# Рентгеноэмиссионное исследование электронной структуры нанокристаллического Al<sub>2</sub>O<sub>3</sub>

© Д.А. Зацепин, В.М. Черкашенко, Э.З. Курмаев, С.Н. Шамин, В.В. Федоренко, Н.А. Скориков, С.В. Пластинин, Н.В. Гаврилов\*, А.И. Медведев\*\*, С.О. Чолах\*\*

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия \* Институт электрофизики Уральского отделения Российской академии наук, 620016 Екатеринбург, Россия \*\* Уральский государственный технический университет, 620002 Екатеринбург, Россия

E-mail: d\_zatsepin@ifmlrs.uran.ru

#### (Поступила в Редакцию 16 февраля 2004 г.)

Исследованы валентные состояния ионов металла и фазовый состав нанокристаллического  $Al_2O_3$ (исходного оксида и оксида, подвергнутого облучению высокоэнергетичными ионами  $Fe^+$ ) при помощи рентгеновских эмиссионных  $Al L_{2,3}$  и  $O K\alpha$  спектров. Установлено, что форма  $Al L_{2,3}$  спектров сильно варьируется при переходе от исходного (массивного)  $Al_2O_3$  к нанокристаллическому оксиду. В то же время  $O K\alpha$  спектры остаются практически неизменными. Кроме того, облучение высокоэнергетичными ионами  $Fe^+$  приводит к незначительным дополнительным изменениям в рентгеноспектральных характеристиках исследовавшихся оксидов алюминия. Полученные экспериментальные данные сопоставлены с результатами теоретических расчетов электронной структуры  $\alpha$ - и  $\gamma$ -фаз  $Al_2O_3$ , выполненных в рамках LDA-формализма. На основе результатов рентгеноспектральных исследований, расчетов электронной структуры и рентгенодифракционного анализа показано, что обнаруженные спектральные отличия нанокристаллического состояния оксида алюминия от массивного следует интерпретировать как фазовый переход из  $\alpha$ -фазы в  $\gamma$ -фазу  $Al_2O_3$  с частичной добавкой байерита.

#### 1. Введение

В последнее время нанокристаллические материалы привлекают внимание ученых и практиков благодаря проявлению необычных свойств (повышенная твердость, высокое электросопротивление, высокая удельная теплоемкость и т.п.) в сравнении с обычными массивными материалами [1]. Существование необычных свойств материала в нанокристаллическом состоянии обычно связывается с проявлением различных размерных эффектов на зернах наночастиц. Другой важной особенностью нанокристаллических материалов является возможность существенной модификации их свойств при различных видах внешнего воздействия, поскольку нанокристаллическое состояние в некоторых случаях является неравновесным. Последнее ограничивает промышленное применение данной группы материалов. В этой связи нанокристаллические оксиды выглядят наиболее перспективными, поскольку обладают повышенной химической и термостабильностью в сравнении с остальными наноматериалами — нанооксиды не изменяют своей структуры и размеров зерна даже после отжига при температурах порядка 600-800 К [2]. Оксид алюминия Al<sub>2</sub>O<sub>3</sub> принадлежит к указанной группе материалов.

К настоящему моменту известны две наиболее широко распространенные и стабильные фазы  $Al_2O_3$ : корундовый  $\alpha$ - $Al_2O_3$  и шпинель дефектного типа  $\gamma$ - $Al_2O_3$  [3–5]. Эти фазы могут трансформироваться друг в друга, и подобная трансформация сильно зависит от метода синтеза образца, наличия чужеродных ионов (примесей) в решетке и/или наличия химических катализаторов и внешнего воздействия [3]. Облучение заряженными частицами является одним из удобных методов воздействия с целью изменения фазового состава материала [6,7]. Поэтому можно ожидать, что после облучения высокоэнергетичными ионами может иметь место переход из  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> в  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> или даже образование низших форм оксидов алюминия. Как было показано ранее на примере CuO [6–7], подобные фазовые переходы четко отображаются в рентгеноэмиссионных спектрах.

