Генерация терагерцевого излучения в низкотемпературных эпитаксиальных пленках InGaAs на подложках InP с ориентациями (100) и (411) А

© Г.Б. Галиев¹, М.М. Грехов³, Г.Х. Китаева², Е.А. Климов¹, А.Н. Клочков¹, О.С. Коленцова³, В.В. Корниенко², К.А. Кузнецов², П.П. Мальцев¹, С.С. Пушкарев¹

1 Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук,

117105 Москва, Россия

² Московский государственный университет им. М.В. Ломоносова (физический факультет),

119991 Москва, Россия

³ Национальный исследовательский ядерный университет "МИФИ"

115409 Москва, Россия

E-mail: galiev_galib@mail.ru

(Получена 10 мая 2016 г. Принята к печати 18 мая 2016 г.)

Методом терагерцевой спектроскопии временно́го разрешения исследованы спектр и волновые формы импульсов широкополосного терагерцевого излучения, генерируемых низкотемпературными эпитаксиальными пленками $In_{0.53}Ga_{0.47}As$ при накачке фемтосекундными лазерными импульсами. Пленки $In_{0.53}Ga_{0.47}As$ были получены методом молекулярно-лучевой эпитаксии при температуре 200°C и при различных давлениях мышьяка на подложках InP с ориентацией (100) и впервые на подложках InP с ориентацией (411)A. Исследованы морфология поверхности образцов с помощью атомно-силовой микроскопии и их структурное совершенство с помощью высокоразрешающей рентгеновской дифрактометрии. Обнаружено, что амплитуда терагерцевого излучения от слоев LT-InGaAs на подложках InP (411)A в 3–5 раз больше, чем от таких же слоев на подложках InP (100).

DOI: 10.21883/FTP.2017.03.44201.8312

1. Введение

В последние годы широко исследуются фотопроводящие антенны для приема и передачи электромагнитных сигналов терагерцевого диапазона частот (от 100 ГГц до 10 ТГц) на основе эпитаксиальных соединений $A^{III}B^V$, выращенных в низкотемпературном режиме. Одним из первых таких материалов был низкотемпературный GaAs (low-temperature GaAs, LT-GaAs). Он обладает ультракоротким временем жизни фотовозбужденных носителей заряда, большим темновым удельным сопротивлением и хорошей подвижностью электронов [1]. На основе LT-GaAs сделано большое количество действующих устройств [2].

Низкотемпературный рост приводит к встраиванию избыточных атомов мышьяка As в кристаллическую решетку LT-GaAs и к образованию дефектов: антиструктурных дефектов — атом мышьяка в узле атома галлия As_{Ga} , межузельных атомов As_i , вакансий галлия V_{Ga} . За захват фотовозбужденных электронов и уменьшение их времени жизни главным образом, ответствен дефект As_{Ga} [3]. Но для осуществления захвата электрона дефект As_{Ga} должен находиться в заряженном состоянии As_{Ga}, т.е. атом мышьяка должен отдать пятый внешний электрон. Для увеличения концентрации заряженных дефектов As_{Ga} материал LT-GaAs легируют акцепторной примесью (как правило, бериллием) [4]. В работах [3,5,6] показано, что при определенных уровнях легирования (от $5 \cdot 10^{17}$ до $2 \cdot 10^{19}$ см⁻³) Ве:LT-GaAs структуры могут быть использованы в оптоэлектронных устройствах терагерцевого диапазона частот, причем такие устройства имеют лучшие параметры по сравнению с устройствами на базе нелегированного LT-GaAs. Однако из-за высокой токсичности Ве его использование при молекулярно-лучевой эпитаксии (МЛЭ) требует дополнительных мер безопасности. Кроме того, наличие в установке МЛЭ источника Ве приводит к повышению фоновой примеси *p*-типа, что отрицательно сказывается на качестве других гетероструктур, выращиваемых в этой установке.

