07;09

Термостимулированная люминесценция кристалла $Ca(Al_xGa_{1-x})_2S_4:Eu^{2+}$

© Е.Г. Асадов¹, Ф.А. Казимова¹, Т.Ш. Ибрагимова¹, К.О. Тагиев²

¹ Институт физики НАН Азербайджана, Баку

² Институт катализа и неорганической химии НАН Азербайджана, Баку E-mail: oktay58@mail.ru

Поступило в Редакцию 22 мая 2016 г.

Проведены исследования термолюминесценции (ТЛ) твердых растворов $Ca(Al_xGa_{1-x})_2S_4$: Eu^{2+} (x = 0.1-0.3) после ультрафиолетового облучения методом линейного нагрева. Показано, что наблюдаемые максимумы ТЛ сложные и состоят из нескольких сильно перекрывающихся парциальных максимумов, определены энергия активации, сечение захвата, частотный фактор и концентрация ловушечных уровней, ответственных за эти максимумы. С увеличением x интенсивность излучения и число пиков растет.

DOI: 10.21883/PJTF.2017.04.44296.16340

Легированный редкоземельными элементами (РЗЭ) тиогаллат кальция (CaGa₂S₄) является перспективным материалом в оптоэлектронике и фотонике [1]. Максимальная энергия фононов и хорошие оптические свойства позволяют получать высокоэффективные люминофоры, а электропроводность бывает пригодна для создания электролюминесцентных дисплеев [2-4]. Результаты исследования люминесцентных свойств системы $MS-Al_2S_3$ (M = Ca, Sr, Ba), активированной ионами Eu, т.е. $CaAl_2S_4:Eu^{2+},\ SrGa_2S_4:Eu^{2+},\ BaAl_2S_4:Eu^{2+},\ BaGa_2S_4:Eu,\ представ$ лены в [5-10]. CaGa₂S₄ с примесью эрбия дает фотолюминесценцию на длине волны 1554 nm, что подходит для применения его в телекоммуникации [11]. Легирование тиогаллата кальция ионами Dy и Nd дает возможность применения этих материалов в лазерах [12,13]. CaGa₂S₄ кристаллизуется в ромбическую структуру с пространственной группой D_{2h}^{24} -Fddd [14] и характеризуется тремя различными кристаллографическими положениями иона кальция: два в d и один в с. РЗЭ заменяют ионы кальция и, в результате радиационных переходов с уровня $4f^{6}5d^{1}$ на уровень ${}^{8}S_{7/2}$ иона Eu²⁺, происходит

39

фотолюминесценция на волне длиной 560 nm [2,14]. Свечение в зеленой области спектра обусловлено процессами, происходящими с участием ионов европия, присутствующих в кристалле как примесь.

Изготовление высокопроизводительных устройств для визуализации и освещения, которые в состоянии конкурировать с традиционными системами, требует получения люминофоров со специфическими свойствами. Эта необходимость способствовала развитию технологии получения новых материалов или оптимизации уже существующих люминофоров.

В настоящей работе приводятся результаты исследований термолюминесценции (ТЛ) в кристаллах $Ca(Al_xGa_{1-x})_2S_4:Eu^{2+}$. В работе [15] представлены люминесцентные свойства кристалла $Ca(Al_xGa_{1-x})_2S_4:Eu^{2+}$. Известно, что исследование ТЛ в люминесцентных материалах позволяет определить важнейшие параметры ловушечных уровней (энергия активации, сечения захвата, частотный фактор и др.), играющих решающую роль в выявлении механизма ТЛ [16].

Синтез соединения CaS осуществлялся в кварцевом реакторе взаимодействием тонкодисперсного порошка карбоната кальция (CaCO₃) с потоком сероводорода (H₂S) и сульфида углерода (CS₂) в атмосфере инертного газа Ar. Скорость подачи инертного газа составляла 2–2.5 l/h. Сероводород и сульфид углерода образовались в результате разложения обезвоженного роданистого аммония (NH₄CNS) в генераторе газовреагентов при температуре 250°C. Температура синтеза составляла 720–770°C, а продолжительность — 24 h, температура контролировалась с помощью термопары хромель-алюмель.

