Микроструктура, упругие и неупругие свойства биоморфных углеродов, карбонизированных с использованием Fe-содержащего катализатора

© Т.С. Орлова^{1,2}, Б.К. Кардашев¹, Б.И. Смирнов¹, А. Gutierrez-Pardo³, J. Ramirez-Rico³

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

07

² Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики,

Санкт-Петербург, Россия

³ Dpto Fisica de la Materia Condensada-ICMS, Universidad de Sevilla, Sevilla, Spain

E-mail: orlova.t@mail.ioffe.ru

(Поступила в Редакцию 28 апреля 2016 г.)

Исследованы микроструктура и амплитудные зависимости модуля Юнга E и внутреннего трения (логарифмического декремента δ), а также микропластические свойства у биоуглеродных матриц BE-C(Fe), полученных карбонизацией дерева бука при температурах $T_{carb} = 850-1600^{\circ}$ С в присутствии железосодержащего катализатора. Методами рентгеноструктурного анализа и просвечивающей электронной микроскопии показано, что использование Fe-катализатора при карбонизации с $T_{carb} \ge 1000^{\circ}$ С приводит к появлению объемной графитовой фазы в виде наноразмерных объемных графитовых включений в квазиаморфной матрице, объемная доля и размер которых увеличиваются с повышением T_{carb} . Выявлена корреляция полученных зависимостей $E(T_{carb})$ и $\delta(T_{carb})$ с эволюцией микроструктуры при увеличении T_{carb} . Обнаружено, что величина E определяется главным образом долей кристаллической фазы в аморфной матрице: нанокристаллической фазы при $T_{carb} < 1150^{\circ}$ С и объемной графитовой фазы в аморфной матрице: нанокристаллической фазы при $T_{carb} < 1150^{\circ}$ С. Показано, что микропластичность проявляется лишь у биоуглеродов с $T_{carb} \ge 1300^{\circ}$ С (при достижении значительного объема введенной мезопористости (площади свободной поверхности).

Работа выполнена при частичной поддержке РФФИ (грант № 14-03-00496) и Программы Президиума РАН (П-20).

1. Введение

Различные пористые углеродные материалы традиционно используются в качестве материалов для электродов, что обусловлено их химической стойкостью к различным электролитам, широкой областью рабочих температур, хорошими характеристиками электро- и теплопроводности [1–5]. Важными структурными параметрами углеродных материалов, необходимыми для использования их в качестве электродов к суперконденсаторам, являются взаимосвязанная мезопористость (с размерами пор 2–50 nm, благоприятными для проникновения электролита), обеспечивающая большую свободную поверхность, а также микропористость, поскольку соотношение мезо/микропористости может значительно влиять на величину удельной емкости в электролите [6].

В последнее время биоморфные углеродные матрицы, получаемые карбонизацией натурального дерева или прессованной микрофибры, рассматриваются как перспективные материалы для применения в качестве электродов, поскольку они обладают многоуровневой взаимосвязанной системой пор с достаточно жестким каркасом [7-11], хорошей электро- [12,13] и теплопроводностью [14-16], а также не требуют использования связующих компонентов для изготовления из них электродов в отличие от порошковых углеродов. Для некоторых типов исходной древесины открытая природная пористость в биоуглеродах может достигать 75%. При этом имеет место бимодальная структура канальных пор, вытянутых вдоль направления роста дерева, а именно существуют поры малых размеров с диаметром 3-9µm и больших размеров с диаметром в пределах 20-200 µm в зависимости от типа исходной древесины. Однако для использования биоуглеродов в качестве электродов необходимо введение в них мезопористости, сопровождаемой значительным увеличением свободной поверхности. Успешные попытки введения такой мезопористости были предприняты в работах [17,18]. За счет использования катализаторов на основе переходных металлов Ni и Fe было достигнуто увеличение площади свободной поверхности в ~ 60 и ~ 180 раз соответственно. Кроме того, применение данных катализаторов при определенных температурах карбонизации Tcarb приводило к частичной графитизации биоуглеродов [17,19,20], в результате которой повышались электро- и теплопроводность данных материалов [21-23]. В результате на биоуглеродах, полученных с использованием Fe-содержащего катализатора была достигнута относительно высокая электроемкость > 100 F/g, сравнимая со значениями для ряда коммерческих углеродных материалов [17]. Для потенциального использования высокопористых биоуглеродных материалов важными являются также характеристики их упругих свойств, прочности и микропластичности. В наших предыдущих работах на биоуглеродах, карбонизированных без катализатора [24,25] и с использованием Ni-содержащего катализатора [26,27] с температурой карбонизации в широком интервале 800-1600°С, было показано, что упругие и механические свойства сильно зависят как от параметров пористой структуры, так и от микроструктуры самого биоуглеродного каркаса.