В работах [7-12] было показано, что из-за свойства амфотерности атомов кремния в GaAs с ориентацией (n11)А, где n = 1, 2, 3..., методом МЛЭ в высокотемпературном режиме можно вырастить эпитаксиальные пленки как с п-, так и р-типом проводимости. Тип проводимости зависит от давления мышьяка в процессе МЛЭ роста. На основе этих результатов продемонстрирована возможность получения планарного *p*-*n*-перехода при МЛЭ росте на подложках GaAs с ориентацией (111)A и использовании в качестве легирующей примеси только Si [13,14]. Нам неизвестны работы, в которых исследовалось влияние полярной ориентации подложки (n11)А на тип проводимости легированных Si пленок GaAs при низкотемпературном эпитаксиальном росте, а также работы, в которых исследовались аналогичные эффекты для пленок InGaAs на подложках InP. Недавно нами впервые были представлены результаты исследований структурных и фотолюминесцентных свойств LT-GaAs структур на подложках GaAs (111)А и (100) [15,16].

Рис. 1. Дизайн образцов, $\gamma = P_{As}/(P_{Ga} + P_{In})$.

Одним из факторов, сужающих область применения фотопроводящих антенн на основе LT-GaAs, является большая ширина запрещенной зоны GaAs ($E_g = 1.424$ эВ, длина волны накачки $\lambda \leq 871$ нм). Это обстоятельство ограничивает выбор фемтосекундных лазерных источников, способных работать с такой антенной. В связи с этим актуальна задача разработки материалов, которые могут быть совмещены с доступными и недорогими лазерами, используемыми в линиях волоконной связи (1.3 и 1.55 мкм), и которые в то же время обладают всеми достоинствами LT-GaAs, указанными выше.

Одним из подходящих материалов является InGaAs с малой шириной запрещенной зоны (для In_{0.53}Ga_{0.47}As $E_g = 0.718$ эВ, длина волны накачки $\lambda \leq 1.727$ мкм [17]). Однако даже нелегированные эпитаксиальные пленки LT-InGaAs обладают высокой концентрацией электронов проводимости ($\sim 10^{17}$ см⁻²) и низким темновым сопротивлением. Поэтому одной из фундаментальных проблем в этой области является разработка таких технологических условий получения пленок InGaAs, которые обеспечивают параметры, требуемые для фотопроводящих терагерцевых антенн: малое время жизни фотовозбужденных носителей заряда и как можно более высокое темновое удельное сопротивление

Исследования в данной области сосредоточены в следующих направлениях:

1) ионная бомбардировка пленок InGaAs высокоэнергетическими ионами [18,19];

2) легирование слоя InGaAs акцепторами Ве при низкотемпературной эпитаксии [20,21] или примесями, создающими глубокие уровни (Fe) [22];

3) формирование в эпитаксиальных пленках LT-InGaAs периодически расположенных наноразмерных островков ErAs толщиной 0.2–2 монослоя [23–25].

Суть данного исследования заключается в следующем. При использовании подложек InP с ориентацией (n11)A, где n = 1, 2, 3..., появляется возможность, как и при использовании подложек GaAs (111)A, технологически управляемого осаждения атомов кремния на узлы решетки элементов либо III, либо V группы, из-за чего они становятся либо донорами, либо акцепторами электронов. Управление встраиванием происходит в процессе МЛЭ с помощью изменения давления мышьяка либо концентрации легирующей примеси. Благодаря этому можно добиться увеличения удельного сопротивления

LT-InGaAs и увеличения концентрации ловушек электронов, связанных с антиструктурными дефектами.

