

$$A = \frac{0.352Gb^3}{(1 + 180\gamma_{\rm SF}/Gb)},\tag{10}$$

которая справедлива при $\gamma_{\rm SE}/Gb < 20 \cdot 10^{-3}$ [11], $\gamma_{\rm SF}$ — ЭДУ, $\dot{\gamma}_0$ — предэкспоненциальный фактор.

В работе [12] было показано, что зависимости G и у_{SF} от давления Р и температуры Т могут быть представлены в виде

$$G = G_0 \exp U,$$

$$U = \frac{d \ln G}{dP} \left(P - P_0 \right) + \frac{d \ln G}{dT} \left(T - T_0 \right), \qquad (11)$$

$$\gamma_{\text{SF}} = \gamma_{\text{SF}_0} \exp W,$$

$$W = \frac{d\ln\gamma_{\rm SF}}{dP} \left(P - P_0\right) + \frac{d\ln\gamma_{\rm SF}}{dT} \left(T - T_0\right). \tag{12}$$

Здесь G₀ и γ_{SF_0} — значения модуля сдвига и ЭДУ при КТ Т₀ и атмосферном давлении Р₀ соответственно. Значения производных представлены в табл. 2.

Уменьшение свободной энергии металла реализуется также в процессах консервативного скольжения и деформационного двойникования, приводящих к пластической деформации образца. Приращение полной пластической деформации имеет вид

$$d\gamma = (1 - f_t)d\gamma_{dg} + \gamma' df_t, \qquad (13)$$

где γ' — сдвиговая деформация при двойниковании (для Си $\gamma' = 1/\sqrt{2}$ [6]), γ_{dg} — пластическая деформация,

Рис. 3. Зависимость коэффициента вязкого трения B_0 в Cu от температуры.

связанная со скольжением дислокаций, f_t — объемная доля двойников, эволюция которой в зависимости от степени полной деформации ε_{zz} была принята в виде [13]

$$f_t = f_{t0} + (f_{inf} - f_{t0}) \left[1 - \exp\left(-\frac{\varepsilon_{zz} - \varepsilon_{onset}}{\bar{\varepsilon}}\right) \right], \quad (14)$$

где $\varepsilon_{\text{onset}}$ — степень деформации, соответствующая началу двойникования, f_{t0} и f_{inf} — начальная объемная доля двойников и их объемная доля в состоянии насыщения соответственно, $\bar{\varepsilon}$ — определяемый в результате моделирования параметр.

В случае высокоскоростной деформации скольжение дислокаций происходит лишь в результате превышения силы трения покоя силами со стороны среднего упругого поля. Роль силы трения покоя Fr играет результирующая сил, связанных с наличием рельефа Пайерлса, точечных дефектов и дислокаций. На движущуюся дислокацию действует возникающая дополнительная сила вязкого трения $F_v = BV$, где B — коэффициент вязкого трения, обусловленного рассеянием фононов и электронов на дислокациях [14], V — скорость скольжения дислокаций. Согласно данным работы [14], основной причиной торможения дислокаций при высоких скоростях деформации при КТ являются диссипативные процессы в фононной подсистеме. Для учета зависимости коэффициента трения B(V, T) от скорости V скольжения дислокаций вносят релятивистские поправки в различных степенях ξ [15]

$$B(V,T) = \frac{B_0(T)}{[1 - (V/V_*)^2]^{\xi}}.$$
(15)

Чем выше величина коэффициента трения, тем большее напряжение требуется для реализации данной скорости деформации. Фононное торможение зависит от температуры: увеличивается с ее ростом и в области высоких

температур линейно возрастает с температурой. Зависимость коэффициента трения $B_0(T)$ от температуры представлена на рис. 3.

