01

Метастабильные состояния пылевой плазмы

© А.В. Шавлов,^{1,2} В.А. Джуманджи¹

¹ Институт криосферы Земли СО РАН,
 625000 Тюмень, Россия
 ² Тюменский индустриальный университет (Industrial University of Tyumen),
 625000 Тюмень, Россия
 e-mail: shavlov@ikz.ru

(Поступило в Редакцию 14 апреля 2015 г.)

Выполнен аналитический расчет свободной энергии трехкомпонентной пылевой плазмы на основе сферической модели элементарного электронейтрального объема. Показана возможность существования метастабильных состояний пылевых частиц, ионов и одновременно всех частиц плазмы при конечных межчастичных расстояниях. Эти состояния могут достигаться за счет пространственной корреляции электронов, а некоторые — за счет корреляции ионов. Важными условиями существования метастабильных состояний являются большой заряд пылевых частиц, высокая электронная температура и малая доля заряда электронов по сравнению с полным абсолютным зарядом частиц плазмы. Проанализирована возможная связь между существованием метастабильных состояний частиц в плазме и явлением их агломерации.

Введение

Пылевая плазма привлекает пристальное внимание исследователей, с одной стороны, в связи с появлением и развитием новых технологий получения дисперсных композиционных материалов (порошков, состоящих из малых частиц, покрытых, например, металлическими оболочками) [1-5], а с другой стороны, в связи с проблемами миниатюризации электронной техники [6-8]. Получение дисперсных композиционных материалов основано на способности пылевых частиц левитировать и образовывать в плазме газового разряда кристалло- и жидкоподобные структуры с межчастичным расстоянием, намного превышающим размер частиц, в результате чего поверхность частиц оказывается доступной для плазменного осаждения необходимых элементов. Проблемы миниатюризации электронной техники упираются в другую способность пылевых частиц — способность к агломерации (коагуляции), которая приводит к пылевому загрязнению технологической плазмы крупными частицами и порче образцов при плазменном травлении. Свойства пылевых частиц образовывать регулярные пространственные структуры, а также агломерировать при наличии на них большого одноименного электрического заряда (от 1 до 10³-10⁴ единиц элементарного заряда) указывает на существование особых сил притяжения между частицами и является в настоящее время самым неоднозначно понимаемым вопросом пылевой плазмы. В литературе обсуждались следующие механизмы притяжения частиц: притяжение за счет бомбардировки частиц разогретыми нейтралами [9], теневое притяжение, благодаря потоку плазмы на поверхность частиц [9,10], кильватерное притяжение — притяжение частицы к противоположно заряженному кильватерному следу другой частицы [11]. В [12-14] исследовали электростатическое взаимодействие частиц в водном аэрозоле и ионноэлектронной плазме, где установили, что притяжение

возможно вследствие корреляции противоположного заряда на линии между частицами.

Целью настоящей работы является аналитический расчет свободной энергии и анализ метастабильных состояний трехкомпонентной пылевой плазмы. В расчетах будет использовано уравнение Пуассона-Больцмана. Будет показано, что в пылевой плазме может возникать электростатическое притяжение между частицами, и впервые будет продемонстрирована возможность достижения метастабильных состояний плазмы как за счет корреляции легких носителей заряда — электронов, так и за счет корреляции более тяжелых носителей ионов. Будет проанализирована возможная связь обнаруженных метастабильных состояний плазмы с явлением агломерации пылевых частиц и их способностью к пространственному упорядочению.

Формулировка и решение задачи

Рассмотрим трехкомпонентную пылевую плазму, состоящую из отрицательно заряженных пылевых частиц с зарядом $Z = 1-10^4$ (в единицах элементарного заряда), радиусом, концентрацией и температурой соответственно R, N_-, T , положительных однозарядных ионов с параметрами R_+, N_+, T_+ , электронов с параметрами R_e, N_e, T_e ($R \gg R_+, R_e, T \neq T_+ \neq T_e$). Уравнение электронейтральности плазмы имеет вид

$$N_+ = ZN_- + N_e. \tag{1}$$

Вычислим свободную энергию плазмы в соответствии со схемой расчетов [15]. Для этого сначала составим уравнение Пуассона-Больцмана и граничные условия для потенциала пылевой частицы в некотором элементарном электронейтральном объеме, пространственной трансляцией которого можно сконструировать плазму произвольного объема. Затем вычислим потенциал и вычтем из него чисто кулоновский потенциал частицы. Тем самым определим потенциал, создаваемый плазмой на поверхности частицы. Далее вычислим свободную энергию частицы и исследуем ее на наличие минимума. Аналогично вычислим и исследуем на экстремум

