13,12

Плотность и размер частиц нанокристаллических порошков кубического карбида ниобия NbC,

© А.С. Курлов, А.И. Гусев¶

Институт химии твердого тела УрО РАН, Екатеринбург, Россия [¶] E-mail: gusev@ihim.uran.ru

(Поступила в Редакцию 12 мая 2016 г.)

Методом гелиевой пикнометрии измерена плотность крупнокристаллических (со средним размером частиц 3-5 мкм) и нанокристаллических порошков карбида ниобия NbC_y ($0.77 \le y \le 0.96$) с разным средним размером частиц от 60 до 30 nm. Нанопорошки получены высокоэнергетическим размолом исходных крупнокристаллических порошков карбида ниобия. Размер частиц в порошках карбида ниобия оценен методами рентгеновской дифракции и Брунауэра–Эммета–Тейлора. Показано, что плотность нанопорошков, измеренная методом гелиевой пикнометрии, занижена по сравнению с истинной плотностью вследствие адсорбции гелия высокоразвитой поверхностью карбидых нанопорошков.

DOI: 10.21883/FTT.2017.01.43971.182

1. Введение

В последнее время развиваются методы получения веществ и материалов в нанокристаллическом состоянии. Это связано с модификацией свойств твердых веществ при уменьшении размера кристаллитов (частиц) до 20–30 nm и менее [1,2]. Эффективным методом получения нанокристаллических порошков является высокоэнергетический размол (high-energy ball milling), относящийся к нанотехнологиям группы "сверху-вниз" (top-down) [3]. Размол широко используется для получения нанопорошков карбидов переходных металлов IV–VI групп [4–6], являющихся наиболее твердыми из известных веществ.

Карбид ниобия NbC_y с кубической (пр.гр. $Fm\bar{3}m$) структурой B1 обладает широкой областью гомогенности от NbC_{0.72} до NbC_{1.00} [7] и входит в группу сильно нестехиометрических соединений. В последние два года авторами настоящей работы выполнена серия исследований микроструктуры наноразмерных порошков карбида ниобия [8–12] в зависимости от нестехиометрии, степени гомогенности, малого размера частиц, микродеформаций, анизотропии решеточных искажений.

В настоящей работе впервые обсуждается влияние нестехиометрии и размера частиц на измеряемую плотность порошков карбида ниобия с учетом площади их удельной поверхности.

Образцы и экспериментальные методы

Крупнокристаллические порошки кубических (пр. гр. $Fm\bar{3}m$) карбидов NbC_{0.77}, NbC_{0.84}, NbC_{0.93} и NbC_{0.96} со структурой *B*1 были синтезированы высокотемпературным твердофазным вакуумным спеканием [7] авторами работы [13] по запатентованной методике [14]. Порошки

содержат как крупные частицы размером до $4-6\,\mu$ m, так и мелкие частицы размером 500 nm и менее. Однако мелкие частицы связаны между собой и образуют большие разветвленные агломераты размером до $2-5\,\mu$ m.

Нанокристаллические порошки карбида NbC_y получили размолом исходных крупнокристаллических порошков в планетарной шаровой мельнице PM-200 Retsch. Мелющие шары и футеровка размольных стаканов изготовлены из твердого сплава WC — 6 wt.% Со. Во всех экспериментах масса *m* порошка, взятого для размола, составляла 10 g; объем изопропилового спирта, добавляемого при размоле, составлял 15 ml. Методика размола описана в работах [5,6,15,16]. Энергия E_{mill} , затраченная на размол в течение 5, 10 и 15 h, равна 14.1, 28.1 и 42.2 kJ [17,18]. Удельная энергия размола, отнесенная на 1 mol карбида ниобия NbC_y с молекулярной массой *M*, равна $E_{sp-moll}^{mol} = E_{mill} \times (M/m)$ и для карбидов, размолотых в течение 5, 10 и 15 h, составляет от ~ 144 до ~ 441 kJ · mol⁻¹ (см. таблицу).

