03

Комбинированное энергосиловое воздействие на источник в режиме постоянного числа Маха с заданной внешней силой

© А.Н. Кучеров

Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского, 140180 Жуковский, Московская область, Россия e-mail: ank@aerocentr.msk.su, ank19512006@rambler.ru

(Поступило в Редакцию 21 апреля 2016 г.)

Изучено комбинированное воздействие на источник, истекающий в затопленное пространство или в вакуум в режиме постоянного числа Маха. Воздействие внешней силой задано с постоянной функцией распределения (сила задана на единицу объема) и с функцией распределения, пропорциональной плотности газа (сила задана на единицу массы). Исследования выполнены для цилиндрического и сферического источников. Проанализированы сходство и различия, преимущества и недостатки вышеперечисленных случаев и вариантов. Показано значительное увеличение энтальпии в дозвуковом потоке (при числе Маха меньше единицы), в цилиндрическом источнике в несколько раз и в сферическом источнике более чем в десять раз. Прирост полной энтальпии увеличивается с ростом протяженности зоны воздействия, с увеличением координаты замыкающего сечения.

DOI: 10.21883/JTF.2017.02.44123.1863

Введение

Возможные режимы течений в источнике, стоке, вихреисточнике, вихрестоке: дозвуковые в затопленное пространство и из затопленного пространства и два сверхзвуковых, в вакуум и из разреженного пространства (из вакуума) [1–3]. В невозмущенном вихреисточнике (стоке) есть минимальный радиус, на котором радиальное число Маха равно единице. От этого сечения начинаются (или в нем заканчиваются) дозвуковая и сверхзвуковая ветви решения, описывающие четыре режима вихреисточника (стока).

Энергоподвод или внешняя сила могут изменить число Маха так, что на расстояниях больше минимального радиуса радиальное число Маха обращается в единицу. Стационарный расход не может выполниться, наступает кризис аналогично тому, как это происходит в строго одномерном потоке с параллельными линиями тока [4,5]. Исследование течений вихреисточника с энергообменом и (или) воздействием внешней силой [6,7] показывает, что достижение радиальным числом Маха значения единица возможно как за счет энергоподвода (нагрева), так и за счет теплоотвода (охлаждения) [8], за счет ускоряющего действия внешней силы [9], или тормозящего (сила направлена против потока).

Проблема управления течением вихреисточника, источника (стока) включает режимы с постоянным числом Maxa [10]. Анализ показывает, что раздельное применение энергетического и силового механизмов [6,7] воздействия на источник (сток) газа с расходом m, с интенсивностью энергоподвода g(r) или интенсивностью внешней силы F(r) допускает четыре ситуации поддерживания числа Maxa постоянным:

1) m > 0, источник, g(r) > 0, энергоподвод (нагрев), внешняя сила равна нулю F(r) = 0;

2) m > 0, источник, g(r) = 0, энергоподвода нет, сила F(r) < 0, торможение газа;

3) m < 0, сток, g(r) = 0, без энергообмена, сила F(r) < 0, ускорение потока;

4) m < 0, сток, g(r) < 0, охлаждение (энергоотвод), сила отсутствует F(r) = 0.

В ситуациях 1 и 4 температура T, модуль скорости u (направление скорости указывает знак расхода m), полная энтальпия H возрастают с ростом координаты r, плотность ρ и давление p — убывают. В ситуациях 2 и 3 все перечисленные газодинамические величины возрастают с уменьшением координаты.

Комбинированное использование энергоподвода и силового воздействия может расширить возможности управления параметрами источника и вместе с тем усложнить анализ течения, реализацию в эксперименте и приложениях. Комбинированное применение энергоподвода и внешнего силового воздействия в настоящей работе рассматривается для источника (m > 0), с постоянным распределением внешней силы F(r) = const(заданным на единицу объема) или пропорциональным плотности газа $F(r) = \text{const} \times \rho(r)$ (заданным на единицу массы). Распределение энергоподвода g(r) подбирается из условия постоянства числа Маха. Рассмотрим цилиндрический и сферический источники. Особое внимание уделим изменениям полной энтальпии вследствие воздействия силой и энергоподводом, рассмотрим также ориентировочную границу (по параметрам подобия) уменьшения энтальпии до нуля. Исследуем зависимости основных характеристик от параметров подобия.