2. Образцы и методика эксперимента

Исследуемые образцы были выращены методом МЛЭ на полуизолирующих подложках InP, легированных Fe. Дизайн образцов представлен на рис. 1, они представляют собой слои LT-In_{0.53}Ga_{0.47}As толщиной 1.2 мкм на подложках InP двух разновидностей: с кристаллографической ориентацией поверхности (100) и (411)A. Выращенные образцы были нелегированными и однородно легированными кремнием. При выращивании легированных образцов (984 и 986) температура кремниевой ячейки составляла 1040°C, что соответствует объемной концентрации электронов при высокотемпературном росте *n*-GaAs на подложке GaAs (100) $4-5 \cdot 10^{17}$ см⁻³.

Для достижения максимальной идентичности технологических условий (температуры роста T_g и соотношения потоков элементов V и III групп γ) в одном процессе на держатель образца монтировались две половины подложек разного типа. Образцы 983 и 984 были выращены при $\gamma \sim 29$, а образцы 985 и 986 при $\gamma \sim 90$. Температура роста LT-InGaAs слоев для всех образцов была одинаковой и составляла 200°С. После роста образцы подвергались отжигу в камере роста установки МЛЭ в потоке As₄ при температуре 500°С в течение 1 ч. Образцы на подложках InP (100) будут обозначаться как 983-О, 984-О, 985-О, 986-О, а образцы на подложках InP (411)А — как 983-А, 984-А, 985-А, 986-А.

Морфология поверхности образцов исследовалась методом атомно-силовой микроскопии (ACM) на микроскопе Solver Next (HT MДТ), а измерения кривых дифракционного отражения (КДО) были выполнены на дифрактометре Ultima IV (Rigaku).

Исследования генерации терагерцевого электромагнитного излучения в слоях LT-InGaAs проводились на образцах, подвергнутых высокотемпературному отжигу. Схема установки для терагерцевой спектроскопии временно́го разрешения (TCBP) приведена на рис. 2. Источником импульсов оптического излучения служил волоконный фемтосекундный Er³⁺-лазер с длиной волны 1.56 мкм, длительностью импульсов 100 фс и частотой повторения 70 МГц. После прохождения фокусирую-

Рис. 2. Схема экспериментальной установки ТСВР.

щей линзы и делителя пучка часть излучения со средней мощностью 20 мВт заводилась через систему зеркал на терагерцевую фотопроводящую антенну-детектор с целью создания свободных носителей в гетероструктуре антенны. Основной пучок мощностью 100 мВт направлялся на управляемую линию задержки, затем на механический модулятор пучка, вращающийся с частотой 2.3 кГц, и далее через отверстие в параболическом зеркале попадал на исследуемый образец. Генерируемое в образце терагерцевое излучение собиралось парой параболических зеркал и фокусировалось на кремниевую линзу, интегрированную с терагерцевой антенной. Промодулированный терагерцевым излучением ток свободных носителей антенны регистрировался синхронным детектором. Таким образом измерялась напряженность поля терагерцевых волн, генерируемых во встречном по отношению к накачке направлении "назад" в различные моменты времени после прихода импульса накачки. Управление всеми узлами установки осуществлялось пакетом программ в системе Labview.

3. Исследование образцов методом ACM

На рис. 3 представлены АСМ-изображения поверхности исследуемых образцов. Видно, что морфология поверхности образцов зависит от значения γ , при котором образцы были выращены. При этом зависимость от γ для образцов, выращенных на подложках InP (100), более сильная. Для $\gamma \sim 29$ при относительно гладкой поверхности наблюдаются отдельные ямки (образец 983-О). Увеличение γ до 90 приводит к образованию более сложного зернистого рельефа поверхности, мелкие зерна (0.2–0.3 мкм) сгруппированы в более крупные агломераты неправильной формы (0.8–1.6 мкм) (образец 985-О).

Поверхность образцов на подложках InP (411) А для $\gamma \sim 29$ мелкозернистая с размером зерен 0.2–0.3 мкм. Увеличение γ до 90 так же, как и для образцов на InP (100), приводит к крупномасштабному рельефу с размером агломератов 0.8–1.6 мкм (образец 985-А). В табл. 1 приведены измеренные значения среднеквадратичной шероховатости поверхности образцов (R_q). Из данных табл. 1 следует, что отжиг образцов на подложках InP (411)А приводит к более сильному увеличению R_q по сравнению с образцами на InP (100). Морфология рельефа поверхности после отжига принципиально не изменяется.