Соединение Ca(Al_xGa_{1-x})₂S₄ синтезировалось методом твердофазных реакций из порошковых компонентов CaS, Al₂S₃ и Ga₂S₃, взятых в стехиометрических соотношениях в графитизированных кварцевых ампулах, откачанных до давления 10^{-4} mm Hg, по реакции

$$\operatorname{CaS} + x(\operatorname{Al}_2\operatorname{S}_3) + (1-x)(\operatorname{Ga}_2\operatorname{S}_3) \xrightarrow{1100^{\circ}\operatorname{C}} \operatorname{Ca}(\operatorname{Al}_x\operatorname{Ga}_{1-x})_2\operatorname{S}_4.$$

Рентгендифрактограмма была снята на рентгендифрактометре D8 Advance. Анализ рентгеновской дифракции соединений $Ca(Al_xGa_{1-x})_2S_4$ показал, что они имеют орторомбическую структуру с одновременным наличием двойникования и сверхструктуры с пространственной группой $D_{2b}^{24}-Fddd$.

Образцы возбуждались ртутной лампой ПРК4 длиной волны 265 nm в течение 3 min при температуре жидкого азота. Кривые свечения записывались при скорости нагрева 0.17 К/s в температурном интервале 80–350 К.

Температура образца регистрировалась термопарой медь-константан. Расхождения между показаниями измерительной термопары и показаниями термопары, помещенной в центр образца, менее 1 К. Величина ЭДС термопары регистрировалась электронным потенциометром.

На рис. 1 приведены семейства пиков ТЛ для кристалла $Ca(Al_xGa_{1-x})_2S_4: Eu^{2+}$, где x = 0.1-0.3. Видно, что при увеличении замещения ионов Al на Ga спектр ТЛ изменяется и наблюдаем следующие пики ТЛ: 187 и 264 К (Ca(Al_{0.1}Ga_{0.9})₂S₄, рис. 1, *a*); 95, 165, 179 и 232 К (x = 0.1, рис. 1, b); 157, 197, 239 и 297 К (x = 0.2, рис. 1, c); 102, 133, 259 и 297 К (x = 0.3, рис. 1, d). Результаты измерений ТЛ в исследуемых образцах проанализированы на основе теории и модели, описанных в [17,18]. Широкие максимумы в спектрах ТЛ характерны для тройных щелочноземельных и редкоземельных халькогенидов, входящих в группу М^{II}М^{III}Х^{VI}. Анализ спектра ТЛ показывает, что соответствующие спектры обусловлены ловушечными уровнями с квазинепрерывным распределением уровней в интервале энергий (0.2–0.7 eV, см. таблицу). На кривых ТЛ (рис. 1, b, c, d) не проявляются пики, характерные для чистого $Ca(Al_xGa_{1-x})_2S_4$, поэтому есть основание полагать, что при частичном замещении ионов Ga на ионы Al в термолюминесценцию вносят дефекты, созданные за счет внесения вышеуказанного замещения, тогда как в чистом кристалле ловушки заряда следует отождествлять с собственными дефектами.

По данным ТЛ могут быть рассчитаны (см. таблицу) основные параметры ловушечных уровней [16–18]: энергия активации $(E_{a1} = A kT_{\max}, E_{a2} = \frac{2kT_{\max}^2}{T_2 - T_{\max}})$, сечение захвата $(S_t = \frac{\beta E_a}{kT_{\max}^2 N_c v_t})$, частотный фактор $(S = \frac{\beta E_a}{kT_{\max}^2} e^{\frac{E_a}{kT_{\max}}})$ и концентрация ловушечных уровней $(N_t = \frac{kT_{\max}^2 N_c}{E_a \tau_c \beta e^{E_a/kT_{\max}}})$, где β — скорость нагрева (0.17 K/s), N_c — плотность состояний в зоне проводимости, v_t — тепловая скорость электронов, A — постоянная, принимающая значения в пределах 15–30 (см. таблицу), k — постоянная Больцмана (0.86 · 10⁻⁴ eV · K⁻¹), $E_a = 0.22 \text{ eV}$ — энергия активации, T_2 — температура, при которой максимальная интенсивность (I_{\max}) ТЛ уменьшается в два раза, T_{\max} — температура максимума кривой ТЛ.