В настоящей работе мы продолжаем серию исследований влияния каталитической графитизации на физико-механические свойства биоуглеродных материалов. Впервые исследуются упругие и микропластические свойства биоуглеродов, полученных карбонизацией древесины бука при различных температурах в присутствии Fe-содержащего катализатора, в сопоставлении с их микроструктурными особенностями. Полученные данные по особенностям микроструктуры, упругим и неупругим свойствам сравниваются с подобными характеристиками образцов, приготовленных в тех же условиях с использованием Ni-содержащего катализатора (система образцов BE-C(Ni)) [26] или вообще без катализатора (система образцов BE-C) [24].

Образцы и экспериментальная методика

Исследовались образцы биоуглерода, полученного карбонизацией древесины бука при различных значениях температуры карбонизации T_{carb} в области 850-1600°С в присутствии Fe-содержащего катализатора. Куски древесины бука размером 75 × 15 × 15 mm предварительно высушивались в печи для устранения из пор остаточной влаги, а затем помещались в 3М раствор хлорного железа (FeCl₃) в изопропаноле для заполнения им пор. Для обеспечения заполнения раствором всего пространства пор воздух из пор предварительно откачивался путем помещения образца в вакуумную камеру. Образцы выдерживались в растворе в течение 2h, затем высушивались при небольшом подогреве до момента полного высыхания, который контролировался по изменению веса прекурсора. Пиролиз осуществлялся в потоке инертного газа (азота чистоты 99.999%). Нагрев проводился со скоростью 1°C/min до 500°C, затем со скоростью 5°С/min до температуры T_{carb} (850, 1000, 1150, 1300, 1400, 1500 и 1600°С), при которой образец выдерживался в течение 30 min и затем охлаждался со

скоростью 5°С/min. Такой температурный режим пиролиза позволял избежать трещинообразования. После пиролиза остаточное железо устранялось путем промывания образцов в концентрированной кислоте HNO₃ (67%, Panreac) в течение 2h с последующим промыванием в ацетоне до достижения нейтрального значения рН и сушкой в печи. Данный метод получения графитизированных биоуглеродов подробно описан в [17]. Далее образцы биоуглерода бука, карбонизированные при определенной температуре T_{carb} с использованием Fe-содержащего катализатора и затем химически обработанные для удаления остаточного железа, будем относить к системе образцов BE-C(Fe) и обозначать ВЕ-С-*T*_{carb}(Fe), т.е., например, ВЕ-С-850(Fe) — биоуглерод, полученный карбонизацией дерева бука при $T_{\text{carb}} = 850^{\circ}$ С в присутствии Fe-катализатора.

Структура карбонизированных образцов исследовалась методами рентгеновской дифрактометрии (D8 Advance, Bruker) и просвечивающей электронной микроскопии (Philips CM-200).

Образцы для акустических исследований имели форму прямоугольных параллелепипедов с квадратным поперечным сечением площадью ~ 16 mm² и длиной $\sim 20\,\mathrm{mm}$, при этом длинная сторона образцов была ориентирована вдоль ростовых волокон исходного дерева. Для измерений модуля Юнга Е и декремента ультразвуковых колебаний δ использовался метод составного вибратора. В образцах возбуждались продольные резонансные колебания на частоте около 100 kHz. Измерялись модуль Юнга Е и декремент ультразвуковых колебаний δ в зависимости от амплитуды акустических колебаний ε , которая изменялась в пределах от $\sim 10^{-7}$ до 2.10-4. Подробное описание метода можно найти в [28]. Для измерения амплитудных зависимостей *E*(ε) и $\delta(\varepsilon)$ акустическая система (исследуемый образец и кварцевый преобразователь) помещалась в вакуумную камеру, из которой воздух откачивался до величины давления $\sim 10^{-3}$ mm Hg. Затем измерялись амплитудные зависимости модуля Юнга Е и декремента δ при комнатной температуре.