свободную энергию всех частиц плазмы. Возможны три вида уравнения Пуассона-Больцмана, соответствующих различным вариантам эволюции выбранной нами модели плазмы. Предположим, что в некоторый начальный момент времени все частицы плазмы располагались в пространстве случайным образом. Спустя время $\sim \omega_e^{-1}$ (ω_e — электронная плазменная частота) от начального момента времени в плазме возникнут корреляции заряда, обусловленные перемещением легких частиц — электронов. В результате этого в плазме сформируется силовое поле, которое может действовать упорядочивающим образом на более тяжелые компоненты плазмы — ионы и пылевые частицы. Этой ситуации соответствует первый вид уравнения Пуассона-Больцмана, учитывающий корреляцию электронов. Если же силовое поле, сформированное электронами, не способно упорядочить ионы и пылевые частицы, то плазма эволюционирует дальше, и спустя время $\sim \omega_+^{-1}$ (ω_+ — ионно-звуковая частота) в плазме возникнут ионные корреляции, формирующие новое силовое поле. Это поле может оказаться упорядочивающим для более тяжелых, чем ионы, пылевых частиц. Этому случаю соответствует второй вид уравнения Пуассона-Больцмана, учитывающий корреляцию электронов и ионов. Если же и корреляция ионов не способна упорядочить пылевые частицы, то через время $\sim \omega^{-1}~(\omega$ — пыле-зву ко вая частота) в плазме появится корреляция пылевых частиц. Это соответствует третьему виду уравнения Пуассона-Больцмана, в котором учитываются корреляции всех компонент плазмы. Известно, что в последнем случае свободная энергия плазмы минимума не имеет и метастабильное состояние плазмы не образуется [15]. Рассмотрим первые два вида уравнения Пуассона-Больцмана.

свободные энергии иона и электрона, а также полную

1. Корреляция электронов

1.1. Свободная энергия пылевой частицы

Введем обозначение доли заряда электронов от полного отрицательного заряда частиц плазмы, $\chi = N_e/(N_e + ZN_-)$, где $0 < \chi < 1$, и разделим обе части уравнения (1) на N_- . Уравнение электронейтральности в расчете на одну пылевую частицу примет вид

$$\underbrace{Z(1-\chi)^{-1}}_{1} = \underbrace{Z}_{2} + \underbrace{Z\chi(1-\chi)^{-1}}_{3},$$
 (2)

где индекс 1 — заряд положительных ионов, 2 — заряд пылевой частицы, 3 — заряд электронов.

Рис. 1. (*a*) Система координат для вычисления свободной энергии пылевой частицы. Частицы размещены в узлах гексагональной решетки. Шестиугольником ограничен элементарный электронейтральный объем пространства, приходящийся на одну частицу. Элементарный объем заменен сферическим радиуса d/2 для использования сферических координат. (*b*) Система координат для вычисления свободной энергии положительного иона.

Закрепим систему координат в центре какой-либо пылевой частицы, как показано на рис. 1, а. Для наглядности пылевые частицы на рисунке размещены в узлах гексагональной решетки. Заметим, что наличие регулярности в расположении частиц не является принципиальным. Согласно рисунку, на одну частицу приходится элементарный объем пространства, ограниченный шестиугольником. Заряд частицы в элементарном объеме полностью скомпенсирован расположенными здесь же положительными ионами в количестве $Z(1-\chi)^{-1}$ и электронами в количестве $Z\chi(1-\chi)^{-1}$. Для упрощения расчетов элементарный объем, приходящийся на частицу, следует заменить сферическим объемом радиуса d/2(d — расстояние между ближайшими пылевыми частицами $(d \ge 2R)$) и перейти к сферической системе координат. При переходе к сферическому объему ошибка расчетов может быть большой, и результаты расчетов будут носить скорее качественный, чем количественный характер.

Мы рассматриваем случай корреляции электронов, а корреляция ионов отсутствует. Поэтому функция распределения электронов определяется электрическим потенциалом в соответствии с законом Больцмана $N_e = n_0 \exp\left(\frac{e\varphi}{kT_e}\right)$, а функция распределения ионов от потенциала не зависит. Обсудим особенности расположения ионов в d/2-сфере. Если ионы равномерно распределить внутри сферы, то это даст большой объемный заряд и большое значение электрического потенциала порядка $\frac{kT_e}{e} \chi^{-1}$, которое формально не позволит считать плазму электронов в d/2-сфере идеальной и получить простое аналитическое решение. Другой вариант — разместить ионы на поверхности d/2-сферы. Но объемный заряд электронов в сфере также даст довольно большое значение потенциала, около $\frac{-kT_e}{e}$. Наиболее оптимальный вариант — это поместить часть ионов внутри сферы в количестве, в точности равном количеству электронов ne0, чтобы не было объемного заряда, а остальные ионы равномерно распределить по поверхности сферы. Тогда плазму электронов при условии, что радиусы частиц плазмы достаточно велики и заряд их не слишком большой, можно будет считать идеальной, $\frac{e\varphi}{kT_e} \ll 1$. Экспоненту в выражении для N_e можно будет разложить в ряд. Уравнение Пуассона-Больцмана и граничные условия для потенциала ϕ пылевой частицы в d/2-сфере могут быть представлены в следующем виде:

$$\Delta \varphi = \frac{e}{\varepsilon_0} \left(N_c - n_{e0} \right) \approx \frac{1}{L_e^2} \varphi, \qquad (3)$$

$$1) \left. \frac{\partial \varphi}{\partial r} \right|_{r=R} = \frac{Ze}{4\pi \varepsilon_0 R^2}, \qquad (3)$$

$$2) \left. \frac{\partial \varphi}{\partial r} \right|_{r=\frac{d}{2}-0} = \frac{Ze}{4\pi \varepsilon_0 (d/2)^2}, \qquad (4)$$