Кристаллическую структуру и фазовый состав нестехиометрических карбидов ниобия определяли методом рентгеновской дифракции на дифрактометре Shimadzu XRD-7000 методом Брэгга-Брентано в интервале углов 2θ от 10 до 140° с пошаговым сканированием $\Delta(2\theta) = 0.03°$ и временем экспозиции 2 sec в точке в излучении Cu $K\alpha_{1,2}$. Рентгенограммы численно анализировали с помощью программного пакета X'Pert Plus [19]. Средний размер D областей когерентного рассеяния в первом приближении рассматривали как средний размер малых частиц и определяли по уширению дифракционных отражений в соответствии с методикой [5,6,20]. Дифракционные отражения описывали функцией псевдо-Фойгта.

Морфологию и размер частиц исходных и размолотых порошков NbC_y изучали на сканирующем электронном микроскопе JEOL JSM 6390 LA.

NILC	<i>t</i> , h	$E_{ m sp-mill}^{ m mol}$,	$a_{B1} \pm 0.00005$,	$S_{ m sp}\pm 20$,	$D \pm 5, nm$		ho, g · cm ⁻³			$\Delta \rho = \rho_X - \rho_{\rm pHe} \pm 0.03,$
NDCy		$kJ \cdot mol^{-1}$	nm	$m^2 \cdot g^{-1}$	БЭТ	рентген	$ ho_X \pm 0.01$	$ ho_{ m pHe}\pm 0.01$	$ ho_{ m pl}\pm 0.01$	$g \cdot cm^{-3}$
NbC _{0.77}	0	0	0.44373	0.282	2730	_	7.77	-	_	—
	5	144	0.44352	12.435	62	48	7.76	7.41	7.51	0.25
	10	287	0.44350	18.003	43	41	7.78	6.95	6.85	0.83
	15	431	0.44351	21.144	36	23	7.78	6.67	6.69	1.11
NbC _{0.84}	0	0	0.44596	0.155	4950	_	7.71	7.69	7.70	0.02
	5	145	0.44561	13.742	56	48	7.73	7.02	6.95	0.71
	10	289	0.44536	20.041	38	50	7.74	6.60	6.58	1.14
	15	433	0.44523	23.657	32	28	7.75	6.32	6.28	1.43
NbC _{0.93}	0	0	0.44667	1.190	645	_	7.76	7.70	7.81	0.06
	5	147	0.44645	14.485	53	43	7.77	7.23	7.41	0.54
	10	292	0.44629	18.861	41	44	7.78	6.78	6.76	1.00
	15	439	0.44601	26.650	29	30	7.79	6.05	6.03	1.74
NbC _{0.96}	0	0	0.44675	0.230	3340	_	7.78	7.73	7.80	0.05
	5	147	0.44635	14.216	54	64	7.81	6.86	6.97	0.95
	10	293	0.44612	20.484	37	31	7.80	6.45	6.46	1.35
	15	441	0.44602	24.962	31	22	7.82	6.19	6.12	1.63

Влияние продолжительности t и энергии $E_{\rm sp-mill}^{\rm mol}$ размола на период решетки a_{B1} , площадь удельной поверхности $S_{\rm sp}$, средний размер частиц D и плотность ρ порошков NbC_v

Удельную поверхность S_{sp} исходных карбидных порошков и тех же порошков после размола определяли методом Брунауэра–Эммета–Тейлора (БЭТ) по изотермам низкотемпературной сорбции паров молекулярного азота при температуре 77 К на приборе Gemini VII 2390t Surface Area Analyzer. В приближении одинакового размера и шарообразной формы всех частиц по величине удельной поверхности S_{sp} оценивали средний размер частиц $D = 6/\rho S_{sp}$ (ρ — плотность карбида).