3. Экспериментальные данные и их обсуждение

3.1. Структурная характеризация образцов. На рис. 1 показан пример рентгеновских дифрактограмм для биоуглеродных образцов, карбонизированных при различной температуре с использованием железосодержащего катализатора. Как и в случае применения Ni-катализатора [19], использование Fe-катализатора при $T_{\rm carb} \ge 1000^{\circ}$ С приводит к формированию графитизированной фазы, о чем свидетельствует появление на рентгенограмме сильного пика (002) при $2\theta = 26.6^{\circ}$ (рис. 1). При меньших температурах карбонизации использование Fe-катализатора не приводило к формированию заметной доли графитовой фазы. Исследование степени упорядочения структуры исследуемых биоуглеродов, полученных с использованием Fe-содержащего катализатора, было проведено методом рамановской спектроскопии в работе [22], в которой на основе анализа рамановских спектров была определена степень кристалличности (относительное содержание графитовой фазы) как функция T_{carb} . Было показано, что при повышении T_{carb} от 850 до 1150°С доля кристаллитов типа графита возрастает очень незначительно: от ~ 23 до ~ 25%, в то время как при дальнейшем увеличении T_{carb} она увеличивается со значительно большей скоростью и при $T_{carb} = 1600°$ С достигает более 60%.

Рис. 1. Картины рентгеновской дифракции для биоуглеродных образцов, карбонизированных при различных температурах в присутствии Fe-содержащего катализатора. Звездочкой отмечены пики, относящиеся к остаточному железу после травления образцов в HNO₃.

Рис. 2. Типичное микроструктурное изображение, полученное методом просвечивающей электронной микроскопии для биоуглерода, карбонизированного при $T_{carb} = 1600^{\circ}$ С в присутствии Fe-катализатора. Стрелками показана графитовая фаза (*G*-фаза). На вставке — селективная электронная дифракция от *G*-фазы.

Образец	$T_{\text{carb}}, ^{\circ}\text{C}$	Площадь поверхности пор, m ² /g	Средний размер поры, nm	Объем пор, cm ³ /g
BE-C(Fe)	1000	370	2.6	0.24
	1300	217	3.6	0.21
	1600	167	3.6	0.15
BE-C(Ni)	1000	121	6.3	0.19
	1300	72.6	6.8	0.12
	1600	53.7	7.5	0.10

Исследование тонкой структуры введенной графитовой фазы, проведенное методом просвечивающей электронной микроскопии, показало, что графитовая фаза образуется путем наслоения турбостатического графита вокруг частиц Fe [17]. После устранения химическим путем частиц Fe графитовая фаза представляет собой полые наноразмерные сферообразные включения, размер которых не превышает 200 nm даже при максимальном значении $T_{carb} = 1600^{\circ}$ C (рис. 2). Это принципиально отличает микроструктуру образцов BE-C(Fe) от микроструктуры системы биоуглеродов BE-C(Ni), полученных с использованием катализатора на основе Ni, у которых при $T_{carb} \ge 1450^{\circ}$ C формировались глобулы графита микронных размеров [19].

Использование Fe-катализатора не влияло на макропористую структуру биоуглеродных образцов: для всех температур карбонизации она оставалась подобной и характеризовалась наличием канальных пор, ориентированных вдоль направления роста дерева и имеющих бимодальную структуру: поры малого (3-7 µm) и большого (22-38 µm) диаметров. Суммарный объем таких макроскопических пор у образцов составлял $65 \pm 5\%$ [6]. Однако, использование Fe-катализатора приводило к появлению мезо- и микропористости и, как следствие, значительному увеличению площади свободной поверхности А. Характерные параметры этой дополнительной пористости: суммарный объем и средний размер пор, а также величина площади свободной поверхности А представлены в таблице по данным исследований методом Брунауэра-Эммета-Теллера (ВЕТ), ранее проведенных на этих образцах в [17,18].