где $n_{e0} = \frac{Z\chi(1-\chi)^{-1}}{(4/3)\pi\left[\left(\frac{d}{2}\right)^3 - aR^3\right]}$ — средняя концентрация электронов, a — коэффициент заполнения объема трехмерного пространства сферами радиуса R, k — постоянная Больцмана, ε_0 — электрическая постоянная, e — заряд электрона, Δ — лапласиан в сферических координатах, $L_e = \left(\frac{\varepsilon_0 kT_e}{e^2 n_{e0}}\right)^{0.5}$ — радиус Дебая, определенный по параметрам электронов. Первое граничное условие описывает напряженность электрического поля (с обратным знаком) на поверхности пылевой частицы. Второе граничное условие — то же на внутренней поверхности d/2-сферы. На наружной поверхности d/2-сферы напряженность поля испытывает скачок из-за поверхностного заряда и обращается в нуль вследствие полной электронейтральности сферы.

Общее решение уравнения (3) в сферических координатах имеет вид

$$\varphi = \frac{C1}{r} \exp\left(-\frac{r-R}{L_e}\right) + \frac{C2}{r} \exp\left(\frac{r-R}{L_e}\right).$$
 (5)

Подставим (5) в (4) и определим константы C_1 и C_2 . Таким образом, найдем потенциал пылевой частицы. Затем вычислим потенциал φ_- , создаваемый плазмой на поверхности частицы, путем вычитания кулоновского потенциала самой частицы $\frac{-eZ}{4\pi\varepsilon_0r}$ из потенциала (5)

$$\varphi_{-} = \left(\varphi + \frac{eZ}{4\pi\varepsilon_0 r}\right) \bigg|_{r=R} = \frac{Ze}{4\pi\varepsilon_0 L_e}$$
$$\times \frac{b2(R, L_e) + b1(R, L_e) - 2}{(1 + R/L_e)b2(r, L_e) - (1 - R/L_e)b1(R, L_e)}, \quad (6)$$

где

$$b1(R, L_e) = \left(1 + \frac{d}{2L_e}\right) \exp\left(-\frac{d/2 - R}{L_e}\right),$$
$$b2(R, L_e) = \left(1 - \frac{d}{2L_e}\right) \exp\left(\frac{d/2 - R}{L_e}\right).$$

Электрическая (корреляционная) энергия пылевой частицы (считаем частицу электропроводящей) равна $E_{cor,-} = -eZ\varphi_{-}$. С ее помощью вычислим поправку к свободной энергии частицы по известной термодинамической формуле [15]:

$$F = T \int_{T}^{\infty} \left(\frac{E_{cor,-}}{T^2}\right)_V dT,$$
(7)

где T — температура пылевой частицы, V — объем. Заметим, что $E_{cor,-}$ является функцией T_e , а от T не зависит. Поэтому интегрирование по формуле (6) даст результат $F = E_{cor,-}$. Добавим к данному результату свободную энергию кинетического движения идеального газа в расчете на одну частицу, $F_{id} = -kT \ln V$ и получим выражение для свободной энергии частицы F_- :

$$F_{-} = -kT \ln \left[\frac{4\pi}{3} \left((d/2)^{3} - R^{3} \right) \right] - \frac{Z^{2}e^{2}}{4\pi\varepsilon_{0}L_{e}}$$

$$\times \frac{b2(R, L_{e}) + b1(R, L_{e}) - 2}{(1 + R/L_{e})b2(r, L_{e}) - (1 - R/L_{e})b1(R, L_{e})} + C(T),$$
(8)

где C(T) — функция, зависящая от температуры.

1.2. Свободная энергия иона

Для расчета свободной энергии иона поместим центр d/2-сферы в точку пространства, равноудаленную от ближайших пылевых частиц, как показано на рис. 1, *b*. Пусть один из ионов находится в центре d/2-сферы. На одну d/2-сферу, как и раньше, приходятся пылевые частицы в среднем количестве одна частица, $Z(1 - \chi)^{-1}$ ионов и $Z\chi(1 - \chi)^{-1}$ электронов. Будем для простоты считать, что заряд пыли Z и заряд большей части ионов равномерно распределен по поверхности d/2-сферы. Небольшая часть ионов для компенсации объемного заряда расположена внутри сферы в количестве, равном

количеству электронов. В силу полной электронейтральности d/2-сферы электрическое поле равно нулю на наружной стороне поверхности d/2-сферы, а на внутренней стороне равно $\frac{e}{4\pi\varepsilon_0(d/2)^2}$.