183

1. Постановка задачи

В общем случае управление источником описывается системой безразмерных уравнений сохранения массы, импульса, энергии (1)–(3) и уравнением состояния газа (5) [8–10]:

$$\frac{1}{u}\frac{du}{dr} + \frac{1}{\rho}\frac{d\rho}{dr} + \frac{n}{r} + 0,$$

$$r^{n}\rho u = m \equiv \frac{m_{0}}{2^{n}\pi\rho_{0}u_{0}r_{0}^{n}},$$
(1)

$$F(r) = \begin{cases} \rho F_Q f_Q(r) \\ F_E f_E(r) \end{cases}, F_E = \frac{\varphi_{0E} r_0}{2^n \pi \rho_0 h_0}, F_Q = \frac{\varphi_{0Q} r_0}{2^n \pi h_0}, \quad (2) \\ \frac{dT}{dr} - \frac{\gamma - 1}{\gamma \rho} \frac{dp}{dr} = \frac{g(r)}{\rho u}, \end{cases}$$

 $u du + \gamma - 1 dp = F(r)$

$$g(r) = \begin{cases} Eg_E(r) \\ \rho(r)Qg_Q(r) \end{cases}, E = \frac{g_{0E}r_0}{2^n \pi \rho_0 u_0 h_0}, Q = \frac{g_{0Q}r_0}{2^n \pi u_0 h_0}, \\ \int_{r_1}^{r_2} f_Q(r)dr = 1, \quad \int_{r_1}^{r_2} g_E(r)r^n dr = 1, \end{cases}$$
(3)

$$\overset{\widetilde{r}_1}{p = \rho T.}$$
(5)

В уравнениях (1)–(5) показатель степени равен n = 1или 2 для цилиндрического или сферического источника, *m*₀ — размерный физический расход, *m* — соответствующий безразмерный расход, r_1, r_2 — начало и конец зоны воздействия. Характерные величины следующие: минимальный радиус r₀, на котором в невозмущенном источнике радиальное число Маха равно единице, $M_r(r_0) = 1$, давление p_0 , температура T_0 , энтальпия $h_0 = C_p T_0, (C_p$ — теплоемкость при постоянном давлении), плотность ρ_0 — в затопленном пространстве, скорость $u_0 = \sqrt{(2h_0)}$. Параметры подобия: показатель адиабаты γ , силовые параметры F_E , F_O , которые описываются физическими удельными величинами силы $\varphi_{0E}, \varphi_{0O},$ заданными в единицу объема, N/m³ или на единицу массы, N/kg (приняли $\varphi_{0E} = \rho_0 \varphi_{0Q}$). Энергоподвод и энергетические параметры подобия Е, Q задаются удельными величинами энерговыделения g_{0E}, g_{0Q} в единицу объема, W/m³ или на единицу массы, W/kg (приняли $g_{0E} = \rho_0 g_{0Q}$). В настоящей работе энегоподвод g(r)подбирается таким образом, чтобы число Маха M_r внутри зоны сохраняло свое значение, равное значению на входе $M_r = M_{r1} = \text{const.}$

Нормировочные интегралы (4) безразмерных функций распределения $f_Q(r)$, $f_E(r)$, $g_E(r)$, $g_Q(r)$ берутся при необходимости по модулю. В общем случае нормировку функций $g_Q(r)$, $f_E(r)$ можно делать без функции плотности $\rho(r)$ под знаком интеграла, как функций $g_E(r)$, $f_Q(r)$. Результат — изменение энтальпии — можно

пересчитывать с учетом найденной плотности $\rho(r)$ так, чтобы силовые и энергетические параметры количественно совпадали с изменением полной энтальпии $\Delta H = H_2 - H_1$ или потока полной энтальпии $m\Delta H$. Уравнение для полной энтальпии $H = T + u^2$ следует из уравнений (2), (3):

$$\frac{dH}{dr} = \frac{g(r)}{\rho u} + \frac{F(r)}{\rho}.$$
(6)

Исследуем ситуации, в которых направление течения совпадает с направлением координаты r. Энергоподвод g(r) и внешняя сила F(r) могут быть и положительными и отрицательными. Силу F(r) будем задавать, энергоподвод "сформируем", используя безразмерное уравнение для числа Маха, так, чтобы получить постоянное значение M_r , равное M_{r1} на входе в зону воздействия (здесь и далее нижний индекс "1" означает "на входе", "2" — "на выходе"):

$$\frac{1 - M_{r1}^2}{M_{r1}} \frac{dM_r}{dr} = -n \frac{1 + M_{r1}^2(\gamma - 1)/2}{r} + \frac{(\gamma M_{r1}^2 + 1)g(r)}{2pu} - \frac{\gamma + 1}{\gamma - 1} \frac{F(r)}{2p} = 0.$$
(7)

Для искомой функции распределения силы g(r) отсюда следует

$$\frac{g(r)}{\rho u} = \frac{nT(r)}{D_1 r T_1} + \frac{F(r)}{s D_1 \rho(r)},$$

$$s = 2\frac{\gamma - 1}{\gamma + 1}, \quad \frac{1}{T_1} = 1 + \frac{\gamma - 1}{2} M_{r_1}^2, \quad D_1 = \frac{\gamma M_{r_1}^2 + 1}{2}.$$
(8)

Условие постоянного числа Маха дает и связь температуры T(r) со скоростью u(r)

$$\frac{2u^2(r)}{(\gamma-1)T(r)} = M_{r1}^2, \quad T(r) = \frac{2u^2(r)}{(\gamma-1)M_{r1}^2}.$$
 (9)