3.2. У пругие и неупругие свойства. На рис. 3 показаны зависимости от температуры карбонизации модуля E(a) и декремента $\delta(b)$, измеренные в вакууме после откачки воздуха для биоуглеродных матриц ВЕ-С(Fe), полученных карбонизацией бука в присутствии Fe-содержащего катализатора (кривые 1). Отметим, что измеряемые (действующие) значения E и δ определялись исходя из полного сечения образца, включающего и площадь пор. Там же для сравнения приведены зависимости $E(T_{carb})$ и $\delta(T_{carb})$, полученные нами ранее для биоуглеродных матриц бука, карбонизированных в тех

Рис. 3. Зависимости модуля Юнга E(a) и декремента $\delta(b)$ для биоморфных углеродных образцов от температуры их карбонизации T_{carb} . 1 — серия образцов BE-C(Fe) (данные настоящей работы), 2 — образцы BE-C(Ni) [26], 3 — образцы BE-C [24].

же условиях с Ni-содержащим катализатором [26] (кривые 2) и без катализатора [24] (кривые 3). Для образцов ВЕ-С зависимости $E(T_{carb})$ и $\delta(T_{carb})$ фактически состоят из двух линейных областей: при росте $T_{\rm carb}$ до $\sim 1000^{\circ}{
m C}$ наблюдается быстрое увеличение E и уменьшение δ , затем при $T_{\rm carb} > 1000^{\circ}{\rm C}$ эти изменения происходят существенно медленнее (рис. 3, а, b, кривые 3). Такое поведение коррелирует с увеличением доли нанокристаллической фазы (*N*-фазы) в аморфной матрице [21]. Быстрое изменение Е и б с температурой в интервале $T_{\rm carb} < 1000^{\circ}{\rm C}$ связывается с ростом доли *N*-фазы в аморфной матрице, в то время как при $T_{\rm carb} > 1000^{\circ} {\rm C}$ упругие свойства определяются уже практически сформировавшейся нанокристаллической фазой [24]. Следует отметить, что в области температур $T_{carb} = 900 - 1000^{\circ} C$ наблюдается известный переход изолятор-сильно разупорядоченный металл [12,13], а также происходит изменение поведения тепловых свойств биоуглеродов, карбонизированных на основе натуральной древесины [14,15].

Примечательно, что зависимости $E(T_{carb})$ для серий образцов BE-C(Fe) и BE-C(Ni) подобны и демонстриру-

ют провал (резкое уменьшение величины E) в интервале $1150 < T_{carb} \le 1300^{\circ}$ С, при этом во всем исследованном интервале T_{carb} величины модуля Юнга в 1.5-2 раза выше в случае системы BE-C(Fe), чем для системы образцов BE-C(Ni). Такой характер зависимости $E(T_{carb})$ у частично графитизированных образцов BE-C(Fe) и BE-C(Ni) никак не коррелирует с увеличением введенной мезопористости и, как следствие, с увеличением свободной поверхности, которые максимальны для $T_{\rm carb} = 1000^{\circ}{\rm C}$ и постепенно уменьшаются с повышением T_{carb} для обеих систем (см. таблицу). В [26] при исследовании системы BE-C(Ni) было высказано предположение, что формирование объемной графитовой фазы (G-фазы) при $T_{carb} \ge 1000^{\circ}$ С подавляет формирование *N*-фазы, что приводит к падению значений модуля *E* в области $1150 < T_{carb} \le 1300^{\circ}$ С, затем при дальнейшем повышении температуры карбонизации T_{carb} > 1300°C модуль Е растет за счет формирования G-фазы. Действительно, по данным рамановской спектроскопии [22] в образцах системы BE-C(Fe) объем G-фазы практически не изменяется при $1000 < T_{\rm carb} < 1200^{\circ}{\rm C}$ и остается на уровне 23-25 vol.%, а затем быстро растет, достигая $\sim 30 \text{ vol.}\%$ при $T_{\text{carb}} = 1300^{\circ}\text{C}$ и $\sim 60 \text{ vol.}\%$ при $T_{\text{carb}} = 1600^{\circ}$ С. В то же время рентгеноструктурный анализ, проведенный для системы образцов ВЕ-С в [16], показал, что в интервале температур $1000 < T_{carb} < 1200^{\circ}C$ объем нанокристаллической фазы превышает 50 vol.%. Следует также принимать во внимание тот факт, что размер нанокристаллитов в *N*-фазе изменяется от $\sim 12 \,\text{\AA}$ (для кристаллитов типа графита) и ~ 26 Å (для кристаллитов типа графена) при $T_{\rm carb} = 1000^{\circ}$ С до ~ 25 и ~ 60 Å соответственно при $T_{carb} = 2400^{\circ}C$ [29]. В случае же применения Fe-содержащего катализатора формируются графитовые структуры с размерами кристаллитов от $\sim 110 \,\mathrm{A}$ у образцов с $T_{\rm carb} = 1000^\circ{
m C}$ до $\sim 210\,{
m \AA}$ для образцов с $T_{\rm carb} = 1600^{\circ} {\rm C}$ [22].