Пикнометрическую плотность ρ_{pHe} исходных и размолотых карбидных порошков определяли с помощью гелиевого пикнометра AccuPyc II 1340, используя измерительную камеру объемом 1 сm³. Перед измерением удельной поверхности и пикнометрической плотности порошки сушили в вакууме 10 Ра при температуре 573 К в течение 1 h. Дополнительно плотность ρ_{pl} порошков карбида ниобия измеряли методом жидкостной пикнометрии [21,22] при температуре 298 К. В качестве рабочей жидкости использовали очищенный керосин. Плотность ρ_{pl} рассчитывали по формуле

$$\rho_{\rm pl} = \frac{m}{M_0 - M_p + m} (\delta - \rho_{\rm air}) + \rho_{\rm air}, \qquad (1)$$

где *m* — масса исследуемого вещества; M_0 — масса пикнометра с керосином, доведенным до метки при температуре измерения; M_p — масса пикнометра с исследуемым веществом и керосином; $\delta = 0.7837 \,\mathrm{g\,cm^{-3}}$ плотность керосина при 298 K; $\rho_{\rm air} = 0.0012 \,\mathrm{g\,cm^{-3}}$ плотность воздуха при 298 К. При измерении плотности порошков NbC_y в керосине пикнометр с суспензией для удаления воздушных пузырьков в течение 3 min подвергали воздействию ультразвука в ванне Reltec ultrasonic bath USB-1/100-TH.

Влияние размера частиц на измеряемую плотность нанопорошков

Согласно дифракционным данным все исходные порошки карбидов NbC_{0.77}, NbC_{0.84}, NbC_{0.93} и NbC_{0.96} являются однофазными и имеют кубическую (пр. гр. $Fm\bar{3}m$) структуру типа B1. Рентгеновская дифракция нанокристаллических порошков, полученных размолом в течение разного времени от 5 до 15 h, обнаружила в них примесную фазу гексагонального карбида вольфрама WC в количестве до 3–4 wt.% в зависимости от продолжительности размола. Появление примеси WC обусловлено натиранием материала мелющих шаров и футеровки стаканов, изготовленных из твердого сплава WC — 6 wt.% Со.

Увеличение продолжительности размола сопровождается уширением дифракционных отражений, проиллюстрированным на примере карбида NbC_{0.77} (рис. 1). Анализ уширения дифракционных отражений показал, что уширение обусловлено как малым размером D областей когерентного рассеяния (ОКР) в нанопорошках, так и наличием в них микронапряжений. Размер ОКР во всех изученных нанопорошках NbC_y приведен в таблице. Оценка размера D частиц по величине удельной поверхности S_{sp} порошков (см. таблицу) в пределах ошибок эксперимента согласуется с размером OKP.

Рис. 1. Рентгенограммы исходного крупнокристаллического порошка карбида ниобия NbC_{0.77} и нанокристаллических порошков NbC_{0.77}, полученных размолом крупнозернистого порошка в течение 5 (b), 10 (c) и 15 h (d). Штрихи на рентгенограммах нанопорошков соответствуют отражениям примесного карбида вольфрама WC.

На рис. 2 как пример показаны SEM изображения исходного крупнокристаллического и нанокристаллических порошков NbC_{0,84}, полученных размолом в течение 5, 10 и 15 h. Размер частиц крупнокристаллического порошка составляет от 3 до $10\,\mu$ m. В результате 5-часового размола наблюдаемый размер частиц уменьшился до 200-300 nm (рис. 2, *b*), но при большем увеличении видно, что эти частицы — агломераты частиц меньшего размера. Увеличение энергии размола до ~ 28 и ~ 42 kJ (t = 10 и 15 h соответственно) привело к существенному измельчению порошка (рис. 2, *c*, *d*).

Рентгеновскую плотность ρ_X карбидов NbC_y определяли по формуле

$$\rho_X = nMg/V, \qquad (2)$$

где n = 4 — число формульных единиц NbC_y, приходящихся на элементарную ячейку карбида с кубической структурой *B*1; *M* — молекулярная масса; $g = 1.66 \cdot 10^{-27}$ kg — атомная единица массы; $V = a_{B1}^3$ — объем элементарной ячейки карбида NbC_y с периодом решетки a_{B1} . Период решетки a_{B1} и рентгеновская плотность ρ_X карбидов ниобия практически не зависят от продолжительности или энергии размола (см. таблицу). Плотности $\rho_{\rm pHe}$ и $\rho_{\rm pl}$, измеренные методами гелиевой и жидкостной пикнометрии, неплохо согласуются между собой, но заметно уменьшаются по мере размола порошков (рис. 3).