С учетом (9) и начального условия $H_1 = 1 = T_1 + u_1^2 = T_1[1 + (\gamma - 1)M_{r1}^2/2] = u_1^2[1 + 2/(\gamma - -1)M_{r1}^2]$ интеграл безразмерного уравнения (6) сохранения полной энтальпии $H = T + u^2$ есть

$$H = T + u^{2} = T(r) \left[1 + \frac{\gamma - 1}{2} M_{r1}^{2} \right] = \frac{T(r)}{T_{1}}$$
$$= \frac{u^{2}(r)}{u_{1}^{2}} = 1 + \int_{r_{1}}^{r} \left[\frac{g(r)}{\rho u} + \frac{F(r)}{\rho} \right] dr.$$
(10)

В левой части уравнения (10) — полезные связи функций H, T, u(r). Далее из (6) получим решения, описывающие управление источником в режиме постоянного числа Маха.

2. Комбинированное воздействие при заданных функциях распределения внешней силы $f_Q(r) = \text{const}, f_E(r) = \text{const}.$ Уравнения и решения

Примем функцию распределения внешней силы F(r) в виде

$$F(r) = \begin{cases} F_E C_{FE} \\ \rho(r) F_Q C_{FQ} \end{cases}, C_{FE} = \frac{1}{r_2 - r_1} = C_{FQ}, \\ f_E(r) = C_{FE}, \quad f_Q(r) = C_{FQ}. \end{cases}$$
(11)

Тогда при поддерживании числа Маха M_{r1} постоянным, согласно (7), (8), функция энергоподвода имеет следующий вид:

$$\frac{g(r)}{\rho u} = \frac{nT}{D_1 T_1 r} + \frac{1}{s D_1} \begin{cases} F_E C_{FE} / \rho(r) \\ F_Q C_{FQ}. \end{cases}$$
(12)

2.1. Сила задана на единицу массы, *F*₀-вариант

Подстановка выражений (11), (12) в уравнение (6) дает уравнение и решение

$$\frac{dH}{dx} = \alpha_{2n} \frac{H(x)}{x} + \alpha_{01}, \quad x = \frac{r}{r_1},$$

$$\alpha_{01} = F_Q C_{FQ} r_1 s_2, \quad \alpha_{2n} = \frac{n}{D_1}, \quad s_2 = 1 + \frac{1}{sD_1}, \quad (13)$$

$$H = (1 - \alpha_{1n}) \left(\frac{r}{r_1}\right)^{n/D_1} + \alpha_{1n} \frac{r}{r_1},$$

$$\alpha_{1n} = \frac{\alpha_{01}}{1 - n/D_1}. \quad (14)$$

2.2. Сила задана в единицу объема, F_E-вариант

Уравнение (6) после подстановки F(r), g(r) из (11), (12) имеет вид (15), решение (16):

$$\frac{dZ}{dx} = \beta_{2n} \frac{Z(x)}{x} + \beta_{0n} x^n,$$

$$\beta_{0n} = \frac{F_E C_{FE} u_1 r_1^{n+1} s_2}{2m}, \quad \beta_{2n} = \frac{n}{2D_1}, \quad (15)$$

$$Z = \frac{u(r)}{u_1} = (1 - \beta_{1n}) \left(\frac{r}{r_1}\right)^{n/2D_1} + \beta_{1n} \left(\frac{r}{r_1}\right)^{n+1},$$
$$\beta_{1n} = \frac{\beta_{0n}}{n+1 - n/2D_1}.$$
(16)

Все искомые газодинамические функции связаны между собой благодаря условию постоянного числа Маха $M_r = M_{r1} = \text{const}$ и исходным уравнениям сохранения и состояния газа (1)-(5) (см. также левую часть (10))

$$H(r) = \frac{T}{T_1} = \left(\frac{u(r)}{u_1}\right)^2, \quad \frac{\rho(r)}{\rho_1} = \left(\frac{r}{r_1}\right)^{-n} \left(\frac{T}{T_1}\right)^{-1/2},$$
$$\frac{p(r)}{p_1} = \left(\frac{r}{r_1}\right)^{-n} \left(\frac{T}{T_1}\right)^{1/2}.$$
(17)

При анализе решений внимание обратим, прежде всего, на различия вариантов n = 1 и 2, цилиндрический и сферический источники, F_E и F_Q -вариантов (сила задана в единицу объема и на единицу массы).

3. Результаты

3.1. Распределения газодинамических величин внутри зоны энергосилового воздействия

На рис. 1, а приведены распределения полной энтальпии H(r) в зоне воздействия при $M_{r1} = 1.5$, в цилиндрическом источнике (n = 1) для трех вариантов со значениями силового параметра $F_Q = 0$ (1), 0.52 (2), -0.52 (3). В последнем случае в замыкающем сечении полная энтальпия $H_2 = H(r_2 = 3)$ близка к нулю.