Поскольку по данным рентгеноструктурного анализа (рис. 1) в интервале $850 < T_{carb} < 1000^{\circ}$ С еще не формируется объемная графитовая фаза, рост Е и падение δ с увеличением T_{carb} у образцов ВЕ-С(Fe) в этом температурном интервале, как и у систем ВЕ-С и ВЕ-C(Ni), связаны, по-видимому, с растущей нанокристаллической фазой в аморфной матрице. Примечательно, что у образцов BE-C(Fe) с $T_{carb} = 1000 - 1150^{\circ}$ С, обладающих наибольшей площадью свободной поверхности и поэтому наиболее перспективных для потенциального использования в качестве электродов для суперконденсаторов [17], наблюдается максимальное значение модуля упругости $E \sim 12 \,\text{GPa}$, превышающее примерно в 1.5 раза таковое для образцов системы BE-C(Ni). Это, по-видимому, объясняется тем, что использование Feсодержащего катализатора при $T_{\rm carb} < 1000^{\circ}{\rm C}$ способствует формированию более упорядоченной нанокристаллической фазы. Оценки размеров нанокристаллитов в образцах BE-C(Fe) с $T_{carb} = 1000^{\circ}$ С, сделанные в [22], дают для размеров нанокристаллитов значения ~ 110 Å,

Рис. 4. Амплитудные зависимости модуля Юнга E(a) и декремента $\delta(b)$ для образцов ВЕ-С(Fe), полученных при $T_{\text{carb}} = 1150^{\circ}$ С в присутствии Fe-катализатора. Измерения выполнены в вакууме на образцах, подвергавшихся воздействию высоких амплитуд при комнатной температуре. Стрелки указывают направление изменения ε .

Рис. 5. Амплитудные зависимости модуля Юнга E(a) и декремента $\delta(b)$ для образцов ВЕ-С(Fe), полученных при $T_{\rm carb} = 1600^{\circ}$ С в присутствии Fe-катализатора. Измерения выполнены в вакууме на образцах, подвергавшихся воздействию высоких амплитуд при комнатной температуре.

что существенно превышает таковые (12–26 Å) в образцах ВЕ-С с $T_{carb} = 1000^{\circ}$ С [29].

