Упругие и фотоупругие характеристики графеноподобных соединений

© С.Ю. Давыдов

05

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики E-mail: Sergei Davydov@mail.ru

Поступило в Редакцию 26 сентября 2016 г.

Для 13 графеноподобных соединений IV–IV и III–V получены значения центральной и нецентральной гармонических силовых констант модели Китинга, предложенной ранее автором для описания упругих постоянных графена. Показано, что с ростом ионности соединения относительная роль нецентральных сил уменьшается. Для графена оценено значение ангармонической константы центрального взаимодействия и вычислены зависимости упругих постоянных второго порядка от двумерного давления. Определены значения фотоупругих постоянных.

DOI: 10.21883/PJTF.2017.05.44362.16490

В последние годы интерес к графеноподобным соединениям (ГПС) и структурам на их основе заметно растет [1–3]. Этот интерес связан, в первую очередь, с тем обстоятельством, что такие соединения (за исключением графена, силицена и, возможно, германена) обладают в свободном состоянии запрещенной зоной, шириной которой можно управлять, что весьма удобно для приборных применений. Поэтому естественно, что основное внимание уделяется электронной структуре ГПС, а упругие свойства находятся как бы на периферии исследований. В настоящей работе мы рассмотрим упругие и фотоупругие константы двумерных бинарных соединений IV–IV и III–V с гексагональной структурой.

Необходимо также отметить, что подавляющее число теоретических работ по ГПС выполнены в рамках различных вариантов формализма функционала плотности. Так как, однако, многие характеристики ГПС еще не исследованы экспериментально и, более того, ряд таких соединений до сих пор являются гипотетическими, модельный подход к

53

расчету таких характеристик вполне оправдан. Именно такой подход и использован в настоящей работе.

В [4] для описания упругих свойств ГПС была использована модель Китинга [5], в рамках которой упругие постоянные второго порядка c_{ij} имеют вид

$$c_{11} = \frac{1}{\sqrt{3}} \left(4\alpha + \beta + 18 \frac{\alpha\beta}{4\alpha + \beta} \right), \ c_{12} = \frac{1}{\sqrt{3}} \left(4\alpha + \beta - 18 \frac{\alpha\beta}{4\alpha + \beta} \right),$$
(1)

где гармонические силовые константы α и β описывают центральное и нецентральное взаимодействия соответственно. Для определения силовых констант воспользуемся результатами численных расчетов [6]. Пересчет проводился по формулам: $4\alpha + \beta = \sqrt{3}E/2(1 - \sigma)$, $\alpha\beta = E^2/24(1 - \sigma^2)$, где модули Юнга $E = c_{11}(1 - \sigma^2)$ и коэффициенты Пуассона $\sigma = c_{12}/c_{11}$ брались из работы [6], где модуль Юнга и коэффициент Пуассона обозначены соответственно как C и ν . Результаты расчетов констант α и β сведены в таблицу. Из таблицы следует, что наибольшие значения констант α и β соответствуют графену и гексагональному нитриду бора. Отношение β/α характеризует "удельный вес" нецентрального взаимодействия по отношению к центральному. Из рис. 1 следует, что с ростом ионности f_i по Филлипсу [7] отношение β/α убывает. Та же тенденция наблюдается и для тетраэдрических полупроводников при переходе от алмаза к соединениям III–V и II–VI [8].

Перейдем теперь к упругим постоянным третьего порядка c_{ijk} , выражения для которых были получены нами в работе [9]:

$$c_{111} = (16\gamma/\sqrt{3})[(1.5 - \xi)^3 + 4\xi^3],$$

$$c_{222} = (16\gamma/\sqrt{3})[(0.5 + \xi)^3 + 4(1 - \xi)^3],$$

$$c_{112} = (16\gamma/3\sqrt{3})[(1.5 - \xi)^2(0.5 + \xi) + 4\xi^2(1 - \xi)],$$

(2)

где γ — ангармоническая силовая константа центрального взаимодействия и $\xi = (2\alpha - \beta)/(4\alpha + \beta)$ — параметр внутренних смещений Клейнмана.

