11,13

Кинетика электронно-лучевой кристаллизации аморфных пленок ZrO₂, полученных ионно-плазменным и лазерным напылением

© А.Г. Багмут¹, В.М. Береснев²

 ¹ Национальный технический университет "Харьковский политехнический институт", Харьков, Украина
 ² Харьковский национальный университет им. В.Н. Каразина, Харьков, Украина
 E-mail: Bagmut@kpi.Kharkov.ua

(Поступила в Редакцию 18 мая 2016 г.)

Проведено сопоставление структуры и кинетики электронно-лучевой кристаллизации аморфных пленок ZrO₂, полученных с помощью ионно-плазменного и лазерного напыления. Исследования выполнены методами электронографии и просвечивающей электронной микроскопии со съемками видео-фильмов *in situ*. Воздействие на аморфную пленку электронного луча в вакууме сопровождается образованием микрокристаллов диоксида циркония с решеткой ГЦК. При лазерном испарении плотность центров кристаллизации $\beta \sim 10^9 \text{ sm}^{-2}$, а характерная единица длины $D_0 \sim 0.48 \,\mu\text{m}$. При ионно-плазменном испарении $\beta \sim 10^{10} \text{ sm}^{-2}$, а $D_0 \sim 0.06 \,\mu\text{m}$. Анализ кинетических кривых кристаллизации аморфных пленок проведен на основе β -варианта модели Колмогорова.

DOI: 10.21883/FTT.2017.01.43965.195

1. Введение

Интерес к диоксиду циркония в тонкопленочном аморфном и нанокристаллическом состоянии обусловлен возможностью его использования в качестве барьерного слоя между пленкой высокотемпературного сверхпроводника и подложкой Si, покрытий, используемых в биомедицине и протезировании, а также в качестве составляющих твердотельных оксидных топливных элементов [1]. Аморфное тонкопленочное состояние вещества является метастабильным. Локальное физическое воздействие на аморфную пленку может инициировать ее кристаллизацию. Если таковым является воздействие пучка электронов, то речь идет об электронно-лучевой кристаллизации, которую можно осуществить в колонне просвечивающего электронного микроскопа, используя методику in situ [2,3]. Электронно-лучевая кристаллизация аморфного ZrO₂, полученного импульсным лазерным осаждением (ИЛО), частично исследована в [4]. Показано, что воздействие электронного луча на аморфную пленку ZrO2 инициирует ее кристаллизацию с образованием микрокристаллов, имеющих ГЦК-кристаллическую решетку. Средний диаметр микрокристаллов D монотонно увеличивается с увеличением степени кристалличности и достигает $\sim 0.53\,\mu{
m m}$ к моменту полной кристаллизации пленки. Рост микрокристаллов ZrO₂ происходит в условиях растяжения, вызванного увеличением плотности вещества пленки при ее кристаллизации. Анализ и статистическая обработка результатов измерений относительного изменения плотности показали, что при уровне надежности 0.5 оно составляет $10.27 \pm 2.14\%$. Возникающие при этом растягивающие напряжения могут служить стабилизирующим фактором при формировании высокотемпературной кубической фазы ZrO₂.

Данные о кинетике электронно-лучевой кристаллизации аморфного ZrO₂, до сих пор не приведены.

Наряду с методом ИЛО для получения аморфных и нанокристаллических пленок и покрытий широко применяется метод ионно-плазменного осаждения (ИПО). Поэтому цель настоящей работы состоит в получении аморфных пленок ZrO₂ методами ИЛО и ИПО, а также в исследовании их структуры и сопоставлении кинетики электронно-лучевой кристаллизации.

2. Методика эксперимента

Аморфные пленки диоксида циркония были получены как ионно-плазменным методом, так и методом лазерной абляции мишеней Zr. Продукты распыления мишеней осаждались на подложки (001) КСІ при комнатной температуре. Толщина пленок составляла 30-40 nm. Ионноплазменное осаждение осуществлялось на установке УРМ-3 [5] с магнетроном, оборудованным системой пассивной защиты от микродуг с целью уменьшения количества микрокапель Zr в осажденной пленке. Напыление пленки проводилось при токе разряда 7.7 А и напряжении источника питания магнетрона 650 V. Распыление мишени Zr осуществлялось в аргонкислородной смеси при давлении 0.083 Ра. Парциальное давление Ar составляло 0.078 Ра, расход кислорода составлял $24 \, \text{sm}^3 \cdot \text{min}^{-1}$.