В нестехиометрических карбидах MC_y структурные вакансии содержатся только в углеродной (неметаллической) подрешетке, но в нестехиометрических кубических монооксидах титана, ванадия и ниобия $M_x O_z$ вакансии могут содержаться в кислородной и металлической подрешетках одновременно [7].

Сопоставление рентгеновской и пикнометрической плотностей крупнокристаллических (с размером частиц $3-5\,\mu$ m) порошков нестехиометрических монооксидов с двойной дефектностью используется для определения степени заполнения узлов металлической и кислородной подрешеток атомами металла и кислорода соответственно [23–25]. В этом случае меньшая пикнометрическая плотность ρ_{pHe} (или ρ_{pl}) по сравнению с рентгеновской плотностью ρ_X является свидетельством присутствия структурных вакансий в металлической подрешетке. В монооксидах M_xO_z степень заполнения атомами ме-

Рис. 2. Сканирующая электронная микроскопия порошков карбида NbC_{0.84}: (*a*) исходный крупнокристаллический порошок содержит большие частицы размером от ~ 3 до $\sim 8 \,\mu$ m; (*b*), (*c*), (*d*) нанокристаллические порошки, полученные размолом исходного порошка в течение 5, 10 и 15 h соответственно.

талла узлов металлической подрешетки определяется как $x = \rho_p V c_M / n A_M g$, где c_M и A_M — массовая доля металла в оксиде и атомная масса металла.

Нестехиометрические карбиды ниобия не обладают двойной дефектностью. Свидетельством этого является совпадение рентгеновской и пикнометрических плотностей исходных крупнокристаллических порошков (см. таблицу). Заметная разница плотностей ρ_X и ρ_{pHe} (или $\rho_{\rm pl}$) наблюдается только для нанопорошков. Удельная поверхность крупнокристаллических порошков мала, поэтому поверхностная адсорбция газа или несмачивание поверхности порошка жидкостью пренебрежимо малы и практически не влияют на измеряемую пикнометрическую плотность. В случае нанокристаллических порошков удельная поверхность очень велика. В результате объем газа, адсорбированного поверхностью, или несмачиваемость поверхности жидкостью заметно влияют на измеренные объем образца и его пикнометрическую плотность. Объем завышается, а плотность занижается, что и наблюдается экспериментально.

Влияние площади удельной поверхности и поверхностной адсорбции газа на измеряемую плотность нанопорошков было рассмотрено ранее [26] на примере гелиевого пикнометра AccuPyc 1340. Принцип действия гелиевого пикнометра показан на рис. 4. Пикнометр состоит из эталонной камеры объемом $V_{\rm et}$ и измерительной камеры объемом $V_{\rm cell} = 1 \,{\rm cm}^3$, в которую помещен образец исследуемого твердого вещества объемом V_s . Камеры соединены через клапан и оснащены датчиками давления. Первоначально эталонная камера заполняется гелием под повышенным давлением P_1 , а измерительная камера заполняется гелием под атмосферным давлением $P_{\rm atm}$. Затем открывается клапан и давление P_2 , причем $P_1 > P_2 > P_{\rm atm}$.

В [26] показано, что объем V_s крупнокристаллического вещества определяется как

$$V_s = V_{\text{cell}} - V_{\text{et}} \left(\frac{P_1 - P_{\text{atm}}}{P_2 - P_{\text{atm}}} - 1 \right).$$
 (3)

Формула (3) верна для крупнокристаллического порошка, когда удельная поверхность $S_{\rm sp}$ (площадь поверхности, отнесенная на единицу массы) невелика и поверхностная адсорбция гелия пренебрежимо мала. При известной массе *m* исследуемого вещества конечный результат выдается как плотность $\rho_s = m/V_s$, которая соответствует истинной плотности крупнозернистого вещества (порошка) с частицами размером несколько микрометров и более.

Рис. 3. Изменение пикнометрической плотности порошков карбида ниобия NbC_y с y = 0.96 (*a*), 0.93 (*b*), 0.84 (*c*), 0.77 (*d*) в зависимости от продолжительности *t* размола: (1) рентгеновская плотность ρ_X ; (2) и (3) плотности ρ_{pl} и ρ_{pHe} , измеренные методами жидкостной и гелиевой пикнометрии соответственно.