Уравнение Пуассона—Больцмана в данной задаче совпадает с (3), а граничные условия в d/2-сфере с расположенным в центре ионом имеют вид

$$\left. \frac{\partial \varphi}{\partial r} \right|_{r=R_+} = \frac{-e}{4\pi\varepsilon_0 R_+^2}, \quad \left. \frac{\partial \varphi}{\partial r} \right|_{r=\frac{d}{2}-0} = \frac{-e}{4\pi\varepsilon_0 (d/2)^2}, \quad (9)$$

Потенциал ϕ_+ , создаваемый плазмой на поверхности центрального иона, равен

$$\begin{split} \varphi_{+} &= \left(\varphi - \frac{e}{4\pi\varepsilon_{0}r}\right) \bigg|_{r=R_{+}} = \frac{e}{4\pi\varepsilon_{0}L_{e}} \\ &\times \frac{b2(R_{+}, L_{e}) + b1(R_{+}, L_{e}) - 2}{(1 + R_{+}/L_{e})b2(R_{+}, L_{e}) - (1 - R_{+}/L_{e})b1(R_{+}, L_{e})}. \end{split}$$
(10)

Электрическая энергия иона равна $E_{cor,+} = e\varphi_+$. Полагаем, что около каждого иона можно построить подобную d/2-сферу и получить такой же результат расчета. Свободная энергия, приходящаяся на один ион с учетом энергии идеального газа, равна

$$F_{+} = -kT_{+}\ln\left[\frac{4\pi}{3}\left((d/2)^{3} - aR^{3}\right)\right] - \frac{e^{2}}{4\pi\varepsilon_{0}L_{e}}$$

$$\times \frac{b2(R_{+}, L_{e}) + b1(R_{+}, L_{e}) - 2}{(1 + R_{+}/L_{e})b2(R_{+}, L_{e}) - (1 - R_{+}/L_{e})b1(R_{+}, L_{e})} + C(T_{+}),$$
(11)

где $C(T_+)$ — функция, зависящая от температуры иона.

1.3. Свободная энергия электрона

Свободную энергию электрона рассчитаем с помощью системы координат, изображенной на рис. 1, b, с помещенным в ее центре электроном

$$F_{e} = -kT_{e} \ln\left(\frac{4\pi}{3} \left((d/2)^{3} - aR^{3}\right)\right) + T_{e} \int_{T_{e}}^{\infty} \left(\frac{E_{car,e}}{T_{e}^{2}}\right)_{V} dT_{e} + C(T)$$

$$\approx -kT_{e} \ln\left(\frac{4\pi}{3} \left((d/2)^{3} - aR^{3}\right)\right) + C(T_{e}), \quad (12)$$

где $E_{cor,e}$ — корреляционная энергия электрона, $C(T_e)$ — функция, зависящая от температуры электрона. Отметим, что удельный вклад кинетического движения электронов в их свободную энергию в T_e/T_+ раз больше, чем аналогичный вклад ионов. Поэтому в (12) корреляционной поправкой к свободной энергии электронов можно пренебречь.

1.4. Полная свободная энергия частиц

Полную свободную энергию F всех частиц в d/2-сфере определим в соответствии с уравнением электронейтральности (1)

$$F = F_{-} + Z(1-\chi)^{-1}F_{+} + Z\chi(1-\chi)^{-1}F_{e}.$$
 (13)

1.5. Эффективные заряды и радиусы частиц

Полученные выше формулы справедливы для идеальной плазмы, в которой кинетическая энергия частиц превышает потенциальную. Условие идеальности выполняется, если радиус частиц достаточно велик, а заряд частиц мал. В противном случае условие идеальности может нарушиться, и полученные формулы могут оказаться непригодными для оценок. Однако в работе [16] было показано, что области пространства, где нарушаются условия идеальности плазмы, — это области вокруг заряженных частиц (плазменные оболочки). Они прочно связаны с самими частицами и ведут себя с частицами как единое целое при слабых внешних воздействиях. Эффективный заряд Z частиц, окруженных плазменными оболочками, меньше истинного заряда Z₀ частиц, а эффективный радиус R частиц больше их истинного радиуса R₀. Эффективные радиусы пылевой частицы и иона, найденные из условия равенства потенциальной и кинетической энергии электрона на их поверхности соответственно, равны

$$R = \frac{Ze^2}{4\pi\varepsilon_0 kT_e} + R_0, \quad R_+ = \frac{e^2}{4\pi\varepsilon_0 kT_e} + R_{+0}.$$
(14)

В дальнейшем в полученных выше выражениях для свободной энергии под радиусами и зарядами частиц будем подразумевать их эффективные значения. Это будет гарантировать идеальность плазмы в межчастичном пространстве и справедливость полученных выражений.