Для образцов BE-C(Fe) было проведено исследование амплитудных зависимостей модуля Юнга $E(\varepsilon)$ и декремента $\delta(\varepsilon)$ для различных температурных областей: $T_{\text{carb}} < 1000^{\circ}\text{C}, \ 1000 \le T_{\text{carb}} < 1300^{\circ}\text{C}$ и $T_{\text{carb}} > 1300^{\circ}\text{C}.$ На рис. 4 и 5 представлены зависимости $E(\varepsilon)$ и $\delta(\varepsilon)$ для образцов BE-C-1150(Fe) и BE-C-1600(Fe) соответственно. В области 1000 < T_{carb} < 1300°C значения модуля Е и декремента б практически не изменяются при увеличении амплитуды колебаний до значений, превышающих 10⁻⁴, как видно из рис. 4 на примере образца BE-C-1150(Fe). Это свидетельствует о пониженной пластичности данных образцов. Эффект пластичности (падение *E* и рост δ с увеличением ε) у биоуглеродов системы BE-C(Fe) начинает проявляться лишь при дальнейшем увеличении T_{carb} от 1300°С (рис. 5). Подобное поведение также демонстрировали образцы BE-C(Ni), карбонизированные с использованием Ni-содержащего катализатора. Следует отметить, что в образцах ВЕ-С, полученных без использования катализатора, эффект пластичности проявляется начиная с $T_{carb} = 1000^{\circ}$ С, когда формируется квазиперколяционная структура из нанокристаллитов [30] и поведение упругих и неупругих свойств определяется этой нанокристаллической фазой [24]. Поскольку в образцах BE-C(Fe) эффект пластичности (падение E и рост δ с увеличением ε) проявляется начиная с $T_{carb} > 1300^{\circ}$ С, когда происходит быстрый рост объема графитовой фазы: от $\sim 30 \, {\rm vol.\%}$ при $T_{\text{carb}} = 1300^{\circ}$ С до $\sim 60 \text{ vol.}\%$ при $T_{\text{carb}} = 1600^{\circ}$ С по данным рамановской спектроскопии [22], по-видимому, в этих образцах сформировавшаяся G-фаза и контролирует поведение их упругих и неупругих свойств. Обычно амплитудно-зависимое внутреннее трение связывается со скольжением дислокаций, обеспечивающим пластическое течение, которое, несомненно, легче осуществить в кристаллической структуре, чем в аморфной фазе, даже если G-фаза в биоуглеродах системы BE-C(Fe) состоит из кристаллитов графитовых образований с размерами, не превышающими 200 nm при максимальной температуре $T_{carb} = 1600^{\circ}$ С, и представляет собой сильно разупорядоченную структуру.

Таким образом, у исследованных в настоящей работе частично графитизированных биоуглеродных матриц ВЕ-С(Fe) микропластическая деформация проявляется лишь при $T \ge 1300^{\circ}$ С. Подобное поведение также демонстрировали частично графитизированные биоуглероды системы ВЕ-С(Ni), исследованные ранее [26]. На основе полученных зависимостей $E(\varepsilon)$ были построены диаграммы напряжение σ -микропластическая деформация ε_d для образцов системы ВЕ-С(Fe) (рис. 6). Процедура построения подобных диаграмм описана в [31]. Видно, что образцы ВЕ-С(Fe) с $T_{carb} \ge 1300^{\circ}$ С имеют меньшие значения условного предела микротекучести σ_y (напряжение при $\varepsilon_d = 1.0 \cdot 10^{-8}$) по сравнению с образцами с $T_{carb} < 1300^{\circ}$ С. Подобное поведение наблюдалось и для системы ВЕ-С(Ni). Наиболее вероятно это связано

Рис. 6. Кривые напряжение—микропластическая деформация, полученные по данным акустических измерений в вакууме, для образцов BE-C(Fe), карбонизированных в присутствии Fe-катализатора. T_{carb} , °C: I = 850, 2 = 1150, 3 = 1300, 4 = 1400, 5 = -1600.

Рис. 7. Сравнение кривых напряжение—микропластическая деформация, полученных по данным акустических измерений в вакууме, для образцов BE-C(Fe) и Be-C(Ni), карбонизированных при $T_{carb} = 1600^{\circ}$ C в присутствии Fe-катализатора (кривая 1) и Ni-катализатора (кривая 2 [26]) соответственно.

с формированием значительной объемной доли кристаллитов графитовой фазы при $T_{carb} \ge 1300^{\circ}$ С. Следует отметить, что у обеих систем BE-C(Fe) и BE-C(Ni) при возрастании T_{carb} в области $1300 \le T_{carb} \le 1600^{\circ}$ С условный предел текучести σ_y растет, несмотря на то что растут объемная доля графитовой фазы и размер кристаллитов. Казалось бы, более развитая кристаллическая структура должна способствовать облегчению процесса микропластичности, как это наблюдалось, например, для образцов, карбонизированных на основе древесины сосны без катализатора при $T_{carb} = 2400^{\circ}$ С, когда формировалось $\sim 80\%$ нанокристаллической фазы с размерами кристаллитов 25–60 Å [32]. В слу-