$Ca(Al_xGa_{1-x})_2S_4$	Пик №	<i>T</i> ,K	E_{al}, eV (A = 25)	E_{a2} , eV	<i>Ea</i> 3, eV	$S_t, \text{ cm}^2$ $(E_a = 0.22 \text{ eV})$	S, s^{-1} ($E_a = 0.22 \mathrm{eV}$)	N_t, cm^{-3} $(E_a = 0.22 \mathrm{eV})$
	1	187	0.40	0.35	_	$1.4\cdot10^{-17}$	$1.4\cdot 10^9$	$4.2\cdot 10^{16}$
x = 0.1	2	264	0.57	0.52		$9\cdot 10^{-18}$	$9 \cdot 10^8$	$1\cdot 10^{17}$
	1	95	0.20	0.22		$1.4 \cdot 10^{-17}$	$8 \cdot 10^8$	$8\cdot 10^{16}$
x = 0.1	2	165	0.36	0.36		$1 \cdot 10^{-17}$	$1.1 \cdot 10^8$	$1\cdot 10^{17}$
Eu 7%	3	179	0.38	0.39	_	$4 \cdot 10^{-17}$	$4 \cdot 10^9$	$1.5\cdot10^{17}$
	4	232	0.50	0.55		$1.2\cdot10^{-17}$	$1.2\cdot 10^9$	$5\cdot 10^{16}$
	1	157	0.34	0.30		$1.8 \cdot 10^{-17}$	$1.8\cdot 10^9$	$2\cdot 10^{17}$
x = 0.2	2	194	0.42	0.43		$1.3 \cdot 10^{-17}$	$1.3 \cdot 10^9$	$4\cdot 10^{16}$
Eu 7%	3	239	0.50	0.51	0.28	$4\cdot 10^{-18}$	$4 \cdot 10^8$	$4\cdot 10^{16}$
	4	297	0.64	0.65		$6\cdot 10^{-18}$	$7.8\cdot 10^8$	$7\cdot 10^{-16}$
	1	102	0.22	0.20		$2.5\cdot10^{-19}$	$2.5 \cdot 10^8$	$8\cdot 10^{16}$
x = 0.3	2	133	0.28	0.24		$5 \cdot 10^{-17}$	$5\cdot 10^9$	$1.5\cdot 10^{16}$
Eu 7%	3	259	0.57	0.55	0.22	$2\cdot 10^{17}$	$2\cdot 10^9$	$1\cdot 10^{17}$
	4	339	0.73	0.70		$7.2\cdot10^{-18}$	$7.2 \cdot 10^8$	$1\cdot 10^{17}$

Параметры ловушек, определенных из спектров ТЛ твердых растворов Ca(Al_xGa_{1-x})₂S₄

Рис. 1. Спектры ТЛ нелегированного $Ca(Al_xGa_{1-x})_2S_4$ (*a*) и легированных кристаллов $Ca(Al_xGa_{1-x})_2S_4$: Eu^{2+} 7%, b - x = 0.1, c - x = 0.2, d - x = 0.3.

Энергия активации ловушечных уровней также определена по методу Гарлика–Гибсона, т.е. по начальному росту интенсивности ТЛ [19]. Предполагается, что независимо от вида кинетики интенсивность ТЛ

с низкотемпературной стороны изменяется с температурой по закону $I = I_0 e^{-\frac{E_a}{kT}}$. В координатах $\ln I \sim \frac{1}{T}$ зависимость носит линейный характер (рис. 2), и по наклону вычислены значения энергии активации: $E_{a3}(a) = 0.22 \,\text{eV}, E_{a3}(b) = 0.28 \,\text{eV}$. В пределах погрешности (0.02 eV)

Рис. 2. Температурные зависимости начального роста интенсивности термолюминесценции кристалла Ca $(Al_x Ga_{1-x})_2 S_4 : Eu^{2+}$. a - x = 0.2, b - x = 0.3.

эксперимента полученные значения для E_{a1} , E_{a2} и E_{a3} близки друг к другу.