Лазерное распыление мишени Zr проводилось в атмосфере кислорода при давлении ~ 0.13 Pa. Использовалось импульсное излучение лазера ЛТИ–ПЧ-5, работавшего в режиме модулированной добротности. Длина волны и частота следования импульсов составля-

Номер линии	hkl	Лазерное напыление		Ионно-плазменное напыление		Данные таблиц JCPDS (Card 27-0997)	
		d, nm	a_0, nm	d, nm	a_0, nm	<i>d</i> , nm	a_0, nm
1	(111)	0.2931		0.2937		0.2930	
2	(200)	0.2553	0.5094	0.2558	0.5098	0.2550	0.509
3	(220)	0.1802		0.1809		0.1801	

0.1529

Таблица 1. Данные электронографического анализа пленок ZrO₂, осажденных с помощью лазерного и ионно-плазменного напыления, после частичной кристаллизации.

ли 1.06 µm и 25 Hz соответственно. Подробности метода лазерного напыления изложены в [4].

0.1536

(311)

4

Осажденные на (001) КС1 пленки отделялись от подложки в дистиллированной воде и переносились на предметные сетки для микроскопических исследований. Кристаллизация пленки инициировалась электроннолучевым воздействием в колонне микроскопа при токе пучка ~ $20 \,\mu$ A. Скорость кристаллизации задавалась изменением плотности тока электронов *j* через образец, который составлял 1.1-6.5 А \cdot mm⁻² в зависимости от фокусировки пучка.

Структурный анализ проводился методами электронографии и просвечивающей электронной микроскопии с использованием электронных микроскопов ЭМ-100Л и ПЭМ-100-01, работавших при ускоряющем напряжении 100 kV. Процесс кристаллизации пленки записывался с экрана электронного микроскопа камерой Canon Power Shot G15 в режиме съемки видеофильма при частоте кадров $30 \, \text{s}^{-1}$.

3. Результаты и обсуждение

И лазерное, и ионно-плазменное испарение Zr в атмосфере кислорода приводят к формированию на подложках при комнатной температуре аморфных пленок ZrO₂. Воздействие электронного луча инициирует их кристаллизацию. На рис. 1 приведены электронограммы и электронно-микроскопические изображения пленок, осажденных с помощью лазерного (a, b) и ионно-плазменного (c, d) испарения, после частичной их кристаллизации электронным лучом. Установлено, что в области воздействия электронного пучка в аморфных пленках формируются и растут микрокристаллы ZrO₂. Данные, полученные в результате расшифровки электронограмм, сведены в табл. 1. Согласно данным этой таблицы, при кристаллизации аморфного слоя, полученного лазерным испарением, образуется кубическая ГЦК-фаза ZrO2 с постоянной кристаллической решетки *a*₀ = 0.5094 nm. При кристаллизации аморфного слоя, полученного ионно-плазменным испарением, также образуется кубическая ГЦК-фаза ZrO₂ с близким значением постоянной кристаллической решетки $a_0 = 0.5098$ nm. Эти данные находятся в хорошем согласии с данными таблиц JCPDS (Card 27-0997).

Сопоставление электронно-микроскопических фотографий, приведенных на рис. 1, b и d, свидетельствует о том, что число микрокристаллов, отнесенное к единице площади пленки β , значительно выше в случае использования метода ИПО. В то же время средний диаметр микрокристаллов D в пленках, полученных методом ИЛО, значительно больше, чем диаметр микрокристаллов в пленках, осажденных методом ИПО.