чае частично графитизированных образцов BE-C(Fe) и BE-C(Ni), формирующаяся вокруг частиц катализатора графитовая фаза представляет собой совокупность разупорядоченных графитовых структур, выходящих на поверхность. Активация скольжения отдельных дислокаций, по-видимому, и происходит с поверхности образца. Действительно, увеличение σ_v при повышении T_{carb} от 1300 до 1600°С коррелирует с уменьшением свободной поверхности, образовавшейся за счет введения дополнительной мезопористости при использовании катализаторов. Следует отметить, что сравнение значений σ_v для двух систем с одинаковой T_{carb} показывает, что на уровне рассматриваемых деформаций $\varepsilon_d = 1.0 \cdot 10^{-8}$ микропластическое течение значительно облегчено в системе образцов BE-C(Ni) по сравнению с системой BE-C(Fe), несмотря на более развитую свободную поверхность в последнем случае. Например, у биоуглерода BE-C-1600(Fe) $\sigma_v = 0.76$ MPa, а у биоуглерода BE-C-1600(Ni) $\sigma_v = 0.18$ MPa (рис. 7). Такое различие может быть связано со специфическими особенностями графитовой фазы, выходящей на свободную поверхность при использовании того или иного катализатора.

4. Заключение

В работе впервые были получены амплитудные зависимости модуля Юнга E и декремента ультразвуковых колебаний δ для частично графитизированных пористых биоуглеродных матриц, карбонизированных из древесины бука при различных температурах $T_{\rm carb}$ в присутствии железосодержащего катализатора (система BE-C(Fe)), и проведено сравнение этих характеристик данной системы с таковыми для частично графитизированных образцов, полученных с Ni-содержащим катализатором (система BE-C(Ni)) и без катализатора (система BE-C).

Методами рентгеноструктурного анализа и электронной микроскопии показано, что присутствие Fe-катализатора при карбонизации приводит к частичной графитизации биоуглеродов при $T_{\rm carb} \ge 1000^{\circ}$ С, при этом фаза графита формируется в виде наноразмерных полых сферообразных включений, размер которых не превышает 200 nm даже при максимальном значении $T_{\text{carb}} = 1600^{\circ}$ C. Размер графитовых включений и суммарная объемная доля графитовой фазы увеличиваются с повышением T_{carb} . Полученные для системы BE-C(Fe) зависимости $E(T_{carb})$ и $\delta(T_{carb})$ оказались подобными таковым для образцов BE-C(Ni): в интервале $1150 < T_{carb} < 1300^{\circ}$ С наблюдается резкое уменьшение модуля Юнга, сопровождающееся увеличением логарифмического декремента. Величина E увеличивается, а δ уменьшается с повышением T_{carb} в интервалах $T_{\text{carb}} < 1150^{\circ}$ С и $T_{\text{carb}} > 1300^{\circ}$ С, что связывается с формированием в аморфной матрице нанокристаллической фазы в первом и графитовой фазы во втором случае. Резкое падение E и рост δ в интервале $1150 < T_{carb} < 1300^{\circ}C$ наиболее вероятно свидетельствуют о подавлении формирования нанокристаллической фазы образующейся фазой графита. Пористые биоуглеродные матрицы BE-C(Fe) с $T_{carb} = 1000-1150$ и 1600°C показывают наиболее высокие значения модуля Юнга, в 1.5–2 раза превышающие значения *E* для биоуглеродных образцов, полученных с Ni-катализатором и без катализатора.

Неупругая микропластическая деформация (на уровне деформации $1.0 \cdot 10^{-8}$) проявляется при повышении температуры карбонизации начиная с $T_{carb} = 1300^{\circ}$ С, при этом величина условного предела микротекучести коррелирует с величиной введенной мезопористости (величиной площади свободной поверхности A): чем больше A, тем ниже значение σ_y .