Кривая I ($F_Q = 0$) соответствует чисто энергетическому варианту поддерживания числа Маха постоянным $M_{r1} = \text{const}$ внутри зоны $[r_1, r_2]$ за счет подбора функции энергоподвода g(r) согласно (7), (8):

$$g(r) = \frac{nmT(r)}{D_1T_1r^{n+1}} = \frac{mn}{D_1r_1^{n+1}} \left(\frac{r}{r_1}\right)^{n/D_1 - n - 1},$$
 (18)

$$\frac{T(r)}{T_1} = \left(\frac{r}{r_1}\right)^{n/D_1} = H = \frac{u^2}{u_1^2}, \quad \frac{\rho(r)}{\rho_1} = \left(\frac{r}{r_1}\right)^{-n-n/2D_1},$$
$$\frac{p(r)}{p_1} = \left(\frac{r}{r_1}\right)^{n/2D_1-n}.$$
(19)

Назовем его базовым. На рис. 1, *b* построены распределения внешней силы F(r), кривые 1-3 и функции энергоподвода g(r), кривые 4-6 при значениях силового параметра $F_Q = 0$ (1), 0.52 (2), -0.52 (3). Вариант с отрицательным силовым параметром $F_Q = -0.52$ (торможение) отличается тем, что в этом случае и энергоподвод (кривая 6) является отрицательным (т.е. происходит энергоотвод, охлаждение). Этот факт является следствием выбора функции энергообмена g(r) из условия $M_{r1} = \text{const.}$

При равном по модулю силовом параметре $F_Q = 0.52$ полная энтальпия в конце зоны комбинированного энергосилового воздействия увеличилась более чем в 3 раза. Энергоподвод g(r), кривая 5, по всей зоне положительный, как и в базовом варианте, кривая 4.

Аналогичный анализ выполнен для варианта сферического источника (n = 2) при $F_Q = 0$, 0.69, -0.69; последний вариант соответствует энтальпии $H_2 = H(r_2 = 3)$, близкой к нулю (рис. 2, *c*, кривая 2). Значение полной

Рис. 1. a — полная энтальпия H(r) в цилиндрическом источнике (n = 1) с числом Маха $M_{r1} = 1.5$ при комбинированном воздействии: $I - F_Q = 0, 2 - 0.52, 3 - 0.52; r_2 = 3; b$ — внешняя сила $F(r) = \rho(r)F_QC_Q$, кривые 1-3 ($F_Q = 0, 0.52, -0.52$); энергоподвод g(r), кривые 4-6 ($F_Q = 0, 0.52, -0.52$); c — сферический источник (n = 2), полная энтальпия H(r): $I - F_E = 0, 2 - 0.1, 3 - 0.1; r_2 = 3, M_{r1} = 1.5; d - F(r) = F_EC_E$, кривые 1-3 ($F_E = 0, 0.1, -0.1$); g(r), кривые 4-6 ($F_E = 0, 0.1, -0.1$).

энтальпии в варианте $F_Q = 0.69$ в конце зоны воздействия превысило первоначальное значение более чем в 5 раз. Функция энергоподвода g(r) положительная, кривая 5, как и в базовом варианте, кривая 4. В варианте $F_Q = -0.69$ функция энергоподвода g(r) на завершающем участке, протяженностью около двух третей от полной длины зоны, отрицательная (охлаждение). Функция распределения внешней силы F(r) при отрицательных значениях силового параметра F_Q , как в цилиндрическом источнике (n = 1), так и в сферическом (n = 2) имеет максимум во второй половине зоны и минимумы в начале и в конце (рис. 1, b).

На рис. 1, *с*, *d* рассматриваются ситуации с заданными значениями силового параметра $F_E = 0$ (кривая *I*), 0.1 (2), -0.1 (3) для сферического источника и обсуждаются варианты при $F_E = 0$, 0.2, -0.2 для цилиндрического источника. В последнем случае при $F_E = -0.2$ полная энтальпия в конце зоны $H_2 = H(r_2 = 3)$ близка к нулю; в сферическом источнике, как видим на рис. 1, *с*, при $F_E = -0.1$ полная энтальпия H_2 также близка к нулю.

Увеличение энтальпии H_2 в конце зоны при $F_E = 0.1$ почти девятикратное в сферическом источнике (рис. 1, *c*, кривая 2) и шестикратное в цилиндрическом источнике.

Сопоставление распределений внешней силы F(r)для отрицательных значений силового параметра $(F_E = -0.1; F(r), g(r) - кривые 3, 6 на рис. 1, d)$ в случаях сферического (n = 2) и цилиндрического источника $(n = 1, F_E = -0.2, графики F(r), g(r)$ аналогичны кривым 3, 6 на рис. 1, b) показало, что, как и в F_Q вариантах, функция энергоподвода g(r) полностью отрицательна (охлаждение) в цилиндрическом источнике и отрицательна во второй половине зоны в сферическом источнике (кривая 6, рис. 1, d).