2. Корреляция ионов

2.1. Свободная энергия пылевой частицы

В случае корреляции электронов и ионов функции распределения имеют вид соответственно $N_e = n_{e0} \exp\left(\frac{e\varphi}{kT_e}\right)$ и $N_+ = n_{+0} \exp\left(-\frac{e\varphi}{kT_+}\right)$, где $n_{+0} = n_{e0}\chi^{-1}$. Считаем плазму идеальной, $\frac{e\varphi}{kT_e}, \frac{e\varphi}{kT_+} \ll 1$, и разложим функции распределения в ряд. Уравнение Пуассона–Больцмана и граничные условия для потенциала пылевой частицы в сферической системе координат, рис. 1, *a*, имеют следующий вид:

$$\Delta \varphi = \frac{e}{\varepsilon_0} (N_e - N_+) \approx \frac{1}{L_+^2} \left(\varphi + \frac{kT_+}{e} \frac{n_{e0} - n_{+0}}{n_{+0} + n_{e0}(T_+/T_e)} \right),$$
$$\frac{\partial \varphi}{\partial r} \bigg|_{r=R} = \frac{Ze}{4\pi\varepsilon_0 R^2}, \quad \frac{\partial \varphi}{\partial r} \bigg|_{r=\frac{d}{2}} = 0, \quad (15)$$

где $L_{+} = \left(\frac{\varepsilon_{0k}}{e^{2}(n_{+0}/T_{+}+n_{e0}/T_{e})}\right)^{0.5} \approx \left(\frac{\varepsilon_{0}kT_{+}}{e^{2}n_{+0}}\right)^{0.5}$ — длина Дебая, определенная по параметрам ионов. Для потенциала

и свободной энергии пылевой частицы получим следующие выражения:

$$\varphi_{-} = \frac{Ze}{4\pi\varepsilon_{0}L_{+}} \frac{b2(R, L_{+}) + b1(R, L_{+})}{(1+R/L_{+})b2(R, L_{+}) - (1-R/L_{+})b1(R, L_{+})}$$

$$-\frac{kT_{+}}{e} \frac{n_{e0} - n_{+0}}{n_{+0} + n_{e0}(T_{+}/T_{e})},$$

$$F_{-} = -kT \ln \left[\frac{4\pi}{3} \left((d/2)^{3} - R^{3}\right)\right] - \frac{Z^{2}e^{2}}{4\pi\varepsilon_{0}L_{+}}$$

$$\times \frac{b2(R, L_{+}) + b1(R, L_{+})}{(1+R/L_{+})b2(R, L_{+}) - (1-R/L_{+})b1(R, L_{+})}$$

$$+ ZkT_{+} \frac{n_{e0} - n_{+0}}{n_{+0} + n_{e0}(T_{+}/T_{e})} + C(T).$$
(16)

Отметим, что электрический потенциал в (16) имеет постоянную составляющую порядка $\frac{kT_+}{e}(1-\chi)$. Этот потенциал не портит условий идеальности плазмы при значениях χ , близких к единице. Но при $\chi \ll 1$ идеальность плазмы нарушается, и результаты расчетов становятся малопригодными для оценок.

2.2. Свободная энергия иона и электрона

Корреляционные энергии иона и электрона вычисляются в системе координат, изображенной на рис. 1, *b*. Вклад корреляционных энергий в свободные энергии иона и электрона мал по сравнению с вкладом кинетической энергии данных частиц. Поэтому свободные энергии иона и электрона описываются следующими выражениями:

$$F_{i} \approx -kT_{i} \ln \left[\frac{4\pi}{3} \left((d/2)^{3} - aR^{3}\right)\right] + C(T_{i}),$$

$$F_{e} \approx -kT_{e} \ln \left[\frac{4\pi}{3} \left((d/2)^{3} - aR^{3}\right)\right] + C(T_{e}).$$
(17)

2.3. Эффективный радиус пылевой частицы при ионной корреляции

$$R = \frac{Ze^2}{4\pi\varepsilon_0 kT_+} + R_0. \tag{18}$$

3. Результаты вычислений и их обсуждение

Результат расчета свободных энергий частиц плазмы зависит от коэффициента заполнения пространства пылевыми частицами a. Наиболее плотная упаковка достигается при расположении частиц в узлах гранецентрированной кубической решетки (a = 0.76 для твердых шаров одинакового радиуса). В плазме заряженные частицы окружены плазменными оболочками, которые не

Рис. 2. Зависимости свободных энергий отрицательно заряженной пылевой частицы F_- , положительного иона F_+ , электрона F_e и полной свободной энергии F всех носителей заряда в d/2-сфере при электронной корреляции от расстояния между поверхностями пылевых частиц d - 2R. $T_e = 10^4$ K, $T_- = T_+ = 300$ K, $R_0 = 10^{-6}$ m, $R_{+0} = 10^{-10}$ m, $Z = 10^3$, $\chi = 0.01$.

являются абсолютно жесткими и могут деформироваться при сближении частиц. При этом параметр a будет стремиться к единице. В расчетах будем полагать a = 1.