Уравнение движения дислокации было представлено в виде [1]

$$\frac{m_0}{[1 - (V/V_*)^2]^{3/2}} \frac{dV}{dt} = b(\sigma_{zz} - \sigma_t - Y)/M - \frac{B_0 V}{[1 - (V/V_*)^2]^{\xi}},$$
 (16)

где V_{*} — скорость звука в рассматриваемом материале, $V_* = (G/\rho)^{1/2}, \rho$ — плотность среды, m_0 — масса дислокации (на единицу ее длины), $m_0 \sim 10^{-16}$ kg/m [16], Y — предел текучести, $Y = Y_0 + M \alpha_d G b \sqrt{\rho_{\text{tot}}}$. Напряжение Уо обусловлено сопротивлением со стороны рельефа Пайерлса и точечных дефектов, α_d — постоянная междислокационного взаимодействия (табл. 3), $\xi = 3/2$ [17], $\sigma_t = K_t l^{-1}$ — противодавление, обусловленное наличием скоплений дислокаций у границ двойников [13,18], где K_t — коэффициент, зависящий от числа заблокированных у границ двойников дислокаций. Считалось, что зародышами деформационных двойников являются дислокации в ГЗ [19]. Поэтому приращение плотности двойников (числа границ двойников в единице объема) ρ_{tv} в поликристаллах определялось в зависимости от плотности дислокаций ρ_w в ГЗ

$$d\rho_{tv} = (1 - f_t)\xi \rho_w d\varepsilon_{zz},\tag{17}$$

где ξ — функция, убывающая с увеличением энергии дефекта упаковки. Безразмерная плотность двойников — вероятность обнаружения границ двойников между любыми двумя соседними плоскостями скольжения, расстояние между которыми $h = a/\sqrt{3}$, где a — параметр решетки, определялась как

$$\rho_t = \frac{\rho_{tv} h d^2}{(1-f)^{1/3}},\tag{18}$$

где *f* — объемная доля ГЗ.

ДВ предполагает уменьшение не только плотности дислокаций, но и концентрации деформационных вакансий в результате аннигиляции дислокаций в ГЗ при их неконсервативном движении.

Эволюция концентрации *С* деформационных вакансий в единице объема определялась исходя из общих принципов следующим образом [1]:

$$\frac{dC}{dt} = \frac{\chi \sigma_{zz} \dot{\varepsilon}_{zz}^p}{\alpha_d G b^3} - \frac{C}{t_b}.$$
(19)

В соответствии с данными работ [20,21] значение отношения χ/α_d было принято равным ~ 0.1, $\alpha_d \leq 1$.

Время аннигиляции дислокаций *t_b* в результате их неконсервативного движения было определено в работах [1,22]

$$t_b = \frac{\delta^4}{2B'},\tag{20}$$

Определяемые параметры	КК, ДН (298 К)	УМЗ, ДН (298 K)	Заданные параметры	
$k_a(0)$	$1.39 \cdot 10^{-10}$	$1.39 \cdot 10^{-10}$	f	0.03
$lpha^*$	$1.82\cdot 10^{-2}$	$7.40 \cdot 10^{-3}$	H^m_{ν} , eV	0.2
eta^*	$1.84 \cdot 10^{-1}$	$2.14 \cdot 10^{-1}$	Ω, m^3	$1.1\cdot 10^{-29}$
P_f'	$1.96 \cdot 10^{-1}$	$1.00\cdot 10^{-3}$	<i>b</i> , m	$2.56\cdot 10^{-10}$
$ ho_*,\mathrm{m}^{-2}$	$1.89\cdot 10^{13}$	$1.72\cdot 10^{14}$	q_c, m^2	$\sim b^2$
$\xi/\sqrt{ ho_{w0}}$	$7.72\cdot 10^{-2}$	$1.10 \cdot 10^{-3}$	ν	0.343
α	$1.75\cdot 10^{-2}$	0.19	D_{c0} , m ² /s	$1.0\cdot 10^{-4}$
eta	0.40	0.22	$G_0,$ Pa	$42.4\cdot10^9$
K_t , N/m	9.0	6.0	$\gamma_{\rm SF0}, {\rm J/m^2}$	0.045
$f_{ m inf}$	$1.17 \cdot 10^{-2}$	$1.73 \cdot 10^{-2}$	$\mathcal{E}_{\mathrm{onset}}$	0.019 (KK), 0.020 (YM3)
$\bar{\mathcal{E}}$	$2.60 \cdot 10^{-3}$	$3.60 \cdot 10^{-3}$	$lpha_d$	0.5
			f_{t0}	0.0 (KK), 0.017 (YM3)