Милнс [20], анализируя различные литературные данные, касающиеся сечения захвата ловушечных уровней, показал, что сечение захвата ловушечных уровней в зависимости от типа и природы изменяется в пределах $10^{-12}-10^{-22}$ cm². По значениям сечения захвата ловушечные уровни разделяют на три группы: 1) притягивающие центры $(10^{-15}-10^{-12} \text{ cm}^2)$; 2) нейтральные центры $(10^{-17}-10^{-15} \text{ cm}^2)$; 3) отталкивающие центры $(10^{-19}-10^{-22} \text{ cm}^2)$. Как видно из таблицы, сечения захвата почти всех ловушек находятся в пределах $10^{-18}-10^{-17} \text{ cm}^2$, т.е. они являются нейтральными центрами.

Таким образом, анализ полученных результатов показывает, что увеличение содержания Al в кристалле $Ca(Al_xGa_{1-x})_2S_4 : Eu^{2+}$ приводит к образованию новых дефектов, которые проявляют себя как ловушечные уровни. Эти ловушки участвуют в формировании числа и интенсивности новых полос в спектрах TЛ исследуемых твердых растворов.

Список литературы

- Georgobiani A.N., Tagiev B.G., Tagiev O.B. et al. // Jpn. J. Appl. Phys. Suppl. 39-1. 2000. V. 39. P. 434.
- [2] Chartier C., Jabbarov R., Jouanne M. et al. // J. Phys.: Condens. Matter. 2002.
 V. 14. P. 13693.
- [3] Chartier C., Benalloul P., Barthou C. et al. // J. Phys. D: Appl. Phys. 2002. V. 35. P. 363.
- [4] Tanaka K., Inoue Y., Okamoto S. et al. // Jpn. J. Appl. Phys. 1997. Part 1. V. 36 (6A). P. 3517.
- [5] Wu X., Carkner D., Hamada H., Yoshida I. // Large-screen Flat Panel Displays based on Thick-Dielectric Electroluminescent (TDEL) Technology SID. 2004. V. XXXV. Book II. P. 1146–1149.
- [6] Тагиев Б.Г., Абушов С.А., Тагиев О.Б. // ЖПС. 2010. Т. 77. С. 124–128.
- [7] Jabbarov R.B., Chartier C., Tagiev B.G. et al. // J. Phys. Chem. Solids. 2005.
 V. 66. Iss. 6. P. 1049–1056.
- [8] Georgobiani A.N., Sturov V.V., Tyutyunnikov V.I. et al. // J. Phys. Chem. Solids. 2003. V. 64. Iss. 9–10. P. 1519–1924.
- [9] Benallol P., Carlos Barthou, Foussier C. // J. Electrochem. Soc. 2003. V. 150 (1).
 P. G62–G65.
- [10] Тагиев Б.Г., Абушов С.А., Тагиев О.Б. // ЖПС. 2009. Т. 76. № 1. С .112–116.
- [11] Georgobiani A.N., Gruzintsev A.N., Barthou C. et al. // J. Electrochem. Soc. 2001. V. 148. P. H167.
- [12] Nostrand M.C., Page R.H., Payne S.A., Krupke W.F. // Opt. Lett. 1999. V. 24.
 P. 1215.
- [13] Yurii V. Orlovskii, Tasoltan T. Basiev, Konstantin K. Pukhov // Opt. Mater. 2007. V. 29. P. 1115.
- [14] Peters T.E., Baglio J.A. // J. Electrochem. Soc.: Solid-State Sci. Technol. 1972.
 V. 119. P. 230.
- [15] Tagiev B.G., Abushov S.A., Asadov E.G. et al. // Crystallography Reports. 2015.
 V. 60. N 6. P. 924–928.
- [16] Anedda A., Carbonaro C.M., Corpino R. et al. // J. Luminescence. 2008. V. 128.
 P. 1496–1500.
- [17] Кулешов И.В., Никольский В.Г. Радиотермолюминесценция полимеров. М.: Химия, 1991.
- [18] Garcia A., Gullen F., Fouassier C. // J. Luminescence. 1985. V. 33. P. 15-27.
- [19] Carlik G.F.J., Gibson A.F. // Proc. Phys. Soc. London. 1948. N 60. P. 574-590.
- [20] Милнс А. Примеси с глубокими уровнями в полупроводниках. М.: Мир, 1977. 562 с.