На рис. 2 приведен пример расчета по формулам (8), (11)-(13) зависимостей свободных энергий F₋, F₊, F_e и F от расстояния между поверхностями пылевых частиц *d* – 2*R* при электронной корреляции. Из рисунка видно, что свободная энергия электрона Fe монотонно уменьшается с ростом d - 2R и не имеет экстремумов, а свободные энергии иона F₊ и пылевой частицы F₋, а также полная свободная энергия частиц плазмы F, проходят через относительные минимумы и максимумы. В точках минимумов возможно существование метастабильных состояний ионов, пылевых частиц, а также плазмы в целом, которые характеризуются фиксированным межчастичным расстоянием. В области межчастичных расстояний с положительным наклоном свободных энергий, $\frac{\partial F_{-}}{\partial d}$, $\frac{\partial F_{+}}{\partial d}$, $\frac{\partial F}{\partial d} > 0$, преобладает притяжение. Механизм притяжения положительно заряженных ионов друг к другу, по-видимому, заключается в сгущении электронной плотности в межионном пространстве и притяжении ионов к области сгущения электронов. Притяжение отрицательно заряженных пылевых частиц друг к другу, напротив, может происходить вследствие разрежения электронной плотности.

На рис. 3–5 представлены фазовые диаграммы компонент плазмы — значения межчастичных расстояний $(d - 2R)_{\text{max}}$ и $(d - 2R)_{\text{min}}$ на границах областей притяжения пылевых частиц, положительных ионов и плазмы в целом в зависимости от заряда Z, температуры T_e и доли заряда электронов χ при корреляции электронов. (Подстрочные подписи "max" и "min" подразумевают соответственно значения в максимуме и минимуме свободных энергий.) Кривые 1 и 4 ограничивают фа-

Z **Рис. 3.** Зависимость межчастичных расстояний $(d - 2R)_{min}$ (сплошные кривые) и $(d - 2R)_{max}$ (штриховые кривые) соответственно в точках минимумов и максимумов свободных энергий частиц плазмы в d/2-сфере при электронной корреляции от заряда *Z* пылевой частицы. Кривые *I*,*4* — для пылевых частиц; *5*, 8 — для положительных ионов; *2*, 3 и 6, 7 — для плазмы как целого. $T_e = 10^4$ K, $T_- = T_+ = 300$ K, $R_0 = 10^{-6}$ m, $R_{+0} = 10^{-10}$ m, $\chi = 0.01$.

100

10

1000

10000

100 000

Рис. 4. Зависимость межчастичных расстояний $(d - 2R)_{\min}$ (сплошные кривые) и $(d - 2R)_{\max}$ (штриховые кривые) соответственно в точках минимумов и максимумов свободных энергий частиц плазмы в d/2-сфере при электронной корреляции от электронной температуры T_e . Кривые 1, 4 — для пылевых частиц; 5, 8 — для положительных ионов; 2, 3 и 6, 7 — для плазмы в целом. $Z = 10^3, \chi = 0.01, T_- = T_+ = 300$ К, $R_0 = 10^{-6}$ m, $R_{+0} = 10^{-10}$ m.

зовые области притяжения пылевых частиц, кривые 5 и 8 — области притяжения положительных ионов, кривые 2, 3 и 6, 7 — области притяжения плазмы в целом. Сплошные линии соответствуют метастабильным состояниям. Штриховые линии — максимальному межчастичному расстоянию, при котором существует притяжение. Штриховые линии 1 хорошо аппроксимируются зависимостью $(d - 2R)_{\text{max}} \approx \frac{e^2 Z^2}{4 \pi \varepsilon_0 kT}$, изображенной треугольными маркерами. Сплошные линии 4 аппроксимируются зависимостью $(d - 2R)_{\min} \approx 2L_{-}$, изображенной ромбическими маркерами, где $L_{-} = \sqrt{\frac{\varepsilon_0 kT}{e^2 Z^2 N_{-}}}$ — длина Дебая, определенная по параметрам пылевых частиц, $N_{-} = \left(\frac{4\pi}{3}\left((d/2)^3 - aR^3\right)\right)^{-1}$. Штриховые линии 5 приближенно описываются параметрическим уравнением $L_e = \frac{T_e R_+}{2T_+}$, решения которого изображены квадратными маркерами. Сплошные линии 8 описываются уравнением $L_e = \frac{2T_+ R_+}{T_e}$, как показано круглыми маркерами.

Из графиков на рис. 3-5 следует, что область притяжения пылевых частиц появляется при Z > 10. По оси (d-2R) область притяжения центрирована относительно значения радиуса частиц R. Ширина области притяжения по оси (d-2R) увеличивается с ростом Z, T_e и не зависит от χ . Положительные ионы испытывают притяжение друг к другу при межчастичных расстояниях, меньших радиуса ионов R₊. Для возникновения притяжения необходимо, чтобы электронная температура превышала несколько тысяч градусов. Ширина области притяжения ионов по оси (d-2R) увеличивается с ростом T_e. Область притяжения ионов сдвигается в сторону меньших расстояний с уменьшением χ . Плазма как целое имеет две области притяжения, существующие при электронной температуре выше тысячи градусов, большом значении Z, а также малой доле заряда электронов $\chi < 0.1$. Одна из этих областей возникает благодаря притяжению пылевых частиц, а другая — благодаря притяжению ионов. Области притяжения плазмы как целого вложены внутрь областей притяжения пыли и ионов. Обратим внимание, что область притяжения положительных ионов расположена при межчастичных расстояниях менее 10^{-11} m. Может ли такое расстояние иметь какой-нибудь физический смысл в классической, не квантовой, физике? Полагаем, что в нашем случае может. Расстояние 10⁻¹¹ m — это расстояние между