Рентгеноэмиссионная спектроскопия является эффективным методом исследования подобных систем. Данный метод позволяет определять зарядовые (валентные) состояния ионов, обеспечивает информацию о парциальных плотностях состояний атомов-компонентов в валентной полосе соединения, изменениях в характере химической связи и т.п. В настоящей работе представлено полное рентгеноэмиссионное исследование валентных состояний ионов металла и фазового состава нанокристаллического Al<sub>2</sub>O<sub>3</sub> (исходного оксида и оксида, подвергнутого облучению высокоэнергетичными ионами железа). Кроме того, выполнены расчеты электронного строения оксида алюминия в рамках LDAформализма [8]. Основное внимание уделено вопросу о рентгеноспектральном различии между массивным и нанокристаллическим состояниями оксида алюминия. Обсуждены причины и возможные механизмы подобного спектрального различия.

Нанокристаллические порошки  $Al_2O_3$  синтезировались методом электровзрыва металлической алюминиевой проволоки на воздухе с последующей седиментацией в воде [9]. В качестве эталонного образца использовался монокристалл  $\alpha$ - $Al_2O_3$ .

Облучение образцов ионами железа выполнено в Институте электрофизики УрО РАН. Использовался источник ионов типа MEVVA [10] на основе вакуумной дуги с катодным пятном. Данный источник работал в импульсно-периодическом режиме с длительностью импульса 0.4 ms и частотой повторения импульсов 25 Hz (энергия ионов 30 keV, флюкс  $10^{17}$  cm<sup>-2</sup>, плотность тока 3 mA/cm<sup>-2</sup>).

Рентгеноэмиссионные Al  $L_{2,3}$  спектры (валентный переход Al  $3d_{3s}$ -Al  $2p_{3/2,1/2}$ ) облученного, необлученного и эталонного оксидов алюминия измерены с помощью ультрамягкого рентгеноэмиссионного спектрометра [11] (дифакционная решетка 600 штрихов на mm, радиус изгиба 2 m) с использованием электронного возбуждения при энергетическом разрешении 0.3 eV. Рентгеноэмиссионные O K $\alpha$  спектры (электронный переход O 2p-O 1s) получены на электронном микроанализаторе JEOL-733, специально адаптированном для измерений тонкой структуры рентгеновских спектров [12]. Рентгеновская трубка работала при 5 kV и 100 nA. Инструментальное уширение O  $K\alpha$  спектров в этом случае составило примерно 0.5 eV.

Рентгенодифрактограммы образцов измерены на дифрактометре ДРОН-4 с графитовым монохроматором при Cu  $K\alpha$  возбуждении. Интерпретация рентгенодифрактограмм и оценка фазового состава были выполнены на основе базы данных ASTM при помощи программы PowderCell. Для оценки среднего размера зерна по интегральной ширине рефлекса (118)  $\delta$ -Al<sub>2</sub>O<sub>3</sub> использовался метод Шерера.

Расчет зонной структуры проводился в рамках формализма функционала локальной плотности LDA первопринципным методом линеаризованных МТ-орбиталей в приближении сильной связи (ТВ LMTO) [8]. Были использованы экспериментально определенные параметры кристаллической решетки для  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> и  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> [13,14]. Согласно данным Вервея [14], у-Аl<sub>2</sub>O<sub>3</sub> обладает дефектной структурой обращенной шпинели с пространственной группой Fm–3m и параметром решетки a = 3.95 Å. Коэффициенты заполнения для атомов алюминия, занимающих кристаллографически неэквивалентные позиции, составляют 0.4665 и 0.0999. Элементарная ячейка содержит 1.333 формульных единиц Al<sub>2</sub>O<sub>3</sub>. Поскольку используемая расчетная методика не учитывает коэффициенты заполнения и не позволяет работать с нецелым числом атомов в элементарной ячейке, расчет у-Al<sub>2</sub>O<sub>3</sub> был выполнен для модельной структуры, имеющей симметрию y-Al<sub>2</sub>O<sub>3</sub>, при этом атомы располагались в тех же позициях, что и в *у*-Al<sub>2</sub>O<sub>3</sub>, но элементарная ячейка содержала три атома алюминия и четыре атома кислорода (т. е. при расчете в элементарной ячейке было 0.334 лишних атома алюминия).

## 3. Результаты и обсуждение

Хорошо известно, что рентгеноэмиссионные спектры валентной полосы возникают вследствие электронных переходов между валентной полосой и остовной дыркой. Поскольку волновая функция остовного электрона сильно локализована и симметрия углового момента определена, вследствие дипольных правил отбора рентгеновские спектры отображают парциальные плотности состояний атомов-компонентов. В нашем случае измерены рентгеноэмиссионные Al  $L_{2,3}$  и O  $K\alpha$  спектры, которые соответственно отображают распределение плотностей состояний Al 3d3s и O 2p в валентной полосе.