Таблица 1. Значение среднеквадратичной шероховатости поверхности образцов LT-InGaAs

Ориентация подложки		(100)		(411)A	
Образец		983-O	985-O	983-A	985-A
γ		29	90	29	90
R_q , нм	До отжига После отжига	3.9 3.7	15.9 16.3	5.7 9.0	7.3 14.3

Рис. 3. АСМ-изображения исследуемых образцов после отжига.

Наблюдаемые закономерности изменения морфологии поверхности пленок LT-InGaAs в зависимости от величины потока As₄ (более гладкая поверхность соответствует слабому потоку As₄, более шероховатая — сильному) находятся в согласии с данными, приведенными в работе [26], касающимися соответствующей температуры роста LT-InGaAs (200°C).

Исследование образцов методом высокоразрешающей рентгеновской дифрактометрии

В кристаллах со структурой цинковой обманки (к которым относятся InGaAs и InP) дифракционное отражение рентгеновских лучей от плоскостей (411) не происходит, так как нарушается условие одинаковой четности индексов [27]. Поэтому при исследовании образцов на подложках InP (411)А наблюдалось отражение от плоскостей (311) с малым углом падения рентгеновского пучка.

На рис. 4 представлены КДО исследуемых образцов до и после отжига. Общим для всех кривых является наличие интенсивного узкого пика, обозначенного *1*, который относится к подложке InP. Отличие КДО образцов, выращенных на (100) и (411)А подложках InP, заключается в следующем: КДО образцов на InP (100) содержат дополнительный пик, обозначенный на рисунках как пик 2, гораздо менее интенсивный и более широкий, чем пик *1*. Этот дополнительный пик может располагаться как слева по угловой координате от основного пика (образцы 983-О, 984-О), так и справа (образцы 985-О и 986-О). После отжига для образца 983-О пик *2* меняет свое положение относительно пика подложки и смещается в сторону бо́льших углов. Это свидетельствует об уменьшении параметра решетки LT-InGaAs

Рис. 4. КДО исследуемых образцов в режиме $\theta/2\theta$ -сканирования. a-d — образцы на подложках InP (100), отражение (400); e, f — образцы на подложках InP (411)A, отражение (311).

слоя после отжига. Такое поведение пика 2 характерно только для образцов серий 983 и 984. Отличие этих образцов заключается лишь в том, что слой LT-InGaAs в образце 984 был однородно легирован кремнием с $N_{\rm Si} = 5 \cdot 10^{17}$ см⁻³. Температура Si-ячейки в наших условиях составляла 1040°С. По нашему мнению, различное поведение пика 2 при отжиге для образцов 983-О

и 984-О связано с дополнительным отжигом образца 984-О во время эпитаксиального роста LT-InGaAs за счет радиационного нагрева от источника атомов Si, как в работе [28]. В этой работе сообщается о влиянии нагретых источников легирования (Si и Be) на количество избыточного мышьяка в решетке LT-GaAs, что в свою очередь влияет на форму КДО.

Рис. 5. Зависимости напряженности электромагнитного поля, генерируемого слоями LT-InGaAs, от времени после падения лазерного импульса накачки: *а* — образцы на подложках InP (100), *b* — образцы на подложках InP (411)A.

В отличие от образцов на подложках InP (100), КДО образцов на подложках InP (411)А не содержат заметного пика 2; в то же время после отжига пик 1 сужается и справа у него появляется небольшое асимметричное "плечо". Это может свидетельствовать о первоначальном совпадении параметров решетки подложки InP и LT-InGaAs пленки, из-за чего пик 2 оказывается замаскирован пиком 1, и об увеличении параметра решетки LT-InGaAs после отжига.