Рис. 5. Зависимость межчастичных расстояний $(d - 2R)_{\min}$ (сплошные кривые) и $(d - 2R)_{\max}$ (штриховые кривые) соответственно в точках минимумов и максимумов свободных энергий частиц плазмы в d/2-сфере при электронной корреляции от доли заряда электронов χ . Кривые 1, 4 — для пылевых частиц; 5, 8 — для положительных ионов; 2, 3 и 6, 7 — для плазмы как целого. $T_e = 10^4$ K, $Z = 10^3$, $T_- = T_+ = 300$ K, $R_0 = 10^{-6}$ m, $R_{+0} = 10^{-10}$ m.

 $(d-2R)_{\max}, (d-2R)_{\min}, m$

 10^{1}

 10^{-3}

 10^{-7}

 10^{-11}

 10^{-15}

 10^{-19}

Рис. 6. Зависимость межчастичных расстояний $(d - 2R)_{min}$ (сплошные кривые) и $(d - 2R)_{max}$ (штриховые кривые) соответственно в точках минимума и максимума свободной энергии пылевой частицы в d/2-сфере от заряда Z при ионной корреляции. Радиус пылевой частицы $R_0 = 10^{-6}$ m (I), 10^{-5} m (2), 10^{-4} m (3). $T_- = T_+ = 300$ K, $R_{+0} = 10^{-10}$ m, $\chi = 0.8$.

эффективными поверхностями пылевых частиц. Расстояние между реальными поверхностями больше на удвоенную толщину плазменной оболочки, которая, например, при $Z = 10^3$, $T_e = 10^4$ K составляет $\frac{e^2 Z}{4\pi \varepsilon_0 k T_{e+}} = 10^{-6}$ m. Вполне "классическое" расстояние.

Итак, мы показали, что при электронной корреляции могут существовать метастабильные состояния пыли, ионов и плазмы в целом. Отличия в существовании метастабильного состояния какой-либо отдельной плазменной компоненты и метастабильного состояния плазмы как целого заключаются в следующем. Первое может возникать, когда оптимальные параметры плазмы задают извне, а второе может поддерживаться за счет внутренних электрических сил, даже если средние параметры плазмы, устанавливаемые извне, отличаются от оптимальных.

В случае, если электронная корреляция не привела к возникновению метастабильных состояний, в плазме может возникнуть порядок, обусловленный уже не электронной, а ионной корреляцией. На рис. 6 приведена фазовая диаграмма пылевых частиц при ионной корреляции, рассчитанная по формулам (16)-(18) для трех значений истинного радиуса частиц: $(1) - R_0 = 10^{-6} \,\mathrm{m}, (2) - 10^{-5}, (3) - 10^{-4}$. Штриховая аппроксимируется хорошо кривая зависимостью $(d - 2R)_{\max} = \frac{e^2 Z^2}{4\pi \varepsilon_0 kT}$, изображенной прямоугольными маркерами. Сплошная кривая аппроксимируется зависимостью $(d - 2R)_{\min} = 3L_{-}$, как показано круглыми маркерами. На рис. 6 видно, что для возникновения притяжения между частицами требуется довольно большое значение заряда Z. При этом чем больше истинный радиус частиц, тем больший заряд должны иметь частицы. Положительные ионы и плазма в целом не имеют областей притяжения при ионной корреляции.

Зарождение и рост пылевых частиц в технологической плазме в современном полупроводниковом производстве представляет собой серьезную проблему, так как пылевые частицы размером в доли микрона, попадая на подложку, приводят к порче и снижению выхода годных устройств. В настоящее время установлено, что процесс образования пылевых частиц проходит в три этапа [6]: фаза начального роста, фаза агломерации и фаза насыщения. "На первом этапе происходит равномерный рост частиц до размеров порядка 10 nm. Они имеют практически правильную сферическую форму и узкое распределение по размерам. На стадии агломерации наблюдается быстрое увеличение скорости роста пылевых частиц. Форма и топология поверхности пылинок, образующихся на этой стадии, может быть различной: как сферической, так и фрактальной, образованной из связанных цепочек исходных кристаллитов. На этапе насыщения агломерация практически прекращается, и частицы продолжают расти очень медленно за счет депозиции материала из газовой фазы". Стадия агломерации пылевых частиц в процессе их роста является в настоящее время самым слабо понимаемым процессом. Основной вопрос, на который пытались дать ответ многие исследователи, — как может идти активная агломерация частиц при наличии накопленных ими значительных одноименных зарядов?