Таблица 3. Величины параметров, использованных при моделировании ДН Си в КК- и УМЗ-состояниях со скоростью деформации $\dot{z}_{zz} = 1500 \, \mathrm{s}^{-1}$

где δ — типичное расстояние между стоками,

$$B' = \sqrt{2} / [\pi(1-\nu)] D_c q_c (G\Omega/kT),$$

$$D_c = D_{c0} C_V \exp(-H_{\nu}^m/kT).$$
(21)

Здесь $C_V = Cb^3$ (C — объемная концентрация вакансий), H_v^m — энтальпия активации миграции вакансий вдоль дислокационных ядер, Ω — атомный объем, q_c площадь поперечного сечения дислокационного ядра, D_c — коэффициент диффузии вдоль дислокационного ядра. Использованные в модели параметры сведены в табл. 3. Дислокации леса в ГЗ распределены хаотически. В связи с этим было принято, что $\delta \approx \rho_f^{-1/2}$ [22]. Значения параметров $\varphi_i = \{\alpha, \beta, \alpha^*, \beta^*, k_a(0), \rho_*, P'_f, \}$

Значения параметров $\varphi_i = \{\alpha, \beta, \alpha^*, \beta^*, k_a(0), \rho_*, P'_f, \xi, K_t, f_{inf}, \bar{\varepsilon}\}$ были выбраны из соображений наилучшего приближения модельных значений к соответствующим экспериментальным значениям зависимостей истинное напряжение–истинная деформация, плотность дислокаций–истинная деформация, плотность деформационных двойников–истинная деформация, средний размер зерна–истинная деформация. Система представленных дифференциальных уравнений решалась явным двухшаговым методом второго порядка точности с соблюдением условия устойчивости решения при заданных начальных условиях

$$\begin{aligned} \rho_w(0) &= \rho_{w0}, \quad \rho_c(0) = \rho_{c0}, \quad C_V(0) = 10^{-4}, \\ V_0 &= 0, \quad \rho_t(0) = \rho_{t0}, \quad f_t(0) = f_{t0}, \\ \gamma_{dg}(0) &= 0, \quad \gamma(0) = 0, \quad \varepsilon_{zz}(0) = 0. \end{aligned}$$

Приближенный характер задания начальных данных и способ определения кинетических параметров модели влияют на точность получаемых результатов, характеризующих изменения в зеренной структуре, однако это не влияет на качественные тенденции, обнаруженные при моделировании процесса ДН Си.

3. Результаты моделирования и их обсуждение

Модель упругопластической среды с учетом эволюции микроструктуры была применена для анализа механизмов деформационного поведения КК-Си и УМЗ-Си, полученной в результате восьми проходов РКУП, в процессе их ДН со скоростью деформации 1500 s⁻¹.

Согласно экспериментальным данным (табл. 1), при ДН КК-Си размер зерна уменьшился в \sim 150 раз, плотность дислокаций возросла в \sim 5.3 раза. Однако при ДН УМЗ-Си наблюдалась иная картина. Размер зерна уменьшился весьма незначительно (в \sim 1.2 раза). Плотность дислокаций возросла всего лишь в \sim 1.1 раза.

Как следует из вида деформационных кривых, КК-Си обнаруживает деформационное упрочнение, в то время как УМЗ-Си не упрочняется в процессе ДН. Следовательно, в УМЗ-Си происходили процессы, препятствующие накоплению дислокаций. Рассмотрим подробнее микропроцессы, сопровождающие ДН меди в различных ее состояниях.