0.1534

Данные о кинетике кристаллизации аморфных пленок получались путем анализа отдельных кадров видеофильма, снятого *in situ* при фиксированной тангенциальной скорости роста кристаллов v (задаваемой j), определяемой соотношением

$$v = \frac{\Delta D}{\Delta t}.$$
 (1)

В выражении (1) ΔD — приращение среднего (арифметического) значения диаметра *D* микрокристаллов

Рис. 1. Рост кристаллов кубической модификации ZrO_2 в аморфных пленках под воздействием электронного луча: электронограммы (a, c) и электронно-микроскопические изображения (b, d) аморфно-кристаллической пленки, осажденной лазерным испарением (a, b), и аморфно-кристаллической пленки, осажденной ионно-плазменным напылением (c, d).

Параметр	Лазерное испарение				Ионно-плазменное испарение			
$v, \mu m \cdot s^{-1}$	0.120	0.110	0.003	0.002	0.317	0.012	0.007	0.002
β , sm ⁻²	$8.0\cdot 10^8$	$7.5 \cdot 10^8$	$1.3 \cdot 10^9$	$7.6 \cdot 10^8$	$1.1\cdot 10^{10}$	$1.3\cdot 10^{10}$	$1.4\cdot 10^{10}$	$1.3\cdot 10^{10}$
k	1.8	2.0	1.1	1.3	4.5	3.6	1.3	1.5
n	0.097	0.051	0.004	0.001	235.851	0.015	0.056	0.012
<i>t</i> ₀ , s	3.63	4.32	161.54	198.96	0.30	3.17	8.52	20.33
$D_0, \ \mu \mathrm{m}$	0.44	0.48	0.52	0.42	0.10	0.04	0.06	0.04

Таблица 2. Параметры электронно-лучевой кристаллизации аморфных пленок ZrO₂

Примечание. *v* — тангенциальная скорость роста кристаллов ZrO₂ в аморфной пленке, *β* — плотность центров кристаллизации, *k*, *n* — кинетические параметры кристаллизации, *t*₀ — характерная единица времени, *D*₀ — характерная единица длины.

ZrO₂ за промежуток времени Δt между кадрами видеофильма, соответствующими временны́м моментам съемки t и t + Δt . Размер кристаллов определялся по контрасту их электронно-микроскопического изображения, поскольку он отличен от контраста изображения аморфной матрицы. В работе использовался электронномикроскопический режим светлого поля. Поэтому темный контраст был присущ тем кристаллам, которые находились в отражающем положении. Остальные кристаллы выглядели светлыми на сером фоне (рис. 1, *b* и *d*).

На рис. 2 представлены зависимости D(t) при кристаллизации пленок, полученных лазерным (точки 1) и ионно-плазменным (точки 2) испарением. Прямые линии построены по данным измерений D с использованием метода наименыших квадратов. Для каждой линии коэффициент корреляции, характеризующий тесноту линейной связи между D и t, близок к единице. Скорость роста кристаллов определялась по наклону прямых к оси абсцисс. Прямой 1 (лазерное напыление) соответствует скорость роста $v_1 = 0.120 \,\mu m \cdot s^{-1}$, а прямой 2 (ионно-плазменное напыление) — скорость роста $v_2 = 0.012 \,\mu m \cdot s^{-1}$.

Для каждого значения *v* строились кинетические кривые кристаллизации аморфной фазы, т. е. зависимость

Рис. 2. Зависимость среднего диаметра кристаллов D от времени t при кристаллизации аморфных пленок ZrO₂, полученных лазерным (1) и ионно-плазменным (2) испарением.

Рис. 3. Зависимость доли кристаллической фазы x от времени t при кристаллизации пленок, полученных лазерным (1) и ионно-плазменным (2) испарением.