На рис. 1 показаны рентгеноэмиссионные Al L<sub>2,3</sub> спектры  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> (эталонный образец), 17 nm нано-Al<sub>2</sub>O<sub>3</sub> и облученного ионами железа 17 nm нано-Al2O3. В спектрах четко проявляются две полосы, названные А и В, которые расположены соответственно при 64 и 67.9 eV. Полоса А отображает в основном вклад *s*-электронов Al в валентную полосу, а полоса В отображает смесь sи *d*-состояний алюминия [15]. В целом форма спектра и энергетические положения основных линий в Al L2.3 спектре эталонного образца практически идентичны тем, о которых сообщает Шимунек для  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> [15]. Из рис. 1 можно видеть, что основное различие между спектрами массивного α-Al<sub>2</sub>O<sub>3</sub> и 17 nm нано-Al<sub>2</sub>O<sub>3</sub> заключается в полосе A, расположенной при 64 eV; данная полоса имеет существенно более высокую интенсивность в спектре 17 nm нано-Al<sub>2</sub>O<sub>3</sub>, чем в спектре эталона. Спектр облученного ионами железа 17 nm нано-Al<sub>2</sub>O<sub>3</sub> проявляет аналогичное поведение полосы А, однако имеет место некоторое падение интенсивности поло-



**Рис. 1.** Рентгеноэмиссионные (XES) Al  $L_{2,3}$  спектры. I — массивного  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> (эталон), 2 — 17 nm нанопорошка Al<sub>2</sub>O<sub>3</sub> и 3 — облученного ионами железа 17 nm нанопорошка Al<sub>2</sub>O<sub>3</sub>.



**Рис. 2.** Нормированные на интенсивность полосы *A* рентгеноэмиссионные (XES) Al  $L_{2,3}$  спектры. *I* — массивного  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> (эталон), *2* — 17 nm нанопорошка Al<sub>2</sub>O<sub>3</sub> и *3* — облученного ионами железа 17 nm нанопорошка Al<sub>2</sub>O<sub>3</sub>.



**Рис. 3.** Рентгеноэмиссионные (XES) О  $K\alpha$  спектры. 1 — массивного  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> (эталон), 2 — 17 nm нанопорошка Al<sub>2</sub>O<sub>3</sub> и 3 — облученного ионами железа 17 nm нанопорошка Al<sub>2</sub>O<sub>3</sub>.

сы A по сравнению со спектром необлученного 17 nm нано- $Al_2O_3$ .

Поскольку полоса A отображает "чистый" вклад *s*-состояний алюминия в валентную полосу, можно нормировать рентгеноэмиссионные Al  $L_{2,3}$  спектры образцов на спектральную интенсивность этой полосы (рис. 2), предполагая, что степень гибридизации d-sсостояний изменяется при переходе от массивного  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> к 17 nm нано-Al<sub>2</sub>O<sub>3</sub>. Здесь интенсивность (d+s)подобной полосы максимальна в рентгеноэмиссионном Al  $L_{2,3}$  спектре эталонного  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, затем приобретает некоторое значение для облученного образца и становится минимальной в спектре 17 nm нано-Al<sub>2</sub>O<sub>3</sub>. Что же касается рентгеноэмиссионных  $K\alpha$  спектров кислорода всех образцов (рис. 3), то нами не было обнаружено значительных изменений в них. Последнее означает, что нет различия между 2p-состояниями кислорода эталонного, исходного нанокристаллического и облученного нанокристаллического  $Al_2O_3$ , а переход от массивного (эталонного) оксида алюминия к нанокристаллическому проявляется лишь в парциальных d-s-состояниях металла.

