Падение эффективности GaN-светодиодов при высоких уровнях инжекции: роль водорода

© Н.И. Бочкарева+, И.А. Шеремет*, Ю.Г. Шретер+

⁺ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия * Финансовый университет при Правительстве Российской Федерации,

125993 Москва, Россия

E-mail: v.shreter@mail.ioffe.ru

(Получена 5 апреля 2016 г. Принята к печати 6 апреля 2016 г.)

Анализируются точечные дефекты в GaN, в частности, их проявление в фотолюминесценции, оптическом поглощении и рекомбинационном токе светодиодов с квантовыми ямами InGaN/GaN. Как показывают результаты, широкий хвост дефектных состояний в запрещенной зоне GaN облегчает туннелирование термически активированных носителей в квантовую яму, но одновременно приводит к уменьшению безызлучательного времени жизни и падению эффективности по мере того, как квазиуровни Ферми пересекают состояния дефектов при увеличении прямого смещения. Результаты позволяют выявить доминирующую роль водорода в рекомбинационной активности дефектов с оборванными связями и в эффективности приборов на основе GaN.

1. Введение

В последнее десятилетие достигнут значительный прогресс в совершенствовании технологии оптоэлектронных приборов — светодиодов и лазеров, а также силовых и СВЧ приборов на основе GaN. Однако электрические и оптические свойства структур на основе GaN так сильно зависят от высокой плотности точечных дефектов, что понимание их сложной роли в электронном транспорте и рекомбинации носителей, уменьшении плотности нежелательных дефектов является, вероятно, наиболее важной проблемой, связанной с этими структурами. Для дальнейшей оптимизации технологии и дизайна приборов на основе GaN решающее значение имеют идентификация точечных дефектов в GaN и знание энергетического спектра дефектных состояний в запрещенной зоне GaN.

Обширные исследования характеристик и природы основных полос фотолюминесценции в GaN дают информацию об излучательных переходах в точечных дефектах [1]. Измерения фотопроводимости и оптического пропускания тонких слоев GaN обнаруживают широкий хвост подзонного поглощения, простирающийся от ближней ультрафиолетовой до видимой и ближней инфракрасной областей спектра. Хвост поглощения в GaN намного более глубокий, чем в других кристаллических полупроводниках, и даже более глубок, чем в гидрогенизированном аморфном кремнии [2]. Однако определение этими методами энергетического спектра состояний наталкивается на трудности, во многом связанные с отсутствием достаточно толстых и "чистых" в запрещенной зоне кристаллов GaN [3-5]. Информацию об энергетическом спектре дефектных состояний могут дать измерения прямых вольт-амперных характеристик барьерных структур на основе GaN. В работах [6-8] показано, что широкий хвост плотности состояний в запрещенной зоне GaN облегчает туннелирование носителей (trap-assisted tunneling, hopping) через барьеры в GaN-светодиодах. С ростом напряжения это приводит к уменьшению безызлучательного времени жизни и падению эффективности [9].

В данной работе с целью изучения природы точечных дефектов, ответственных за падение эффективности светодиодов на основе InGaN/GaN при высоких уровнях инжекции, и более глубокого понимания роли точечных дефектов в GaN в электронном транспорте в барьерных структурах изучаются и анализируются спектры фотолюминесценции и зависимости тока и эффективности от величины прямого смещения светоизлучающих структур, а также спектры оптического поглощения кристаллов GaN.

2. Эксперимент

Для детальных исследований в работе были выбраны два типа синих диодов с одиночной квантовой ямой *p*-AlGaN/In_{0.2}Ga_{0.8}N/*n*-GaN толщиной 30 Å и пиковой энергией излучения *hv_{OW}* = 2.65 эВ: высокоэффективные диоды A (NSPB500S) с максимальной внутренней квантовой эффективностью η_{int} , близкой к 100% при температуре 77 К и 60% при комнатной температуре [7,10,11], и сравнительно низкоэффективные диоды В (AOC114BSA) ($\eta_{int} = 22\%$ при T = 300 K) [12]. Детали структуры светодиодов приведены в [7,10-12]. Рабочий ток диодов 20 мА, реальная площадь $\sim 10^{-3} \, {\rm cm}^2$. Измерения также проводились на диодах А после их выдержки при токе *I* = 100 мА в течение 3 мин, что приводило к кратковременному перегреву активной области до 100 С. Перегрев активной области определялся с использованием температурного коэффициента прямого напряжения (2.8 мВ/К), а также величины теплового сопротивления (180 К/Вт) [13]. Кратковременный перегрев до 100 С является допустимым для диодов NSPB500S и не приводит к изменениям в их структуре. После кратковременного токового стресса эффективность диода A при рабочем токе не менялась, в области малых токов наблюдалось значительное увеличение эффективности. В дальнейшем диод A, подвергнутый токовому стрессу, обозначается как диод A*.