Скорость пластической деформации $\dot{\gamma}_{dg}$ согласно закону Орована зависит от плотности подвижных дислокаций ρ_m ($\rho_m = \rho_{tot} \exp(-\rho_{tot}/\rho_*)$ [7], $\rho_{tot} = f\rho_w$ + $(1 - f)\rho_c$) и скорости их скольжения V: $\dot{\gamma}_{dg} = \rho_m bV$. Параметр ρ_* определяется из анализа экспериментальных деформационных кривых. Пока $\rho_{tot} < \rho_*$ плотность подвижных дислокаций растет, при $\rho_{tot} > \rho_*$ — падает. Плотность подвижных дислокаций ρ_m в УМЗ-Си боль-

Рис. 4. Модельные зависимости плотности подвижных дислокаций ρ_m (*a*), скорости скольжения дислокаций *V* (*b*), модуля сдвига *G* (*c*), ЭДУ γ_{SF} (*d*) в УМЗ-Си (*1*) и КК-Си (*2*) от степени истинной деформации ε .

Рис. 5. Модельные зависимости отношения kT/A(a), коэффициента аннигиляции дислокаций при ДПС $k_a(b)$ для УМЗ-Сu (I) и КК-Сu (2) от степени истинной деформации ε .

ше, чем в КК-Си (рис. 4, *a*). Соответственно скорость скольжения дислокаций в процессе ДН УМЗ-Си меньше по сравнению со скоростью скольжения дислокаций в КК-Си (рис. 4, *b*). В последнем случае необходимая скорость деформации образца обеспечивается меньшим количеством подвижных дислокаций, движущихся с бо́льшими скоростями.

Одним из механизмов ДВ является аннигиляция дислокаций при ДПС. Коэффициент аннигиляции дислокаций при их ДПС k_a зависит от давления в ударной волне, температуры, скорости пластической деформации, ЭДУ (см. уравнения (9)–(12)).

Зависимости модуля сдвига G и ЭДУ γ_{SF} от давления (степени деформации) в ударной волне в случае УМЗ-Си, рассчитанные согласно формулам (11), (12), в сравнении с данными для КК-Си приведены на рис. 4, *с*, *d*. Модуль сдвига растет, ЭДУ уменьшается с увеличением давления.

Рис. 6. Модельные зависимости концентрации деформационных вакансий $C_V(a)$, плотности деформационных двойников $\rho_t(b)$, противодавления σ_t со стороны границ двойников (c) в УМЗ-Си (1) и КК-Си (2), плотности дислокаций ρ в КК-Си (d) и УМЗ-Си (e) от истинной деформации ε при ДН образцов со скоростью деформации $\dot{\varepsilon}_{zz} = 1500 \, \text{s}^{-1}$ при КТ.

Значение произведения $k_a(0)G$ изменяется в соответствии с изменением модуля сдвига (рис. 4, *c*). Следовательно, в случае УМЗ-Си оно повышает коэффициент аннигиляции. В то же время отношение kT/A в формуле (9) больше для КК-Си, чем для УМЗ-Си, и оно быстрее уменьшается с увеличением степени деформации (рис. 5, *a*). Следовательно, при выполнении условия $\dot{\gamma}_0/\dot{\gamma}_{dg} < 1$ в случае КК-Си оно будет сильнее понижать коэффициент аннигиляции, чем в случае УМЗ-Си. Отношение $\dot{\gamma}_0/\dot{\gamma}_{dg}$ обратно пропорцио-

нально скорости скольжения дислокаций: $\dot{\gamma}_0/\dot{\gamma}_{dg} \propto 1/V$ ($\dot{\gamma}_0 = b^2 \rho_m v_D$, $v_D = k \Theta_D/h$, Θ_D — температура Дебая, h — постоянная Планка, k — постоянная Больцмана, v_D — частота Дебая) [23,24]. Поскольку скорость скольжения дислокаций при КТ в УМЗ-состоянии ниже, чем в КК-состоянии, коэффициент аннигиляции дислокаций при ДПС (9) в УМЗ-Си превосходит таковой в КК-Си. В то же время в процессе деформации КК-Си коэффициент аннигиляции k_a уменьшается с увеличением давления P (рис. 5, b). Скорость спада коэффициента аннигиляции в УМЗ-Си ниже, чем в случае КК-Си, что обусловлено более медленным ростом скорости дислокаций с увеличением степени деформации. Следовательно, ДВ, обусловленный аннигиляцией дислокаций в результате ДПС, более активен в УМЗ-Си.