Нанокристаллические порошки обладают очень большой удельной поверхностью. Благодаря высокоразвитой поверхности нанопорошки адсорбируют часть газа [27]. Вследствие адсорбции давление газа понижается, измеренный объем V_{s-nano} оказывается завышенным, а плотность порошка заниженной.

Первоначально эталонная камера заполнена гелием под повышенным давлением P_1 , и число молей Не в ней равно $n_{\rm et1} = P_1 V_{\rm et}/RT$. В измерительной камере гелий находится под атмосферным давлением $P_{\rm atm}$. Если в начальный момент времени число молей газа, адсорбированного поверхностью нанопорошка, равно Δn_1 , то в соответствии с уравнением Менделеева-Клапейрона $\Delta n_1 = P_{\rm atm} \Delta V_1/RT$, а общее число молей гелия в измерительной камере равно $n_{c1} = P_{\rm atm} (V_{\rm cell} - V_{\rm s-nano})/RT + \Delta n_1$. После выравнивания давления в камерах до величины P_2 и учета зависимости количества адсорбированного гелия от величины давления число молей Не в измерительной и эталонной камерах равно $n_{c2} = P_2(V_{cell} - V_{s-nano})/RT + \Delta n_2$ и $n_{et2} = P_2V_{et}/RT$ соответственно. Поскольку $P_2 > P_{atm}$, то $\Delta n_2 > \Delta n_1$. Количество гелия в обеих камерах не изменилось, поэтому

$$n_{\rm et1} + n_{c1} = n_{\rm et2} + n_{c2}. \tag{4}$$

Подставляя вместо $n_{\text{etl, et2}}$ и $n_{c1, c2}$ их значения, выраженные через давления и объемы, получим

$$P_1 V_{\text{et}} + P_{\text{atm}} (V_{\text{cell}} - V_{\text{s-nano}}) + \Delta n_1 R T = P_2 V_{\text{et}}$$
$$+ P_2 (V_{\text{cell}} - V_{\text{s-nano}}) + \Delta n_2 R T \qquad (5)$$

или

$$(P_2 - P_{\text{atom}})V_{\text{s-nano}} = (P_2 - P_{\text{atm}})V_{\text{cell}} - (P_1 - P_2)V_{\text{et}} + (\Delta n_2 - \Delta n_1)RT.$$
 (6)

Рис. 4. Схема работы гелиевого пикномера с объемом измерительной камеры $V_{cell} = 1 \text{ см}^3$. (*a*) первоначальное состояние перед измерением, (*b*) состояние во время измерения, V_{et} — объем эталонной камеры, $P_1 > P_2 > P_{atm}$ — давление гелия Не в камерах на разных этапах измерения.

Из (6) следует, что измеренный объем нанопорошка имеет вид

$$V_{\text{s-nano}} = V_{\text{cell}} - V_{\text{et}} \left(\frac{P_1 - P_{\text{atm}}}{P_2 - P_{\text{atm}}} - 1 \right) + \frac{(\Delta n_2 - \Delta n_1)RT}{P_2 - P_{\text{atm}}}.$$
(7)

Из сравнения выражений (3) и (7) ясно, что изза адсорбции гелия поверхностью нанопорошка объем $V_{\text{s-nano}}$ завышен на величину $\Delta V = (\Delta n_2 - \Delta n_1)RT/$ $(P_2 - P_{atm}) > 0$ по сравнению с реальным объемом нанопорошка. Измеренный объем V_{s-nano} нанопорошка и его плотность $\rho_{\text{s-nano}}$ следует называть кажущимися, так как объем завышен, а плотность занижена (в технике объем и плотность порошков называют насыпными). Именно такая зависимость наблюдается для нанопорошков карбида ниобия — чем больше продолжительность размола и меньше средний размер частиц нанопорошка, тем меньше измеренная кажущаяся плотность (см. рис. 3). В жидкостной пикнометрии измеренный объем $V_{\text{s-nano}}$ нанопорошка тоже завышен, а его плотность занижена из-за отсутствия полной смачиваемости поверхности наночастиц рабочей жидкостью.