Значения параметра решетки LT-InGaAs слоя, рассчитанные по угловому положению пика 2, приведены в табл. 2.

5. Исследование образцов методом терагерцевой спектроскопии временно́го разрешения

На рис. 5, *a*, *b* приведены измеренные временные зависимости напряженности электромагнитного поля, гене-

рируемого во всех исследованных образцах LT-InGaAs. После межзонного поглощения импульсов излучения накачки фотовозбужденные электроны и дырки под действием электрического поля формировали быстро меняющийся электрический ток. Всплески тока приводили к генерации импульсов электромагнитного излучения. Так как на исследуемых образцах не были сформированы омические контакты и к ним не прикладывалось внешнее напряжение, движение фотовозбужденных носителей заряда происходило под действием встроенного электрического поля (поверхностный потенциал) либо за счет различной диффузионной длины электронов и дырок (эффект Дембера). Волновые формы детектируемых сигналов во всех случаях состоят из двух импульсов приблизительно одинаковой формы и амплитуды, отстоящих друг от друга во времени. Второй импульс, наблюдаемый через примерно 10 пс после первого, не связан с отражением терагерцевой волны от подложки InP, так как коэффициент поглощения фосфида индия в этом частотном диапазоне довольно значителен и достигает

Таблица 2. Значение параметров решетки LT-InGaAs слоев

	Образец	983-O	984-O	985-O	985-A	986-O	986-A
а,	Неотожженный	5.877 ± 0.001	5.887 ± 0.005	_*	_	_	-
Å	Отожженный	5.856 ± 0.002	—	5.835 ± 0.007	_	5.832 ± 0.007	—

Примечание. * "-" означает отсутствие пика на КДО.

Ориентация	Образец					
подложки	983	984	985	986	InP	
(100) (411)A	0.07 0.17	0.05 0.10	0.06 0.19	0.06 0.07	0.01 0.02	

Таблица 3. Максимальные значения напряженности генерируемого поля (усл. ед.)

порядка 100 см⁻¹ [29], а наблюдаемый второй сигнал не уступает основному по амплитуде. Измерения ТСВР на пустых подложках InP (100) и (411)А без LT-InGaAs показали, что в подложках генерация отсутствует либо на 1-2 порядка слабее, чем в гетероструктурах с LT-InGaAs. Таким образом, наблюдаемые сигналы терагерцевого излучения генерируются в слоях LT-InGaAs микронной толщины. Согласно оценкам, более поздний импульс связан с переотражением лазерной накачки от задней стороны подложки InP толщиной 400 мкм с последующей генерацией терагерцевого излучения в микронном слое LT-InGaAs в геометрии "вперед". С учетом небольшого поглощения лазерной накачки в материале подложки и потерь при отражении накачки от матовой задней поверхности образцов можно заключить, что эффективность генерации в направлении накачки должна быть несколько больше, чем во встречном направлении.

Из рис. 5 видно, что во всех образцах, выращенных на подложках InP ориентации (411)А, амплитуда генерируемых волн приблизительно в 2 раза выше, чем в образцах на InP (100). Для сравнения в табл. 3 приведены максимальные значения напряженности электрического поля, зарегистрированного от образцов различного типа (в одних и тех же относительных единицах).

С целью определения спектрального состава генерируемых импульсов производилась процедура фурьепреобразования временных форм. Полученные таким образом нормированные частотные распределения спектральных амплитуд сигналов от образцов 985 и 986 в пределах хорошей точности не зависели от ориентаций подложки (411)А или (100). Однако было обнаружено, что спектральные формы излучения от образцов серий 983 и 984 существенным образом зависят от типа подложки. Как видно из сравнения рис. 5, а и b, образцы, выращенные на подложках InP (411)А, генерируют более интенсивное высокочастотное излучение, нежели образцы на InP (100). Можно сделать вывод, что в эпитаксиальных пленках LT-InGaAs, выращенных на подложках InP (411)А, увеличена концентрация ловушек As⁺ либо образуются ловушки, связанные с другими точечными дефектами, которые захватывают электроны более эффективно.