Мы полагаем, что обнаруженная нами в настоящей работе возможность образования метастабильных состояний частиц в плазме может иметь непосредственное отношение к проблеме агломерации. При этом метастабильные состояния, возникающие за счет взаимодействия пылевых частиц, отвечают за формирование пылевых кристаллов. А метастабильные состояния, возникающие за счет взаимодействия ионов при межчастичных расстояниях, меньших радиуса иона R_+ , приводят непосредственно к агломерации. Механизм агломерации может выглядеть следующим образом. По мере конденсации, укрупнения пылевых частиц и роста их электрического заряда Z увеличивается радиус R_E их взаимного электрического притяжения по степенному закону $R_E \propto Z^2$ (рис. 3). Рост радиуса взаимодействия ведет к такому же увеличению вероятности образования зародыша пылевого кристалла. Далее в кристалле частицы с конечной вероятностью могут преодолеть потенциальный барьер и перейти в новое метастабильное состояние с межчастичным расстоянием менее радиуса иона, и затем агломерировать путем установления молекулярных связей между частицами. Таким образом, по сути мы имеем электрическую агломерацию. Агломерация энергетически выгодна при небольшом радиусе пылевых частиц, большой температуре T_e, малом значении χ . С ростом радиуса частиц агломерация постепенно становится энергетически не выгодной, и пылевые частицы остаются в состоянии пылевого кристалла. В кристалле частицы могут расти далее за счет конденсации из газовой фазы.

Заключение

Результаты, полученные в настоящей работе, показывают возможность существования метастабильных состояний пылевых частиц, ионов и одновременно всех частиц в пылевой плазме. Эти состояния могут достигаться за счет пространственной корреляции электронов, а некоторые из них — за счет корреляции ионов. Структурным элементом плазмы может быть электронейтральная d/2-сфера с содержащейся в ее центре пылевой частицей, окруженной ионами и электронами. Из подобных структурных элементов могут быть сконструированы пространственно упорядоченные структуры плазмы. Отмечена возможная связь обнаруженных в настоящей работе метастабильных состояний пылевой плазмы с а) явлением агломерации пылевых частиц и б) способностью пылевых частиц к пространственному упорядочению в опытах по пылевым кристаллам.

Сформулированные в настоящей работе выводы могут быть полезны для дальнейшего продвижения понимания процессов, протекающих в пылевых и коллоидных кристаллах и жидкостях. Изложенные представления о механизме агломерации пылевых частиц могут быть полезными в физике облаков и туманов, где процессы коагуляции и роста электрически заряженных дождевых капель до сих пор не до конца ясны.

Список литературы

- Kersten H., Wiese R., Thieme G. et al. // New J. Physics. 2003. Vol. 5. P. 93.1.
- [2] Иванов А.С., Митин В.С., Паль А.Ф. и др. // ДАН. 2004. Т. 395. № 3. С. 335.
- [3] Ivanov A., Mitin B., Pal A. et al. // DCM Production in a Dusty Plasma Trap, Plasma Processes and Polymers, 10.1002/3527605584.ch33. 2005.
- [4] Иванов А.С., Митин В.С., Паль А.Ф. и др. // Нанотехника. 2008. Т. 14. С. 21.
- [5] Иванов А.С., Круглов В.С., Паль А.Ф. и др. // Письма в ЖТФ. 2011. Т. 37. № 19. С. 57.
- [6] Олеванов М.А., Манкелевич Ю.А., Рахимова Т.В. // ЖЭТФ. 2004. Т. 125. № 2. С. 324.
- [7] Манкелевич Ю.А., Олеванов М.А., Паль А.Ф. и др. // Физика плазмы. 2009. Т. 35. № 3. С. 219.
- [8] Фортов В.Е., Храпак А.Г., Храпак С.А. и др. // УФН. 2004. Т. 174. № 5. С. 495.
- [9] Цытович В.Н. // УФН. 1997. Т. 167. № 1. С. 57.
- [10] Игнатов А.М. // Физика плазмы. 1996. Т. 22. С. 648.
- [11] Nambu M., Vladimirov S.V., Shukla P.K. // Phys. Lett. A. 1995. Vol. 203. P. 40.
- [12] Shavlov A.V., Dzhumandzhi V.A. // Phys. Lett. A. 2010. Vol. 374. P. 2561.
- [13] Shavlov A.V., Dzhumandzhi V.A. // Physics of Plasmas. 2013. Vol. 20. P. 083 707.
- [14] Shavlov A.V., Dzhumandzhi V.A. // Phys. Lett. A. 2013. Vol. 377. P. 3131.
- [15] Landau L.D., Lifshitz E.M. // Course of Theoretical Physics Vol. 5, Statiatical physics. Part 1, 3ed. Pergamon, 1980.
- [16] Shavlov A.V., Romanyuk S.N., Dzhumandzhi V.A. // Physics of Plasmas. 2013. Vol. 20. № 2. P. 023 703.