В работе [26] показано, что разность $\Delta \rho$ истинной и измеренной плотностей равна

$$\Delta \rho = \rho_X^2 \, \frac{kRT}{c \, (3\sqrt{3}r^2N_{\rm A})(P_2 - P_{\rm atm})} \, S_{\rm sp} = AS_{\rm sp}, \quad (8)$$

где r = 0.031 nm — атомный радиус Не (ковалентный радиус гелия равен 0.028 nm), $N_{\rm A}$ — число Авогадро, $S_{\rm sp}$ — площадь удельной поверхности порошка, A и c > 1 — постоянные. Поскольку $S_{\rm sp} \sim 1/D$, то разность $\Delta \rho$ истинной и измеренной плотностей обратно пропорциональна среднему размеру D наночастиц порошка, т.е.

$$\Delta \rho = B/D, \tag{9}$$

где B — постоянная. Действительно, разность плотностей $\Delta \rho$ порошков карбида ниобия NbC_y практически линейно растет при увеличении площади удельной поверхности S_{sp} и увеличивается по зависимости гиперболического типа при уменьшении размера *D* частиц (см. таблицу).

Заниженная плотность $\rho_{\rm pl}$ нанопорошков карбида ниобия NbC_y, измеренная методом жидкостной пикнометрии, является следствием их супергидрофобности, объединяющей естественную гидрофобность и шероховатость, что приводит к почти полному несмачиванию поверхности [28-30]. Для описания супергидрофобных поверхностей нанопорошков используют модель Касси-Бакстера [31], когда полости текстуры поверхности заполнены газом и контакт жидкости с порошком представляет собой гетерогенную межфазную границу жидкость-твердое-газ. Коэффициент шероховатости определяется как отношение реальной площади поверхности к площади ее проекции на горизонтальную плоскость. Для сильно шероховатых поверхностей, что характерно для нанопорошков, равновесный краевой угол смачивания существенно больше краевого угла для плоских поверхностей того же вещества и достигает 150-180° [28,29].

Большая разность истинной и измеренной пикнометрической плотностей нанопорошков карбида ниобия свидетельствует о их супергидрофобности и возможности применения как компонента защитных супергидрофобных покрытий.

4. Заключение

Измерения плотности крупно- и нанокристаллических порошков нестехиометрического кубического карбида ниобия NbC_y $(0.77 \le y \le 0.96)$ с помощью гелиевой и жидкостной пикнометрии показали, что пикнометрическая плотность нанопорошков уменьшается при уменьшении среднего размера частиц и увеличении площади удельной поверхности нанопорошков. Совпадение пикнометрической и рентгеновской плотностей крупнокристаллических карбидных порошков указывает на отсутствие структурных вакансий в металлической подрешетке изученных карбидов ниобия. С учетом этого и большой удельной поверхности нанопорошков меньшая пикнометрическая плотность нанопорошков обусловлена адсорбцией части газа (в случае гелиевой пикнометрии). Вследствие этого измеренный объем нанопорошков оказывается завышенным, а плотность нанопорошков заниженной. Наблюдаемый эффект меньшей насыпной плотности карбидных нанопорошков следует учитывать при интерпретации результатов измерения плотности.

Авторы благодарят О.В. Макарову за помощь в измерении пикнометрической плотности порошков карбида ниобия.

Список литературы

- A.I. Gusev, A.A. Rempel. Nanocrystalline Materials. Cambridge Int. Sci. Publ., Cambridge (2004). 351 p.
- [2] A.I. Gusev. In: Dekker Encyclopedia of Nanoscience and Nanotechnology / Eds J.A. Schwarz, C. Contescu, K. Putyera. Marcel Dekker Inc., N.Y. (2004). V. 3. P. 2289–2304.