Строго говоря, предел значений силового параметра F_{Q0} или F_{E0} , при котором энтальпия в замыкающем сечении обращается в нуль, составляет согласно решениям $H(r_2) = 0$:

$$F_{Q0} = \frac{1}{(1 - 1/A_1)A_0}, \ A_0 = \frac{C_Q s_2 r_1}{1 - n/D_1}, \ A_1 = \left(\frac{r_2}{r_1}\right)^{n/D_1 - 1},$$

$$F_{E0} = \frac{1}{(1 - 1/B_1)B_0}, \ B_0 = \frac{C_E s_2 u_1 r_1^{n+1}}{n + 1 - n/2D_1},$$

$$B_1 = \left(\frac{r_2}{r_1}\right)^{n/2D_1 - 1 - n}.$$
(21)

Рис. 2. a — энтальпия $H_2 = H(r_2)$ как функция силового параметра F_E в конце зоны $r_2 = 3$, $M_{r1} = 1.5$: 1 — цилиндрический источник, n = 1, 2 — сферический, n = 2; b — внешняя сила $F_2 = F(r_2) = F_E C_{FE}$ как функция силового параметра F_E , кривые 1, 2 (n = 1 и 2); энергоподвод $g_2 = g(r_2)$, кривые 3, 4 (n = 1 и 2); c — энтальпия H_2 как функция силового параметра F_Q , кривые 1, 2 (n = 1 и 2).

Для примеров, рассмотренных выше, значения силового параметра F_{Q0} составили $F_{Q0} \approx 0.5261$ (n = 1), -0.6967 (n = 2), силового параметра $F_{E0} \approx -0.2101$ (n = 1), -0.1200 (n = 2).

При некоторых достаточно малых значениях температуры газа T_2 модель совершенного газа несправедлива, например, для воздуха, рассматриваемого как смесь азота и кислорода (температура перехода в жидкое состояние 70 и 90 К) [11–13]. Аналогично при достаточно больших температурах, например для воздуха свыше 1000 К, модель совершенного газа требует поправок, в первую очередь, для теплоемкости.

3.2. Полная энтальпия *H*₂ за зоной как функция силового параметра *F*_Q, *F*_E

Итоговые изменения полной энтальпии к концу зоны $H_2 = H(r_2)$ сопоставим при различных значениях силовых параметров F_Q , F_E .

На рис. 2, a собраны зависимости полной энтальпии $H_2 = H(r_2)$ в конце зоны от силового параметра F_E в

диапазоне (-0.2, 0.2) для цилиндрического источника, кривая I, n = 1, и для сферического источника, кривая 2, *n* = 2. Такие изменения энтальпии *H*₂ обусловлены внешней силой F(r) ($F_2 = F(r_2)$, кривые 1, 2 на рис. 2, b как функции от силового параметра F_E) и энергоподводом g(r) (кривые 3, 4, $g_2 = g(r_2)$). Отметим, что функции распределения внешней силы F(r) совпадают, с небольшим отклонением, на общем интервале значений силового параметра $F_2 = F(r_2)$ в диапазоне F_E от -0.12до 0.2 (см. кривые 1, 2) для цилиндрического и сферического источников. Функции энегоподвода $g_2 = g(r_2)$ в конце зоны при изменении силового параметра от значений -0.075 до 0 также близки при n = 1 и 2 (цилиндрический источник, кривая 3; сферический источник, кривая 4). С ростом F_E, например до значений 0.1, 0.2, величина g₂ для сферического источника проходит заметно выше, чем для цилиндрического в режиме постоянного числа Maxa $M_{r1} = \text{const} (= M_{r1} = 1.5 \text{ в данном}$ случае).

На рис. 2, c приведены зависимости энтальпии H_2 от силового параметра F_Q , аналогичные зависимостям

Рис. 3. a — энтальпия на выходе H_2 как функция числа Маха на входе M_{r1} : $I - F_Q = 0, 2 - 0.5, 3 - 0.3$, цилиндрический источник n = 1, замыкающая координата $r_2 = 3$; b — энтальпия H_2 как функция M_{r1} : $4 - F_Q = 0, 5 - 0.5, 6 - 0.5$, сферический источник n = 2, $r_2 = 3$; c — максимумы по M_{r1} полной энтальпии $H_{2,\max}$ как функции силового параметра F_Q : I - n = 1, 2 - n = 2; d — энергоподвод $g_{2,\max} = g(r_2, M_{r1,\max})$ как функции $F_Q, I - n = 1, 2 - n = 2$.

 $H_2(F_E)$, приведенным на рис. 2, *а*. Если в F_E -варианте как в цилиндрическом, так и в сферическом случае зависимости $H_2(F_E)$ слегка вогнуты (выпуклостью вниз), то в F_Q -варианте зависимости $H_2(F_Q)$ близки к линейным при n = 1 и 2.

В F_Q -варианте получили близкое к нулевому значение $H_2(F_Q) \approx 0$ при $F_{Q0} = -0.6967$ в сферическом источнике. Это значение больше, чем $F_{Q0} = -0.5261$ в цилиндрическом источнике.

В противоположность этому в F_E -варианте нашли $F_{E0} = -0.1200$ в сферическом источнике. Это значение меньше, чем $F_{E0} = -0.2101$ в цилиндрическом случае.