доли кристаллической фазы x от времени t, прошедшего с момента фиксации начала процесса кристаллообразования. Величина х определялась как отношение суммарной площади, занятой кристаллами, к общей площади микрофотографии. На рис. 3 представлены зависимости x(t) при кристаллизации пленок, полученных лазерным (данные $1, v_1 = 0.120 \,\mu \text{m} \cdot \text{s}^{-1}$) и ионноплазменным (данные 2, $v_2 = 0.012 \,\mu \text{m} \cdot \text{s}^{-1}$) испарением. Аналогичные кинетические кривые были построены и для ряда других значений скорости роста кристаллов (табл. 2). По этим данным для каждого значения v были построены зависимости $\ln[-\ln(1-x)]$ от $\ln t$. Они представлены на рис. 4, а для случая лазерного осаждения и на рис. 4, b для случая ионно-плазменного осаждения пленок. Прямые линии построены по экспериментальным значениям $\ln[-\ln(1-x)]$ с использованием метода наименьших квадратов. Для каждой линии коэффициент корреляции, характеризующий тесноту линейной связи между $\ln[-\ln(1-x)]$ и $\ln t$, близок к единице. Тот факт, что кинетические кривые кристаллизации аморфной фазы ZrO₂ в координатах $\ln[-\ln(1-x)] - \ln t$ являются прямыми, указывает на применимость к процес-

Рис. 4. Кинетические кривые кристаллизации аморфного ZrO₂, представленные в виде зависимостей $\ln[-\ln(1-x)]$ от $\ln t$ для случаев лазерного (*a*) и ионно-плазменного (*b*) осаждения пленок. Скорости роста кристаллов $v_1 = 0.120 \,\mu\text{m} \cdot \text{s}^{-1}$, $v_2 = 0.110 \,\mu\text{m} \cdot \text{s}^{-1}$, $v_3 = 0.003 \,\mu\text{m} \cdot \text{s}^{-1}$, $v_4 = 0.002 \,\mu\text{m} \cdot \text{s}^{-1}$, $v_5 = 0.317 \,\mu\text{m} \cdot \text{s}^{-1}$, $v_6 = 0.012 \,\mu\text{m} \cdot \text{s}^{-1}$, $v_7 = 0.007 \,\mu\text{m} \cdot \text{s}^{-1}$, $v_8 = 0.002 \,\mu\text{m} \cdot \text{s}^{-1}$.

су кристаллизации формулы Джонсона–Мейла–Аврами–Колмогорова (JMAK) [6,7]

$$x = 1 - \exp(-nt^k), \tag{2}$$

где k и n — кинетические параметры кристаллизации.

Параметры *k* и *n* определялись по зависимостям, приведенным на рис. 4, *a* и *b*. Для этого выражение (2) записывалось в виде

$$\ln[-\ln(1-x)] = k \ln t + \ln n.$$
 (3)

Согласно (3), коэффициент k определяется как тангенс угла наклона прямой к оси абсцисс, а $\ln n$ — как точка пересечения прямой с осью ординат.

Значения кинетических параметров кристаллизации kи n при разных скоростях роста кристаллов в аморфных пленках ZrO₂ приведены в табл. 2. Там же указана плотность центров кристаллизации β , равная числу микрокристаллов, приходящихся на единицу площади пленки. Согласно данным табл. 2, при ионно-плазменном напылении величина β более чем на порядок превышает значения при лазерном напылении. Кадры видеофильма, снятого для каждого сеанса кристаллизации пленки, в целом свидетельствуют о постоянстве β . Следовательно, интенсивность зарождения кристаллов $\alpha(t)$ формально можно записать как

$$\alpha(t) = \beta \delta(t), \tag{4}$$

где δ — функция Дирака. Поэтому кинетические параметры кристаллизации k и n целесообразно трактовать, руководствуясь β -вариантом модели Колмогорова (так называемой *К*-модели) [8,9]. В этом случае k есть размерность модели, а

$$n = c\beta v^k, \tag{5}$$

где c — константа формы. Согласно [8,9], характерная единица времени t_0 (время, по прошествии которого x = 0.632) и характерная единица длины D_0 (размер кристалла к моменту t_0) в *К*-модели определяются как

$$t_0 = n^{-\frac{1}{k}} = (c\beta v^k)^{-\frac{1}{k}},$$
(6)

$$D_0 = vt_0 = (c\beta)^{-\frac{1}{k}}.$$
 (7)

Значения t_0 и D_0 , вычисленные согласно (6) и (7) для пленок, осажденных методами ИЛО и ИПО, при разных значениях v приведены в табл. 2.