Одной из наиболее вероятных причин описанного поведения может быть формирование в нанокристаллическом состоянии другой фазы алюминиевого оксида, обладающей аналогичным химическим составом. Ожидается, что данная фаза будет крайне стабильной, поскольку даже после облучения наблюдаются лишь незначительные изменения в Al L<sub>2,3</sub> спектрах нанокристаллического образца. К настоящему моменту известно множество структурных модификаций Al<sub>2</sub>O<sub>3</sub>:  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\rho$ ,  $\chi$ ,  $\eta$  и  $\theta$ ; но только фазы  $\alpha$ - и  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> считаются самостоятельными, поскольку все остальные перечисленные модификации оксида алюминия являются нестабильными без специальных химических добавок и/или представляют собой смесь перечисленных выше фаз [3]. Исходя из изложенного выше, можно считать, что изменение интенсивности (d+s)-подобной полосы отображает формирование у-фазы Al<sub>2</sub>O<sub>3</sub> при переходе от массивного к нанокристаллическому состоянию. Учитывая подобное предположение, малое изменение интенсивности В-полосы в спектре облученного образца можно интерпретировать как начало обратного перехода от  $\gamma$ -фазы к  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> (рис. 2).

Для проверки изложенных выше предположений выполнены расчеты парциальных плотностей s- и d-состояний атомов алюминия для  $\alpha$ - и  $\gamma$ -фазы в рамках формализма LDA (рис. 4). Из рисунка видно, что парциальные плотности состояний у-Al<sub>2</sub>O<sub>3</sub> сдвинуты в высокоэнергетичную область зоны занятых состояний по сравнению с плотностью состояний α-Al<sub>2</sub>O<sub>3</sub>. Для расчетов γ-фазы была взята модельная структура у-Al<sub>2</sub>O<sub>3</sub> (см. описание расчетов), что и может являться одной из причин упомянутого энергетического сдвига. Верхняя панель рис. 4 показывает сумму *d*+*s*-состояний для атомов алюминия. Ближайший к уровню Ферми пик состояний α-фазы обладает d-характером, в то время как расположенный при 5 eV пик образован s-состояниями Al. При переходе от  $\alpha$ - к  $\gamma$ -фазе происходит резкое падение интенсивности *d*-пика состояний алюминия. В то же время интенсивность s-пика существенно не меняется. В результате интенсивность *d*-пика в сумме *d*+*s*-состояний для  $\gamma$ -фазы по меньшей мере в 2 раза ниже, чем в  $\alpha$ -фазе (верхняя панель рис. 4). Поэтому можно заключить, что основное различие в электронном строении между α- и γ-фазой Al<sub>2</sub>O<sub>3</sub> проявляется в различной степени гибридизации s- и d-состояний атомов алюминия за счет меньшего вклада *d*-состояний в *у*-фазе. Подобный вывод не противоречит сообщенным выше экспериментальным результатам.



**Рис. 4.** Сравнение рассчитанных в рамках LDA-формализма парциальных плотностей состояний *α*- и *γ*-фаз Al<sub>2</sub>O<sub>3</sub>.

На завершающем этапе был выполнен рентгенодифракционный анализ исходного (необлученного) и облученного образцов. На рис. 5 показаны рентгенодифрактограммы исходного и облученного ионами железа нанокристаллического Al<sub>2</sub>O<sub>3</sub>. Из дифрактограмм видно, что исходный нанокристаллический образец состоит из смеси алюминиевого оксида и гидроксида алюминия Al(OH)<sub>3</sub>. Последний имеет структуры байерита и гиббсита (их основные рефлексы помечены символом  $\beta$  нижняя панель рис. 5) и составляет примерно 30% от общего состава образца. Оксидная компонента представлена смесями  $\gamma$ - и  $\delta$ -фаз Al<sub>2</sub>O<sub>3</sub>. Рентгенодифрактограммы шпинели дефектного типа у-фазы (показанной на рис. 5 символом  $\gamma$ ) полностью перекрывают рефлексы тетрагональной δ-фазы и могут быть отделены от первой только методами компьютерного моделирования. Соотношение этих фаз составляет 1 к 1. Рентгенодифрактограмма облученного образца (верхняя панель рис. 5) отличается от таковой для исходного нанокристаллического Al<sub>2</sub>O<sub>3</sub> лишь отсутствием линий гидроксида — остальная часть дифрактограммы очень похожа на дифрактограмму необлученного Al<sub>2</sub>O<sub>3</sub>. При этом соотношение  $\gamma$ - и  $\delta$ фаз остается прежним. Кроме того, следует отметить отсутствие следов высокотемпературной  $\theta$ - и  $\alpha$ -фазы Al<sub>2</sub>O<sub>3</sub> в представленных дифрактограммах. Средний размер зерна после облучения образца не изменился и составил те же 17 nm. Таким образом, предположение о переходе из  $\gamma$ - в  $\alpha$ -фазу в нанокристаллическом образце после облучения не подтверждается данными рентгенодифракционного анализа. Отмеченное ранее малое изменение интенсивности *B*-полосы может быть обусловлено исчезновением фазы байерита.