Для дальнейших оценок положим для графена $\alpha = \beta$, что с хорошей точность соответствует полученным здесь результатам (см. таблицу и рис. 1), а также оценкам работы [10], где $\alpha \approx 77$ N/m и $\beta \approx 69$ N/m. То-

Таблица 1. Силовые константы α и β (в ед. N/m), ионность соединения по Филлипсу f_i , коэффициент Пуассона σ [6], диэлектрические электронная восприимчивость χ_1^{el} и высокочастотная проницаемость ε_{∞} (при $\bar{\gamma} = 1$) графеноподобных соединений IV–IV и III–V

Соединение	Gr	SI	Gm	SiC	GeC	GeSi
α	69	17.0	13.5	43	33	16
β	70	9.5	8.0	29	29	9.6
f_i	0	0	0	0.09	0.09	0
σ	0.16	0.30	0.33	0.29	0.33	0.32
χ_1^{el}	0.44	0.49	0.40	0.44	0.44	0.45
ε_{∞}	6.53	7.16	6.06	6.47	6.59	6.60

Соединение	BN	BP	BAs	AlN	GaN	GaP	GaAs
α	60	35	31	40	42	17	14
β	52	23	21	18	16	9.6	7.8
f_i	0.14	0.06	0.03	0.43	0.45	0.30	0.27
σ	0.21	0.28	0.29	0.46	0.48	0.35	0.35
χ_1^{el}	0.36	0.50	0.50	0.37	0.38	0.53	0.55
ε_{∞}	5.47	7.23	7.23	5.62	5.78	7.69	7.89

Примечание: Gr — графен, SI — силицен, Gm — германен.

гда $\xi = 1/5$ и вместо (2) находим $c_{111} \approx 21\gamma$, $c_{222} \approx 22\gamma$, $c_{112} \approx 4\gamma$. Воспользуемся теперь результатами численных расчетов [11], где получены следующие значения: $c_{111} = -2832$, $c_{222} = -2684$ и $c_{112} = -390$ N/m. Сопоставляя средние величины c_{111} и c_{222} , получим $\gamma = -129$ N/m, так что $c_{111} = -2731$, $c_{222} = -2855$ и $c_{112} = -517$ N/m (отметим, что в соответствии с [11] и формулами (1) имеем $\alpha \approx 71$ N/m, $\beta \approx 66$ N/m и $\beta/\alpha \approx 0.92$, так что принятое нами упрощение $\alpha = \beta$ работает). Таким образом, по порядку величины упругие постоянные c_{111} и c_{222} достаточно хорошо описываются выражением (2) с той, однако, поправкой, что у нас $|c_{111}| < |c_{222}|$, тогда как в [11] имеет место обратное неравенство. Что касается величины упругой постоянной $|c_{112}|$, то полученное нами значение приблизительно на треть превосходит результат работы [11]. С другой стороны, по данным [12] $c_{111} = -2725$, $c_{222} = -2523$, $c_{112} = -591$ N/m, откуда $\gamma = -123$ N/m, так что формулы (2) дают

Рис. 1. Отношение нецентральной и центральной силовых констант β/α в функции от ионности f_i по Филлипсу.

 $c_{111} = -2532$, $c_{222} = -2716$ и $c_{112} = -492$ N/m. Следовательно, в данном случае наше значение $|c_{112}|$ на 18% меньше, чем полученное в [12] значение $|c_{112}|$.