Использование более высокого давления As₄ при выращивании пленок LT-InGaAs ($\gamma \sim 90$ вместо 29) привело к изменению формы временной зависимости импульса, что сказалось на спектральном составе излучения. На рис. 6 приведены спектральные зависимости

интенсивности излучения, генерируемого в образцах 983-А и 985-А на подложках InP (411)А. При расчетах учитывалась амплитудно-частотная характеристика детектирующей антенны. Зарегистрированные спектры генерации излучения образцов лежат в диапазоне 50-600 ГГц. На частотах ниже 50 ГГц чувствительность фотопроводящей антенны падает более чем на порядок, поэтому точный вывод о спектральном отклике образцов в этом диапазоне сделать нельзя. При этом в образцах, выращенных при высоком давлении As₄, максимум спектра излучения слегка сдвинут в более низкочастотную область и по амплитуде в 2 раза превосходит максимум спектра генерации в образцах, выращенных при низком давлении As₄. Это свидетельствует о более эффективной генерации на частотах, меньших 200 ГГц, в образцах с большим числом электронных ловушек на дефектах.

Легирование слоев LT-InGaAs атомами Si привело к снижению амплитуды напряженности терагерцевого излучения приблизительно в 2 раза (интенсивности приблизительно в 4 раза) во всех случаях: для обоих типов подложек и для двух использованных давлений As₄. При этом форма временной зависимости импульсов излучения и спектральный состав излучения не зависели от наличия или отсутствия примесей Si в слоях LT-InGaAs. Возможное объяснение заключается в том, что, как упоминалось во Введении, антиструктурные дефекты As_{Ga} функционируют как ловушки электронов только в заряженном, безэлектронном состоянии As_{Ga}. А когда в вещество вводится донорная примесь Si, электроны с уровней Si переходят на уровни As_{Ga} и заполняют их. Следовательно, концентрация активных ловушек As_{Ga} уменьшается, ток фотовозбужденных носителей заряда изменяется во времени слабее и интенсивность терагерцевого излучения падает.

Таким образом, представленные данные показывают, что для источников терагерцевого излучения использование подложек InP с ориентацией (*n*11)А может оказаться более предпочтительным. Использование других

Рис. 6. Спектр импульсов, генерируемых в образцах 983-А и 985-А на подложках InP (411)А.

Физика и техника полупроводников, 2017, том 51, вып. 3

манипуляций с LT-InGaAs слоями, упомянутых выше, может повысить качественные и количественные характеристики устройств, выполненных на базе LT-InGaAs структур с ориентациями (*n*11)А по сравнению с ориентацией (100).

6. Заключение

Пленки LT-In_{0.53}Ga_{0.47}As, выращенные при низком давлении As₄ ($\gamma = 29$), обладают умеренно шероховатой поверхностью ($R_q = 4-9$ нм), а при увеличении давления As₄ ($\gamma = 90$) шероховатость поверхности пленок значительно возрастает ($R_q = 14-16$ нм). При этом использование подложек InP с ориентацией (411)А несколько увеличивает шероховатость поверхности образцов, выращенных при одинаковом значении γ . Выявлено, что на структурное совершенство пленок LT-InGaAs гораздо большее влияние оказывает давление As₄, чем ориентация подложки.

При облучении исследуемых образцов фемтосекундными импульсами инфракрасного волоконного Er³⁺-лазера генерируется излучение в полосе частот до 300 ГГц с максимумом при ~ 70–100 ГГц.

Обнаружено, что генерация терагерцевого излучения пленками LT-InGaAs на подложках InP с кристаллографической ориентацией поверхности (411)А в 3–5 раз эффективнее, чем такими же пленками на подложках InP с ориентацией (100).