Из изложенного выше становится ясно, что переход из массивного в нанокристаллическое состояние для  $Al_2O_3$  сопровождается превращением из  $\alpha$ -фазы в  $\gamma$ - и, возможно,  $\delta$ -фазы с частичной добавкой байерита. Облучение ионами железа ведет к исчезновению байерита, так что только низкотемпературные формы  $Al_2O_3$  присутствуют в конечном образце. Таким образом, можно считать, что рентгеноэмиссионый спектр облученного оксида алюминия представляет собой спектр "чистой"  $\gamma$ фазы  $Al_2O_3$ . Результаты выполненного рентгенодифракционного анализа хорошо согласуются с результатами расчетов в рамках LDA-формализма и данными рентгеноэмиссионной спектроскопии.



**Рис. 5.** Рентгенодифрактограммы исходного (a) и облученного (b) ионами железа 17 nm нанопорошка  $Al_2O_3$ .

### 4. Заключение

Методами рентгеноэмиссионной спектроскопии и рентгенодифракционного анализа были исследованы нанокристаллический исходный и облученный ионами железа оксид алюминия  $Al_2O_3$ . Обнаружено, что переход от массивного к нанокристаллическому состоянию сопровождается возникновением  $\gamma$ -фазы  $Al_2O_3$  и байерита. Облучение не изменяет размера зерна и валентности атомов алюминия, но приводит к исчезновению фазы байерита таким образом, что в облученном образце присутствует "чистая"  $\gamma$ -фаза  $Al_2O_3$ . Результаты наших исследований хорошо согласуются с результатами расчета электронной структуры, выполненного в рамках LDA-формализма.

## Список литературы

- [1] А.И. Гусев, А.А. Ремпель. Нанокристаллические материалы. Физматлит. М. (2001).
- [2] Y. Ishida, H. Ichinose, T. Kizuka, K. Suenaga. Nanostruct. Materials 6, 1-4, 115 (1995).
- [3] Н.А. Торопов, В.П. Барзаковский, И.А. Бондарь, Ю.П. Удалов. Диаграммы состояния силикатных систем. Наука, Л. (1970).
- [4] I.P. Batra. J. Phys. C 15, 5399 (1982).
- [5] Y.-N. Xu, W.Y. Ching. Phys. Rev. B 43, 4461 (1991).
- [6] D.A. Zatsepin, V.R. Galakhov, B.A. Gizhevskii, E.Z. Kurmaev, V.V. Fedorenko, A.A. Samokhvalov, S.V. Naumov. Phys. Rev. B 59, 211 (1999).
- [7] B.A. Gizhevskii, V.R. Galakhov, D.A. Zatsepin, L.V. Elokhina, T.A. Belykh, E.A. Kozlov, S.V. Naumov, V.L. Arbuzov, K.V. Shal'nov, M. Neumann. Phys. Sol. Stat. 44, 1380 (2002).
- [8] O.K. Anderson. Phys. Rev. B 12, 3060 (1975).
- [9] I.V. Beketov, Yu.A. Kotov, A.M. Murzakaev, O.V. Samatov, V.P. Volkov, R. Buhme, G. Schumacher. Materials Science Forum / Ed. by R. Schulz. Trans. Publications, Switzerland (1995). Vol. 225–227. P. 913.
- [10] I.G. Brown. Rev. Sci. Instrum. 65, 3061 (1994).
- [11] E.Z. Kurmaev, V.V. Fedorenko, S.N. Shamin, A.V. Postnikov, G. Wiech, Y. Kim. Phys. Scr. T 41, 288 (1992).
- [12] V.V. Fedorenko, V.R. Galakhov, L.V. Elokhina, L.D. Finkelstein, V.E. Naish, S.M. Butorin, E.J. Nordgren, A.K. Tyagi, U.R.K. Rao, R.M. Iyer. Physica C 221, 71 (1994).
- [13] H. Sawada. Mater. Research Bull. 29, 2, 127 (1994).
- [14] E.J.W. Verwey. Z. Kristallogr. Kristallgeometr. Kristallphys. Kristallchem. 91, 317 (1935).
- [15] A. Šimunek, G. Wiech. Z. Phys. B 93, 51 (1993).