4. Заключение

При ионно-плазменном и лазерном осаждении на подложках при комнатной температуре формируются аморфные пленки ZrO₂. Воздействие электронного луча инициирует их кристаллизацию с образованием микрокристаллов ZrO₂, имеющих ГЦК-кристаллическую решетку с близкими периодами. Кристаллизация происходит полиморфно (согласно классификации [10]): аморфное вещество переходит в кристаллическое без изменения состава, что характерно для стехиометрических химических соединений.

Во всем исследованном интервале скоростей роста кристаллов v (от 0.002 до $0.317 \,\mu m \cdot s^{-1}$) параметры электронно-лучевой кристаллизации пленок, полученных при лазерном испарении, существенно отличаются от параметров кристаллизации пленок, полученных методом ионно-плазменного осаждения. Согласно данным табл. 2, плотность центров кристаллизации $\beta \sim 10^9 cm^{-2}$ при лазерном испарении. В случае ионно-плазменного осаждения β на порядок выше и составляет $\sim 10^{10} cm^{-2}$. В рамках каждого сеанса кристаллизации пленок с фиксированной скоростью роста плотность центров кристаллизации остается практически неизменной, что соответствует β -варианту модели Колмогорова [8,9].

Размеры кристаллов ZrO₂, растущих в аморфных пленках, осажденных лазерным и ионно-плазменным напылением, также сильно различаются. В первом случае характерная единица длины процесса кристаллизации $D_0 \sim 0.48 \,\mu$ m. Во втором случае $D_0 \sim 0.06 \,\mu$ m, что почти на порядок меньше.

Кинетический параметр кристаллизации k (показатель степени в формуле (2)), зависит от скорости роста кристаллов (табл. 2). Имеет место тенденция к уменьшению k с уменьшением v при кристаллизации аморфных пленок, осажденных обоими методами. Если к трактовать как размерность модели процесса кристаллизации (в теории ЈМАК), то с уменьшением v от 0.120 до $0.002\,\mu\mathrm{m}\cdot\mathrm{s}^{-1}$ имеет место переход от двумерного (k = 1.8-2) к одномерному (k = 1.1-1.3) росту кристаллов ZrO2 в пленках, осажденных с помощью лазерного испарения. В пленках, осажденных методом ионноплазменного испарения, с уменьшением v от 0.317 до $0.002\,\mu\mathrm{m}\cdot\mathrm{s}^{-1}$ происходит переход от трехмерного (k = 4.5) к одномерному (k = 1.3 - 1.5) росту кристаллов ZrO₂. В то же время электронно-микроскопические исследования показали, что изменение скорости роста практически не влияет на морфологию кристаллов ZrO₂.

Список литературы

- I.P. Studenyak, M. Kranjcec, O.T. Nahusko, O.M. Borets. Thin Solid Films 476, 137 (2005).
- [2] С.М. Жарков, Л.И. Квеглис. ФТТ 46, 938 (2004).
- [3] А.Г. Багмут. Электронная микроскопия пленок, осажденных лазерным испарением. Изд-во НТУ "ХПИ", Харьков. (2014). 304 с.
- [4] А.Г. Багмут, И.А. Багмут, Н.А. Резник. ФТТ 58, 1221 (2016).
- [5] V.M. Beresnev, S.A. Klimenko, I.N. Toryanik, A.D. Pogrebnjak, O.V. Sobol, P.V. Turbin, S.S. Grankin. J. Superhard Mater. 36, 29 (2014).
- [6] G. Ruitenberg, A.K. Petford-Long, R.C. Doole. J. Appl. Phys. 92, 3116 (2002).
- [7] Э.Ш. Гаджиев, А.И. Мададзаде, Д.И. Исмаилов. ФТП 43, 1534 (2009).
- [8] А.Н. Колмогоров. Изв. АН СССР. Сер. мат. 3, 355 (1937).
- [9] В.З. Беленький. Геометрико-вероятностные модели кристаллизации. Феноменологический подход. Наука, М. (1980). 84 с.
- [10] U. Köster, U. Herold. Glassy metals I. Ionic structure, electronic transport and crystallization. Springer-Verlag, N.Y. (1981). 376 p.

Физика твердого тела, 2017, том 59, вып. 1