Список литературы

- [1] L.L. Zhang, X.S. Zhao. Chem. Soc. Rev. 38, 2520 (2009).
- [2] E. Frackowiak, F. Beguin. Carbon **39**, 937 (2001).
- [3] P. Simon, Yu. Gogotsi. Nature Mater. 7, 845 (2008).
- [4] M.V. Lebedeva, P.M. Yeletsky, A.B. Ayupov, A.N. Kuznetsov, V.A. Yakovlev, V.N. Parmon. Mater. Renew. Sustain. Energy 4, 20 (2015).
- [5] R.K. Gupta, M. Dubey, P. Kharel, Zh. Gu, Q.H. Fan. J. Power Sources 274, 1300 (2015).
- [6] A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak. Electrochim. Acta 50, 2799 (2005).
- [7] P. Greil, T. Lifka, A. Kaindl. J. Eur. Ceram. Soc. 18, 1961 (1998).
- [8] P. Greil. J. Eur. Ceram. Soc. 21, 105 (2001).
- [9] V.S. Kaul, K.T. Faber, R. Sepulveda, A.R. de Arellano Lopez, J. Martinez-Fernandez. Mater. Sci. Eng. A 428, 225 (2006).
- [10] C. Zollfrank, H. Siber. J. Eur. Ceram. Soc. 24, 495 (2004).
- [11] C.E. Byrne, D.C. Nagle. Carbon 35, 267 (1997).
- [12] В.В. Попов, Т.С. Орлова, Е. Enrique Magarino, М.А. Bautista, J. Martinez-Fernandez. ФТТ 53, 259 (2011).
- [13] В.В. Попов, Т.С. Орлова, J. Ramirez-Rico. ФТТ 51, 2118 (2009).
- [14] И.А. Смирнов, Б.И. Смирнов, Т.С. Орлова, Сz. Sulkovski, H. Misiorek, A. Jezowski, J. Mucha. ΦΤΤ 53, 2133 (2011).
- [15] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, J. Mucha, M.C. Vera. ФТТ 53, 2278 (2011).
- [16] Н.Ф. Картенко, Т.С. Орлова, Л.С. Парфеньева, Б.И. Смирнов, И.А. Смирнов. ФТТ 56, 2269 (2014).
- [17] A. Gutierrez-Pardo, J. Ramirez-Rico, R. Cabezas-Rodriguez, J. Martinez-Fernandez. J. Power Sources 278, 18 (2015).
- [18] A. Gutierrez-Pardo. Tesisdoctoral. Universidad de Sevilla, Sevilla, Spain. ES41080.
- [19] A. Gutierrez-Pardo, J. Ramirez-Rico, A.R. de Arellano-Lopez, J. Martinez-Fernandez. J. Mater. Sci. 49, 7688 (2014).
- [20] M.T. Johnson, K.T. Faber. J. Mater. Res. 26, 18 (2011).
- [21] В.В. Попов, Т.С. Орлова, А. Gutierrez-Pardo, J. Ramirez-Riсо. ФТТ 57, 1703 (2015).
- [22] J. Ramirez-Rico, A. Gutierrez-Pardo, J. Martinez-Fernandez, V.V. Popov, T.S. Orlova. Mater. Design 99, 528 (2016).
- [23] Т.С. Орлова, Л.С. Парфеньева, Б.И. Смирнов, А. Gutierrez-Pardo, J. Ramirez-Rico. ФТТ 58, 200 (2016).
- [24] Б.К. Кардашев, Т.С. Орлова, Б.И. Смирнов, А. Gutierrez, J. Ramirez-Rico. ФТТ 55, 1771 (2013).

- [25] В.В. Шпейзман, Т.С. Орлова, Б.И. Смирнов, А. Gutierrez-Pardo, J. Ramirez-Rico. Mater. Phys. Mech. 21, 200 (2014).
- [26] Т.С. Орлова, Б.К. Кардашев, Б.И. Смирнов, А. Gutierrez-Pardo, J. Ramirez-Rico, J. Martinez-Fernandez. ФТТ 57, 571 (2015).
- [27] В.В. Шпейзман, Т.С. Орлова, Б.И. Смирнов, А. Gutierrez-Pardo, J. Ramirez-Rico, ФТТ **58**, 685 (2016).
- [28] С.П. Никаноров, Б.К. Кардашев. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985). 254 с.
- [29] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, T.E. Wilkes, К.Т. Faber. ФТТ **52**, 1045 (2010).
- [30] A.K. Kercher, D.C. Nagle. Carbon 41, 15 (2003).
- [31] Б.И. Смирнов, Ю.А. Буренков, Б.К. Кардашев, D. Singh, К.С. Goretta, A.R. de Arellano-Lopez. ФТТ 43, 2010 (2001).
- [32] Б.К. Кардашев, Т.С. Орлова, Б.И. Смирнов, Т.Е. Wilkes, К.Т. Faber. ФТТ 51, 2320 (2009).