3.3. Зависимость энтальпии *H*₂ в конце зоны от числа Маха *M*_{r1}, *F*₂-вариант

Зафиксируем координату замыкающего сечения r_2 и будем варьировать число Маха на входе в зону M_{r1} . Заметим, что координата r_1 входа в зону связана с числом Маха M_{r1} (и температурой T_1 или любой другой газодинамической величиной ρ_1 , p_1 , u_1 ... на входе). Каждому сечению r_1 соответствуют два значения M_{r1} (T_1 , ρ_1 , ...):

дозвуковое $M_{r1} < 1$ и сверхзвуковое $M_{r1} > 1$. Приведенная выше постановка задачи допускает сколько угодно близкие значения к $M_{r1} = 1$ сверху $(M_{r1} > 1)$ или снизу $(M_{r1} < 1)$, исключая строго единичное значение M_{r1} . Итоговые изменения полной энтальпии H_2 к концу зоны сопоставим при различных значениях силовых параметров F_Q (рис. 3) и F_E (рис. 4).

На рис. 3, *а* приведены зависимости $H_2(M_{r1})$ при силовом параметре $F_Q = 0$, 0.5, -0.3, кривые 1-3 для цилиндрического источника; на рис. 3, b -для сферического источника при силовом параметре $F_Q = 0$, 0.5, -0.5, кривые 4-6. На всех кривых есть локальные максимумы по M_{r1} : $H_{2,max} = 3.427$, 8.146, 0.976 при $M_{r1,max} = 0.593$, 0.506, 0.822 (рис. 3, *a*, кривые 1-3, n = 1), $H_{2,max} = 17.234$, 30.796, 4.522 при $M_{r1,max} = 0.441$, 0.411, 0.551 (рис. 3, *b*, кривые 4-6, n = 2). При неотрицательном силовом параметре $F_Q \ge 0$ в цилиндрическом источнике увеличение энтальпии в точке максимума составило от 3.427 до 8.146. В сферическом источнике увеличение энтальпии в приведенных примерах составило, исключая отрицательные значения силового параметра F_Q , от 17.2 до 30.8. Соответствую-

Рис. 4. *а* — полная энтальпия H_2 на выходе $r_2 = 3$, в цилиндрическом источнике n = 1 как функция числа Маха M_{r1} . *1* — силовой параметр $F_E = 0$, 2 — 0.2, 3 — -0.2; b — энтальпия $H_2(M_{r1}; r_2 = 3)$, сферический источник, n = 2: 1 — $F_E = 0$, 2 — 0.1, 3 — -0.1; *с* — максимальные и минимальные значения энтальпии в зависимости от F_E : 1 — $H_{2,\text{max}}$, 2 — $H_{2,\text{min}}$, $r_2 = 5$, 3 — $H_{2,\text{max}}$, 4 — $H_{2,\text{min}}$, $r_2 = 3$, n = 1; 5 — $H_{2,\text{max}}$, $r_2 = 3$, n = 2.

щие значения чисел Маха укладываются в узкий дозвуковой диапазон $M_{r1,max} = 0.506 - 0.593$ (рис. 3, a, n = 1) и $M_{r1,max} = 0.411 - 0.441$ (рис. 3, b, n = 2).

На рис. 3, с построены зависимости максимальной энтальпии $H_{2,\max}$ от силового параметра F_Q для цилиндрического источника (кривая 1) и сферического источника (кривая 2). В последнем случае значения H_{2,max} существенно больше. Зависимости $H_{2,\max}(F_Q; M_{r1,\max})$ близки к линейным. На рис. 3, d приведены функции энергоподвода $g_{2,\max}(F_Q; M_{r1,\max})$ в конце зоны, в точке максимума по М_{r1}, в зависимости от силового параметра F_Q. Отметим, что из трех параметров (замыкающая координата r_2 , число Маха $M_{r1,max}$, силовой параметр F_O), определяющих увеличение энтальпии H_2 , число Маха $M_{r1,max}$ представляется наиболее интересным и важным, поскольку силовой параметр и замыкающая координата с увеличением значения дают монотонный рост энтальпии, а вариации числа Маха — локальный сильно выраженный максимум.

3.4. Зависимость энтальпии *H*₂ в конце зоны от числа Маха *M*_{r1}, *F*_E-вариант

На рис. 4, *a*, *b* представлены зависимости полной энтальпии $H_2(M_{r1})$ при трех значениях силового параметра $F_E = 0$ (кривые *I*), 0.2 (2), -0.2 (3) в цилиндрическом источнике и $F_E = 0$ (*I*), 0.1 (2), -0.1 (3) в сферическом. В отличие от аналогичных зависимостей $H_2(M_{r1})$, построенных при различных F_Q на рис. 3, *a*, *b*, в рассматриваемом F_E -варианте при достаточно больших значениях силового параметра F_E и значениях замыкающей зону координаты r_2 , кроме вышеупомянутого максимума $H_{2,\max}(F_E;M_{r1,\max})$, в сверхзвуковой области имеются минимумы $H_{2,\min}(F_E;M_{r1,\min})$ (рис. 4, *a*, кривая 2), $H_{2,\min} = 5.20$ при $M_{r1,\min} = 2.12$, $F_E = 0.2$, $r_2 = 3$.