- [3] А.А. Ремпель. Успехи химии 76, 5, 474 (2007).
- [4] P. Baláž. Mechanochemistry in Nanoscience and Minerals Engineering. Springer, Berlin–Heidelberg (2008). 413 p.
- [5] A.S. Kurlov, A.I. Gusev. Tungsten Carbides: Structure, Properties and Application in Hard-metals. Springer, Cham– Heidelberg–N.Y.– Dordrecht–London (2013). 256 p.
- [6] А.С. Курлов, А.И. Гусев. Физика и химия карбидов вольфрама. Физматлит, М. (2013). 272 с.
- [7] A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides. Springer, Berlin–Heidelberg– N.Y.–London (2001). 607 p.
- [8] A.S. Kurlov, A.I. Gusev. J. Alloys Comp. 582, 108 (2014).
- [9] А.С. Курлов, И.А. Бобриков, А.М. Балагуров, А.И. Гусев. Письма в ЖЭТФ 100, 10, 712 (2014).
- [10] A.S. Kurlov, A.I. Gusev. Int. J. Refr. Met. Hard. Mater. 46, 125 (2014).
- [11] А.С. Курлов, А.И. Гусев. Неорган. материалы **51**, *1*, 34 (2015).
- [12] A.M. Balagurov, I.A. Bobrikov, G.D. Bokuchava, R.N. Vasin, A.I. Gusev, A.S. Kurlov, M. Leoni. Mater. Charact. 109, 173 (2015).
- [13] А.А. Ремпель, А.И. Гусев. ФТТ 42, 7, 1243 (2000).
- [14] L.-M. Berger, M. Hermann, A.I. Gusev, A.A. Rempel. Offenlegungsshrift DE 198 07 589 A 1. Int. Cl.6: C 01 B 31/30 (C 04 B 35/36). Bundesrepublik Deutschland: Deutsches Patentamt: Anmeldetag 23.02.1998, Offenlegungstag 10.09.1998. P. 1–3.
- [15] A.I. Gusev, A.S. Kurlov. Nanotechnology 19, 26, 265 302 (2008).
- [16] А.С. Курлов, А.И. Гусев. ЖТФ 81, 7, 76 (2011).
- [17] A.I. Gusev, A.S. Kurlov, T.D. Bel'kova, A.M. Bel'kov. Int. J. Refr. Met. Hard. Mater. **51**, 70 (2015).
- [18] А.И. Гусев, А.С. Курлов, А.М. Бельков, Т.Д. Белькова. ФТТ 57, 6, 1149 (2015).
- [19] X'Pert Plus Version 1.0. Program for Crystallography and Rietveld analysis Philips Analytical B.V. Koninklijke Philips Electronics N. V.
- [20] A.S. Kurlov, A.I. Gusev. Phys. Rev. B 76, 17, 174115 (2007).
- [21] Э.М. Бондштедт-Куплетская. Определение удельного веса минералов. Изд-во АН СССР, М. (1951). 128 с.
- [22] С.И. Гаузнер, С.С. Кивилис, А.П. Осокина, А.М. Павловский. Измерение массы, объема и плотности. Изд-во стандартов, М. (1972). 623 с.
- [23] S. Andersson, B. Collen, U. Kuylenstierna, A. Magneli. Acta Chem. Scand. 11, 10, 1641 (1957).
- [24] M.D. Banus, T.B. Reed. In: The Chemistry of Extended Defects in Non-Metallic Solids / Eds L. Eyring, M.O. Keeffe. North-Holland Publ., Amsterdam–London (1970). P. 488– 521.
- [25] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Письма в ЖЭТФ 71, 11, 675 (2000).
- [26] А.С. Курлов, А.И. Гусев. ФТТ 58, 8, 1629 (2016).
- [27] А.П. Карнаухов. Адсорбция. Текстура дисперсных и пористых материалов. Наука, Новосибирск (1999). 470 с.
- [28] C.-H. Choi, U. Ulmanella, J. Kim, C.M. Ho, C.-J. Kim. Phys. Fluids 18, 8, 087105 (2006).
- [29] A.M.J. Davis, E. Lauga. J. Fluid Mech. 661, 402 (2010).
- [30] E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, Y. Bormashenko. App. Surf. Sci. 270, 98 (2013).
- [31] A.B.D. Cassie, S. Baxter. Nature 155, 3923, 21 (1945).

182