Проведенные оценки времени аннигиляции t_b при неконсервативном движении дислокаций показали, что к концу процесса деформации оно оказывается равным ~ 0.20 s в случае КК-Си, что гораздо выше времени деформации, равного ~ $1.27 \cdot 10^{-4}$ s. В случае УМЗ-Си порядок времени аннигиляции составил 10^{-4} s, что сопоставимо с временем деформации (~ $1.20 \cdot 10^{-4}$ s). Следовательно, в процессе ДН УМЗ-Си при КТ есть вероятность активизации механизма аннигиляции дислокаций при их неконсервативном движении.

Согласно результатам проведенного моделирования, в процессе ДН образцов формируются вакансии значительных концентраций (рис. 6, *a*). Этот результат согласуется с данными экспериментов [25]. Начальная концентрация вакансий в КК-Си была принята равной нулю, в УМЗ-Си — 10⁻⁴ (согласно известным экспериментальным данным о концентрации вакансий в образцах, подвергнутых РКУП [26]). ДВ, обусловленный аннигиляцией вакансий, не наблюдается в КК-Си.

Модельная плотность деформационных двойников ρ_t соответствует экспериментально наблюдаемым значениям (рис. 6, *b*). Противодавление со стороны границ двойников быстро возрастает в случае КК-Си на ~ 1.8 МРа и изменяется лишь на ~ 0.03 МРа в случае УМЗ-Си (рис. 6, *c*). В процессе ДН КК-Си значительно увеличивается скорость скольжения дислокаций и уменьшается коэффициент аннигиляции дислокаций при их ДПС, что приводит к увеличению средней плотности дислокаций, плотности дислокаций в ГЗ и накоплению дислокаций во внутренних областях зерен (рис. 6, *d*) благодаря наличию границ двойников и достаточно большому размеру зерен. В свою очередь на макроскопическом уровне повышается деформационное упрочнение КК-образцов (рис. 1).

Согласно результатам моделирования, наблюдающееся экспериментально незначительное увеличение средней плотности дислокаций в процессе ДН УМЗ-Си объясняется более высоким значением коэффициента аннигиляции дислокаций при их ДПС, мало изменяющимся в процессе деформации, ограничением возможности накопления дислокаций во внутренних областях зерен благодаря действию противодавления со стороны границ двойников и малости размера зерен (рис. 6, *e*). В свою очередь это приводит к отсутствию деформационного упрочнения в процессе ДН УМЗ-Си. Влияние аннигиляции дислокаций при их неконсервативном движении на упрочнение образцов в данном случае было несущественным.

4. Заключение

На основе модели упругопластической среды, включающей уравнения эволюции микроструктуры, проанали-

зированы механизмы деформации в УМЗ-образцах Си в сравнении с таковыми в КК-образцах в процессе их ДН.

Установлено, что в процессе ДН образцов со скоростью деформации 1500 s⁻¹ в УМЗ-Си модуль сдвига оказывается больше, а ЭДУ меньше, чем в КК-Си. Уменьшение ЭДУ способствует деформационному двойникованию. Соответственно плотность ДД больше после ДН образцов УМЗ-Си. Их границы создают противодавление, которое мало изменяется при высокоскоростной деформации мелкозернистых образцов.

ДВ при ДПС, который характеризуется коэффициентом аннигиляции k_a , более активен в УМЗ-Си ввиду малости скорости скольжения дислокаций (большей плотности подвижных дислокаций).

ДВ, обусловленный аннигиляцией дислокаций при их неконсервативном движении, не активируется при ДН КК-образцов, в то же время есть вероятность его активизации при высокоскоростной деформации образцов УМЗ-Си.