Воспользовавшись результатами работ [10,13], легко показать, что под действием внешнего двумерного давления P относительные изменения упругих постоянных второго порядка $\eta_{ij} = \partial c_{ij}(P)/\partial P$ есть

$$\eta_{11} = -\frac{c_{111} + c_{112}}{c_{11} + c_{12}}, \ \eta_{22} = -\frac{c_{222}}{c_{11} + c_{12}}, \ \eta_{12} = -\frac{c_{112}}{c_{11} + c_{12}}.$$

Воспользовавшись данными работы [11], для графена получаем $\eta_{11} \approx 7.94$, $\eta_{22} \approx 6.61$ и $\eta_{12} \approx 0.96$. Отметим, что значения η_{11} и η_{22} приблизительно в полтора раза превышают значения η'_{11} и η'_{12} для объемных образцов кремния и германия, тогда как $\eta_{12} \sim \eta'_{14}$.

Перейдем теперь к фотоупругим постоянным p_{ij} . Насколько известно автору, выражения для p_{ij} двумерной гексагональной структуры

впервые получены в работе [14]. Величины (модули) p_{ij} даются формулами

$$p_{11} = rac{arepsilon_{\infty} - 1}{2arepsilon_{\infty}^2} rac{1}{1 + \sigma}, \qquad p_{12} = \sigma p_{11},$$

где $\varepsilon_{\infty} = 1 + 4\pi \chi_1^e$ — высокочастотная диэлектрическая проницаемость, χ_1^e — электронная диэлектрическая восприимчивость первого порядка. Воспользовавшись методом связывающих орбиталей Харрисона [15], можно показать (см. [16] и ссылки, приведенные там), что

$$\chi_1^{el} = rac{1}{\sqrt{3}} \, rac{(ear{\gamma})^2 lpha_c^3 g^{(1)}}{V_2 a}, \qquad g^{(1)} = 1 - 2 lpha_c^2 (1 - 5 lpha_p^2) \, rac{V_1^2}{V_2^2}.$$

Здесь V_2 —ковалентная энергия σ -связи $s p^2$ -орбиталей ближайших соседей, расстояние между которыми равно a, V_1 — энергия металлизации, $\alpha_c(\alpha_p)$ — ковалентность (полярность) связи, e — заряд электрона, $\bar{\gamma} \sim 1$ — безразмерный параметр (см. подробнее в [15,16]). В таблице приведены значения χ_1^{el} и ε_{∞} , вычисленные, как и в [17], с учетом точных, а не приближенных значений (как в [16]) энергии металлизации V_1 (точное значение V_1 превышает приближенное в $2/\sqrt{3}$ раза [16,17]). При этом мы полагали $\bar{\gamma} = 1$.

Результаты расчетов фотоупругих постоянных p_{11} и p_{12} представлены на рис. 2. Максимальными значениями p_{11} обладают гексагональный нитрид бора и графен, что обусловлено малыми коэффициентами Пуассона σ (см. таблицу). По той же причине значение p_{12} для графена минимально. Полученное нами для графена значение $p_{11} \approx 5.52 \cdot 10^{-2}$ вполне удовлетворительно согласуется с результатами работы [14], тогда как $p_{12} \approx 0.88 \cdot 10^{-2}$ значительно меньше p_{12} из [14]. Последнее, на наш взгляд, обусловлено крайне завышенным значением коэффициента Пуассона $\sigma = c_{12}/c_{11} \approx 0.62$, использованным в [14] (см. ссылку [11] в [14]). Отметим, что величины p_{ij} для ГПС на порядок меньше, чем для объемных кристаллов (см., например, [18]).

Обсудим упрощения, использованные в настоящей работе. Вопервых, при описании упругих постоянных ограничиваемся взаимодействием ближайших соседей и игнорируем дальнодействующее межионное кулоновское взаимодействие, возникающее в гетерополярных ГПС. В принципе, учет такого взаимодействия несложен (см., например, работу [8] по упругости объемных полупроводников). При этом, однако, приходится вводить дополнительный параметр — поперечный

Рис. 2. Значения упругооптических констант p_{ij} . Нумерация: 0 - Cr (графен), 1 - SI (силицен), 2 - Gm (германен), 3 - SiC, 4 - GeC, 5 - GeSi, 6 - BN, 7 - BP, 8 - BaS, 9 - AIN, 10 - GaN, 11 - GaP, 12 - GaAs.