Использование более высокого давления As₄ при выращивании пленок LT-InGaAs ($\gamma \sim 90$ вместо 29) приводит к изменению временной формы терагерцевого импульса, что сказывается на спектре терагерцевого излучения: его максимум смещается в сторону меньших частот. Интегральная интенсивность терагерцевого излучения при этом увеличивается.

Легирование пленок LT-InGaAs атомами Si приводит к снижению амплитуды терагерцевого излучения приблизительно в 2 раза (интенсивности ~ в 4 раза), временна́я форма и спектральный состав импульсов излучения не изменяются.

Авторы выражают благодарность канд. физ.-мат. наук Д.В. Лопаеву за помощь в организации экспериментов.

Работа выполнена при поддержке РФФИ (гранты № 16-02-00258, 16-29-03294, 16-32-00693, 16-07-00187 А), а также при поддержке стипендии президента Российской Федерации (СП-686.2016.3).

Список литературы

- E.A.P. Prieto, S.A.B. Vizcara, A.S. Somintac, A.A. Salvador, E.S. Estacio, C.T. Que, K. Yamamoto, M. Tani. J. Opt. Soc. Amer. B, **31** (2), 291 (2014).
- [2] A. Krotkus. J. Phys. D: Appl. Phys., 43, 273001 (2010).
- [3] A. Krotkus, K. Bertulis, L. Dapkus, U. Olin, S. Marcinkevičius. Appl. Phys. Lett., 75, 3336 (1999).

- [4] Patent US 8835853. Photoconductive element / Toshihiko Ouchi, Kousuke Kajiki; Canon Kabushiki Kaisha, Tokyo.– Publication date 16.09.2014.
- [5] J.-L. Coutaz, J.-F. Roux, A. Gaarder, S. Marcinkevicius, J. Jasinski, K. Korona, M. Kaminska, K. Bertulis, A. Krotkus. *XI International Semiconducting and Insulating Material Conference* (Canberra, Australia, 3–7 July 2000) p. 89.
- [6] P. Specht, S. Jeong, H. Sohn, M. Luysberg, A. Prasad, J. Gebauer, R. Krause-Rehberg, E.R. Weber. Mater. Sci. Forum, 258–263, 251 (1997).
- [7] J. Maguire, R. Murray, R.C. Newman, R.B. Beall, J.J. Harris. Appl. Phys. Lett., 50 (9), 516 (1987).
- [8] E.F. Schubert, J.E. Cunningham, W.T. Tsang. Sol. St. Commun., 63 (7), 591 (1987).
- [9] Y. Okano, H. Seto, H. Katahama, S. Nishine, I. Fujimoto, T. Suzuki. Jpn. J. Appl. Phys., 28 (2), L151 (1989).
- [10] F. Piazza, L. Pavesi, M. Henini, D. Johnston. Semicond. Sci. Technol., 7, 1504 (1992).
- [11] L. Pavesi, F. Piazza, M. Henini, I. Harrison. Semicond. Sci. Technol., 8, 167 (1993).
- [12] M. Henini, N. Galbiati, E. Grilli, M. Guzzi, L. Pavesi. J. Cryst. Growth, 175–176, 1108 (1997).
- [13] Г.Б. Галиев, В.Э. Каминский, В.Г. Мокеров, Л.Э. Велиховский. ФТП, 35 (4), 427 (2001).
- [14] G.B. Galiev, V. Kaminskii, D. Milovzorov, L. Velihovskii, V.G. Mokerov. Semicond. Sci. Technol., 17 (2), 120 (2002).
- [15] Г.Б. Галиев, Е.А. Климов, М.М. Грехов, С.С. Пушкарев, Д.В. Лаврухин, П.П. Мальцев. ФТП, **50** (2), 195 (2016).
- [16] Д.В. Лаврухин, А.Э. Ячменев, А.С. Бугаев, Г.Б. Галиев, Е.А. Климов, Р.А. Хабибуллин, Д.С. Пономарев, П.П. Мальцев. ФТП, 49 (7), 932 (2015).
- [17] S. Adashi. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons, Ltd., 2009).
- [18] J. Mangeney, F. Meng, D. Gacemi, E. Peytavit, J.F. Lampin, T. Akalin. Appl. Phys. Lett., 97, 161109 (2010).
- [19] J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J.F. Lampin, P. Mounaix. Opt. Express, 15 (14), 8943 (2007).
- [20] B. Sartorius, H. Roehle, H. Kunzell, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, M. Schell. Opt. Express, 16 (13), 9565 (2008).
- [21] A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, Y. Kadoya. Appl. Phys. Lett., 91, 011102 (2007).
- [22] C.D. Wood, O. Hatem, J.E. Cunningham, E.H. Linfield, A.G. Davies, P.J. Cannard, M.J. Robertson, D.G. Moodie. Appl. Phys. Lett., 96, 194104 (2010).
- [23] F. Ospald, D. Maryenko, K. von Klitzing, D.C. Driscoll, M.P. Hanson, H. Lu, A.C. Gossard, J.H. Smet. Appl. Phys. Lett., 92, 131117 (2008).
- [24] M. Sukhotin, E.R. Brown, D. Driscoll, M. Hanson, A.C. Gossard. Appl. Phys. Lett., 83 (19), 3921 (2003).
- [25] D.C. Driscoll, M. Hanson, C. Kadow, A.C. Gossard. Appl. Phys. Lett., 78 (12), 1703 (2001).
- [26] М.Д. Вилисова, И.В. Ивонин, Л.Г. Лаврентьева, С.В. Субач, М.П. Якубеня, В.В. Преображенский, М.А. Путято, Б.Р. Семягин, Н.А. Берт, Ю.Г. Мусихин, В.В. Чалдышев. ФТП, **33** (8), 900 (1999).
- [27] Б.К. Вайнштейн. Современная кристаллография (М., Наука, 1979) т. 1.
- [28] M. Missous. Microelectronic J., 27, 393 (1996).