ДН сопровождается образованием вакансий значительных концентраций, что свидетельствует о малой активности ДВ, связанного с неконсервативным движением дислокаций. Вакансии не расходуются на аннигиляцию дислокаций.

Отсутствие деформационного упрочнения УМЗ-образцов Си в процессе их ДН объясняется более высоким, чем в КК-состоянии, значением коэффициента аннигиляции при ДПС дислокаций, практически не изменяющимся по мере накопления степени деформации, отсутствием значительного накопления дислокаций во внутренних областях зерен ввиду малости зерен и действия противодавления со стороны границ двойников. ДВ, обусловленный аннигиляцией дислокаций при их неконсервативном движении, не оказывает заметного влияния на деформационное упрочнение образцов УМЗ-Си.

Список литературы

- [1] Р.Г. Чембарисова. ФММ 116, 627 (2015).
- [2] M.A. Meyers. Dynamic behavior of materials. John Wiley & Sons, N.Y. (1994). 668 p.
- [3] Р.З. Валиев, И.В. Александров. Наноструктурные материалы, полученные интенсивной пластической деформацией. Логос, М. (2000). 271 с.
- [4] Ү. Dong, И.В. Александров, В.Д. Ситдиков, J. Wang. Письма о материалах 3, 79 (2013).
- [5] M.A. Meyers, F. Gregori, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, J.S. Wark. Acta Mater. 51, 1211 (2003).
- [6] П.И. Полухин, С.С. Горелик, В.К. Воронцов. Физические основы пластической деформации. Металлургия, М. (1982). 584 с.
- [7] J. Gilman. Appl. Mech. Rev. 21, 767 (1968).
- [8] J. Taylor. J. Appl. Phys. 36, 3146 (1965).
- [9] Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. Наука, М. (1987). 248 с.
- [10] Г.А. Малыгин. ФТТ 34, 2882 (1992).
- [11] Г.А. Малыгин. ФТТ. 34, 3200 (1992).

- [12] Р.Г. Чембарисова. Деформация и разрушение материалов 10, 2 (2015).
- [13] D.H. Ahn, S. Kim, Y. Estrin. Scripta Mater. 67, 121 (2012).
- [14] В.И. Альшиц, В.Л. Инденбом. УФН 115, 3 (1975).
- [15] А.А. Предводителев. В сб.: Динамика дислокаций / Под ред. В.И. Старцева, В.З. Бенгуса, В.И. Доценко. Наук. думка, Киев (1975). С. 178.
- [16] M.F. Horstemeyer, M.I. Baskes, S.J. Plimpton. Acta Mater. 49, 4363 (2001).
- [17] А.Е. Дудоров, А.Е. Майер. Вестн. Челяб. гос. ун-та. Физика 39, 48 (2011).
- [18] L. Remy. Acta Metall. 26, 443 (1978).
- [19] I.V. Alexandrov, R.G. Chembarisova, V.D. Sitdikov, V.U. Kazyhanov. Mater. Sci. Eng. A 493, 170, (2008).
- [20] G. Gottstein, J. Bewerunge, H. Mecking, H. Wollenberger. Acta. Met. 23, 641 (1975).
- [21] H. Mecking, Y. Estrin. Scripta Met. 14, 815 (1980).
- [22] I.V. Alexandrov, R.G. Chembarisova. Rev. Adv. Mater. Sci. 16, 51 (2007).
- [23] В.И. Дубинко, В.Ф. Клепиков. Вісник ХНУ ім. В.Н. Каразіна 710, 87 (2005).
- [24] Ж. Фридель. Дислокации. Мир, М. (1967). 644 с.
- [25] И. Мезох, В.А. Янушкевич, Л.И. Иванов. Физика и химия обраб. материалов 4, 163 (1971).
- [26] M.J. Zehetbauer, H.P. Stüwe, A. Vorhauer, E. Schafler, J. Kohout. Adv. Eng. Mater. 5, 330 (2003).