динамический заряд ионов, ответственный за расщепление оптических продольной и поперечной мод в точке Γ (см. [17]). Так как ионность рассмотренных нами соединений сравнительно невелика ($f_i < 0.5$), считаем допустимым игнорирование явного учета кулоновского взаимодействия. Здесь имеется определенная аналогия с описанием электронной структуры твердых тел в рамках приближения сильной связи, где дальнодействие явно не учитывается.

Далее, здесь, как и в [9], нами учтена только одна ангармоническая силовая константа γ , тогда как в работе [13] дополнительно учитываются две нецентральные константы. Не исключено, что, учтя ангармонизм нецентрального взаимодействия, получим для графена $|c_{111}| > |c_{222}|$. Однако в отсутствие данных эксперимента решили ограничиться только константой γ .

И, наконец, для всех рассматриваемых ГПС положили учитывающий поправки на локальное поле масштабный фактор $\bar{\gamma} = 1$. Для объемных полупроводников в работе [19] (см. также рис. 3.1 в [15]) достаточно убедительно продемонстрировано, что с качественной точки зрения это вполне приемлемо.

Таким образом, в отсутствие соответствующих экспериментальных данных сделанные упрощения представляются нам оправданными.

Список литературы

- [1] Geim A.K., Grigorieva I.V. // Nature. 2013. V. 499. P. 419-425.
- [2] Tong C.-J., Zhang H., Zhang Y.-N. et al. // J. Mater. Chem. A. 2014. V. 2. P. 17971–17978.
- [3] Антонова И.В. // ФТП. 2016. Т. 50. В. 1. С. 67-82.
- [4] Давыдов С.Ю. // ФТТ. 2010. Т. 52. В. 4. С. 756-758.
- [5] Keating P.N. // Phys. Rev. 1966. V. 145. N 2. P. 637-645.
- [6] Sahin H., Cahangirov S., Topsakal M. et al. // Phys. Rev. B. 2009. V. 80. P. 155453.
- [7] Phillips J.C. // Rev. Mod. Phys. 1970. V. 42. N 3. P. 317-356.
- [8] Martin R.M. // Phys. Rev. B. 1970. V. 1. N 10. P. 4005-4010.
- [9] Давыдов С.Ю. // ФТТ. 2011. Т. 53. В. 3. С. 617-619.
- [10] Давыдов С.Ю., Посредник О.В. // ФТТ. 2015. Т. 57. В. 4. С. 819-824.
- [11] Wang R, Wang S., Wu X., Liang X. // Physica B. 2010. V. 405. N 16. P. 3501–3506.
- [12] Cadelano E., Palla P.L., Giordano S., Colombo L. // Phys. Rev. Lett. 2009.
 V. 102. P. 235502.
- [13] Keating P.N. // Phys. Rev. 1966. V. 149. N 2. P. 649-658.
- [14] Браже Р.А., Кочаев А.И., Мефтахутдинов Р.М. // ФТТ. 2017. Т. 59. В. 2. С. 334–337.
- [15] Давыдов С.Ю., Посредник О.В. Метод связывающих орбиталей в теории полупроводников: Учеб. пособие. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2007. 96 с. twirpx.com/file/1014608/
- [16] Давыдов С.Ю. // ФТП. 2013. Т. 47. В. 8. С. 1065–1070.
- [17] Давыдов С.Ю. // ФТТ. 2016. Т. 58. В. 2. С. 392-400.
- [18] Давыдов С.Ю. // ФТП. 2002. Т. 36. В. 1. С. 45-48.
- [19] Давыдов С.Ю., Леонов Е.И. // ФТТ. 1987. Т. 29. В. 10. С. 2890–2893.