[29] C. Zhang, B. Jin, J. Chen, P. Wu, M. Tonouchi. J. Opt. Soc. Am. B, 26 (9), A1 (2009).

Редактор А.Н. Смирнов

Terahertz radiation from low-temperature-grown epitaxial films InGaAs on (100) and (411)A oriented InP substrates

G.B. Galiev¹, M.M. Grekhov³, G.Kh. Kitaeva², E.A. Klimov¹, A.N. Klochkov¹, O.S. Kolentsova³, V.V. Kornienko², K.A. Kuznetsov², P.P. Maltsev¹, S.S. Pushkarev¹

 ¹ Institute of Ultra High Semiconductor Electronics, Russian Academy of Sciences,
¹17105 Moscow, Russia
² M.V. Lomonosov Moscow State University, Faculty of Physics,
¹19991 Moscow, Russia
³ National Research Nuclear University "MEPhl",
¹15409 Moscow, Russia

Abstract In_{0.53}Ga_{0.47}As films were grown by molecular-beam epitaxy on (100) and (411)A oriented InP substrates at low temperature 200°C and variable arsenic pressure. Surface morphology and crystal structure quality were investigated by atomic-force microscopy and high-resolution X-ray diffraction, respectively. Terahertz radiation generated by films under femtosecond fiber Er^{3+} -laser pumping was investigated by terahertz time-domain spectroscopy. Terahertz radiation from LT-In_{0.53}Ga_{0.47}As films grown on (411)A InP substrates is revealed to be 3–5 times intensive than radiation from films grown on (100) InP substrates. Consequently, growing LT-InGaAs films on (*n*11)A oriented InP substrates (n = 1, 2, 3, ...) is perspective for terahertz radiation sources engineering.