На рис. 4, c показаны в зависимости от силового параметра F_E максимальные энтальпии $H_{2,max}$ — кривая I, минимальные $H_{2,min}$ — 2, $r_2 = 5$, n = 1, а также

Рис. 5. a — энтальпия H(r) внутри зоны, кривые 1-5 ($r_2 = 1.5, 2, 3, 4, 5$) и в конце $H_2 = H(r_2)$, огибающая 6, n = 1, число Маха $M_{r1} = 1.5$, силовой параметр $F_E = 0.1$; b — то же самое при n = 2, $M_{r1} = 1.5$, $F_E = 0.1$; c — то же самое при n = 1, $M_{r1} = 1.5$, $F_Q = 0.5$; d — при n = 2, $M_{r1} = 1.5$, $F_Q = 0.5$; e — $F_Q = 0 = F_E$, n = 1: I — $r_2 = 3$, Ia — 5, n = 2, 2 — $r_2 = 3$, 2a — 5.

 $H_{2,\max}$ — 3, $H_{2,\min}$ — 4, r_2 = 3, n = 1, цилиндрический источник, $H_{2,\max}$ — 5, $r_2 = 3$, n = 2, сферический. В сферическом источнике минимумы по числам Маха M_{r1} не обнаружены. Соответствующая максимумам кривая 5, $H_{2,\max}(F_E, M_{r1,\max}, r_2 = 3), n = 2$ нарастает с увеличением F_E быстрее кривых 1 и 3 ($r_2 = 5, 3; n = 1$).

Если сопоставить рост максимальных энтальпий $H_{2,\max}(F_E, r_2 = 3)$ с увеличением силового параметра F_E , кривые 3 и 5 на рис. 4, c, с аналогичными зависимостями $H_{2,\max}(F_Q, r_2 = 3)$ от силового параметра F_Q , показанными на рис. 3, c, заметим, что при $F_Q=0.5$ величина $H_{2,\max}$ составила 8.146(n=1)и 30.79

 H, H_2

(n = 2). При $F_E = 0.2$ получили $H_{2,\max} \approx 10.08$ (n = 1)и 56.07 (n = 2). При этом в F_E -варианте сила равна $F_{2,\max} = 0.1082$ (n = 1), 0.1089 (n = 2). В F_Q -варианте сила равна $F_{2,\max} = 0.04094$ (n = 1), 0.00817 (n = 2).

Зависимости значений внешней силы $F_{2,\max}$, соответствующей максимумам, от силового параметра F_E для цилиндрического и сферического источников практически не различаются в диапазоне [-0.2, 0.2] и близки к линейным.

Сопоставление величин энергоподвода $g_{2,\max}$ (не приведены), соответствующих максимумам, от силового параметра F_E показало отличие от соответствующих зависимостей $g_{2,\max}(F_Q)$ (рис. 3, *d*, кривые 1, 2) слабым нарастанием темпа увеличения с ростом F_E , в то время как зависимости $g_{2,\max}(F_Q)$ близки к линейным. Зависимости $g_{2,\max}(F_E)$ нарастают круче, например, при n = 2 величина $g_{2,\max}(F_E = 0.2) = 2.39$, а $g_{2,\max}(F_Q = 0.5) = 0.994$; при n = 1 $g_{2,\max}(F_E = 0.2) = 0.731$, а $g_{2,\max}(F_Q = 0.5) = 0.459$.

3.5. Зависимость энтальпии *H*₂ от величины замыкающей координаты *r*₂

Величина замыкающей зону координаты r_2 (или протяженность зоны) уже упоминалась среди факторов, влияющих на приращение энтальпии H_2 вследствие комбинированного энергосилового воздействия.

На рис. 5, a (n = 1) построены распределения энтальпии H(r) внутри зоны, кривые I-5 $(r_2 = 1.5, 2, 3, 4, 5)$ при $M_{r1} = 1.5$, $F_E = 0.1$. Огибающая 6, которая описывает энтальпию в конце зоны $H_2 = H(r_2)$, близка к линейной функции. Увеличение энтальпии H_2 при $r_2 = 3$ составило 3.42 по сравнению с начальным значением $H_1 = 1$; при $r_2 = 5$ — величина $H_2 = 5.37$.

В сферическом источнике (n = 2, рис. 5, b) при силовом параметре $F_E = 0.1$, числе Маха $M_{r1} = 1.5$ и замыкающей зону координате $r_2 \ge 3$ установлено увеличение энтальпии H_2 более чем на порядок по сравнению с начальным значением. Огибающая 6 вогнутая (выпуклостью вниз), что означает увеличение темпа прироста энтальпии H_2 с ростом r_2 .

На рис. 5, *c*, *d* рассматриваются F_Q -варианты при $F_Q = 0.5$, $M_{r1} = 1.5$, n = 1 (рис. 5, *c*) и n = 2 (рис. 5, *d*). Зависимости для распределений энтальпии H(r) внутри зоны воздействия близки к линейным. Огибающая H_2 (кривая 6) выпуклая как в цилиндрическом (n = 1), так и в сферическом (n = 2) вариантах. Количественно увеличение энтальпии H_2 в сферическом источнике приблизительно вдвое превышает соответствующие значения в цилиндрическом источнике при $r_2 = 5$ и выше.

На рис. 5, е приведены зависимости энтальпии H(r) при $r_2 = 3$ (полужирные кривые 1 и 2, n = 1 и 2) и при $r_2 = 5$ (простые кривые l, a и 2, a, n = 1 и 2). Кривые H(r) с бо́льшими значениями координаты замыкающего сечения $r_2 = 5$ на участке от $r = r_1$ до $r = r_2 = 3$ совпадают с зависимостями с меньшими r_2 , например $r_2 = 1.5, 2, 3$, как показано на рис. 5, е. Такова отличительная характерная черта базового варианта F(r) = 0

от комбинированных случаев воздействия внешней силой и энергоподводом во всех рассмотренных вариантах.

Выводы

1. При комбинированном воздействии в режиме постоянного числа Маха M_{r1} при неотрицательных значениях силовых параметров F_Q , $F_E \ge 0$ энтальпия, температура, скорость монотонно растут по координате, как в базовом энергетическом варианте.

2. Энтальпия H_2 в конце зоны воздействия увеличивается с нарастанием темпа при увеличении силового параметра F_E (сила задана на единицу объема) и линейно с ростом F_Q (сила задана на единицу массы) в цилиндрическом и сферическом источнике.

3. При отрицательных F_Q , F_E в пределе энтальпии H_2 , близкой к нулю, функция энергообмена g(r), поддерживающая число Маха постоянным, отрицательна по всей зоне в цилиндрическом источнике (охлаждение), либо во второй половине зоны в сферическом источнике.

4. Обнаружены локальные максимумы энтальпии $H_{2,\max}$ в дозвуковом диапазоне чисел Маха M_{r1} в цилиндрическом и сферическом источнике, в F_Q -, F_E -вариантах. Пики $H_{2,\max}$ существенно выше в сферическом источнике.

5. Энтальпия за зоной H_2 монотонно растет с увеличением замыкающей координаты r_2 в цилиндрическом источнике и в сферическом источнике, в F_Q - и F_E -вариантах.

6. В базовом энергетическом случае $F_Q = 0 = F_E$ зависимости энтальпии H(r), H_2 от координаты r и от координаты замыкающего сечения r_2 ложатся на одну кривую при возрастании r_2 как в цилиндрическом источнике, так и в сферическом.

Список литературы

- *Курант Р., Фридрихс К.* Сверхзвуковые течения и ударные волны. М.: ИЛ, 1950. 426 с. (Courant R., Friedrichs K.O. Supersonic Flow and Shock Waves. NY.: Intersience, 1948).
- [2] Мизес Р. Математическая теория течений сжимаемой жидкости. М.: ИЛ, 1961. 588 с. (Mises R. Mathematical Theory of Compressible Fluid Flow. NY.: Academic Press INC Publishers, 1958).
- [3] Черный Г.Г. Газовая динамика. М.: Наука, 1988. 424 с.
- [4] Абрамович Г.Н. // ДАН СССР. 1946. Т. 54. № 7. С. 579–581.
- [5] Вулис Л.А. // ДАН СССР. 1946. Т. 54. № 8. С. 669-672.
- [6] Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1973. 848 с.
- [7] Абрамович Г.Н. Прикладная газовая динамика. Ч. 1. М.: Наука, 1991. 600 с.
- [8] Кучеров А.Н. // ИФЖ. 2014. Т. 87. № 1. С. 129–138.
- [9] Кучеров А.Н. // ЖТФ. 2015. Т. 85. Вып. 10. С. 34-41.
- [10] Кучеров А.Н. Основные закономерности теплового запирания цилиндрического массового вихреисточника (вихрестока). Препринт № 158. М.: Изд. отд. ЦАГИ, 2010. 40 с.

- [11] Плотность, энтальпия, энтропия и изобарная теплоемкость жидкого и газообразного азота при температурах 70–1500 К и давлениях 0.1–100 МПа. ГСССД 4-78. М.: Изд. стандартов, 1978. 12 с.
- [12] Кислород жидкий и газообразный, плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70–1000 К и давлениях 0.1–100 МПа. ГСССД 19-81. М.: Изд. стандартов, 1982. 11 с.
- [13] Воздух жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70–1500 К и давлениях 0.1–100 МПа. ГСССД 8-79, с. 19–34. В сб.: Свойства материалов и веществ. Воздух и его основные компоненты. Вып. 2. Таблицы стандартных справочных данных. М.: Гос. ком. по управлению качеством продукции и стандартам, 1991. 128 с.