Измерения фотолюминесценции проводились при комнатной температуре на некорпусированных чипах диодов. Фотолюминесценция возбуждалась He-Cdлазером на длине волны $\lambda = 325$ нм со стороны поверхности роста, через полупрозрачный Ni/Au контакт к слою p-GaN и детектировалась "на просвет", со стороны слоя n-GaN. Интенсивность возбуждения составляла 1 Bt/cm^2 . Спектры излучения *p*-*n*-структур измерялись при различных прямых смещениях, начиная от $V = 0 \,\mathrm{B}$ в короткозамкнутой структуре, при лазерном возбуждения и в его отсутствии. Интенсивность лазерного возбуждения и генерации оптически инжектированных носителей контролировалась измерениями фототока короткого замыкания *p*-*n*-структуры. Ряд измерений проводился также на коммерческих вертикальных флип-чип структурах с InGaN/GaN квантовой ямой ($h\nu_{OW} = 2.82$ эВ) площадью 1 мм², изготовленных на кремниевых платах с удаленной сапфировой подложкой и отражающим металлизированным *р*-контактом. Фотолюминесценция возбуждалась со стороны слоя n-GaN и детектировалась также со стороны слоя *n*-GaN.

Измерения спектров оптического поглощения проведены на кристаллах GaN толщиной d = 200 мкм, выращенных методом хлорид-гидридной газофазной эпитаксии (HVPE) [14], методом оптического пропускания. В качестве источника излучения использовалась вольфрамовая лампа накаливания (ОИ-24). Спектры падающего на кристалл и прошедшего через кристалл излучения измерялись с помощью спектрометра Avantes.

С помощью спектрометра Avantes измерялись также спектры электролюминесценции и фотолюминесценции. Измерения статических вольт-амперных характеристик проведены с помощью Keithley238. Измерения интенсивности излучения и внешней квантовой эффективности проводились с помощью интегрирующей сферы и калиброванного Si-фотодиода.

3. Экспериментальные результаты

3.1. Зависимости тока и квантовой эффективности от прямого смещения

На рис. 1, а представлены зависимости тока от напряжения на p-n-переходе $V_j = V - I \cdot R_s$, $(R_s - последовательное сопротивление диода, определенное из наклона линейного участка <math>I-V$ -кривых при токах, близких к рабочему току I = 20 мА) для диодов А и В (кривые I и 2) и для диода А* (кривая 3).

Из рис. 1, *а* видно, что крутизна всех $\log I - V_j$ характеристик наибольшая в области малых и больших прямых смещений, в области средних смещений крутизна уменьшается, а затем вновь растет с ростом

Рис. 1. a — зависимости прямого тока от прямого смещения p-n-перехода $I(V_j)$ для GaN-светодиодов A (1), B (2), A* (3) и зависимость коэффициента оптического поглощения кристалла GaN от энергии фотона (4). Стрелками вверх на кривых $I(V_j)$ отмечены пороговые токи при напряжении V_{th} , стрелками вниз отмечены пиковые токи, при которых квантовая эффективность диода максимальна. Вставка иллюстрирует туннельнорекомбинационный механизм протекания тока в p-n-структуре светодиода. b — зависимости квантовой эффективности электролюминесценции от прямого смещения p-n-перехода $I(V_j)$ для GaN-светодиодов A (1), B (2), A* (3).

смещения. Вблизи рабочего тока и $V_j \approx 3 \text{ B } I - V_j$ -характеристики всех диодов практически совпадают. Но при малых смещениях ($V_j \approx 2.2 \text{ B}$) токи диодов А и А* отличаются на 2 порядка, а диодов А и В — на 3 порядка.

Зависимости квантовой эффективности для диодов A, A^* и B представлены на рис. 1, *b*. Из рисунка видно, что с ростом прямого смещения эффективность начинает уменьшаться в области второго крутого участка на log $I - V_j$ -кривых, при $V_j > 2.9 - 3$ B.

3.2. Спектры электролюминесценции, фотолюминесценции и оптического поглощения

На рис. 2, *а* приведены нормированные на максимум спектры электролюминесценции (кривая *1*) и фотолюминесценции (кривая *2*) диода В. В спектре фотолюминесценции, помимо линии с максимумом $hv_{QW} = 2.7$ эВ, обусловленном, как и линия в спектре электролюминесценции, излучением квантовой ямы, наблюдаются характерные для GaN полосы желтой YL (пиковая

Рис. 2. Спектры люминесценции p-n-структуры диода В на сапфировой подложке (a) и флип-чип структуры (b), измеренные при прямом смещении в отсутствие лазерного возбуждения (1) и при возбуждении излучением He-Cd-лазера $(\lambda = 325 \text{ нм})$ (2). На вставках — схемы измерений. V, B: a - 1 - 2.54, 2 - 0; b - 1 - 2.914, 2 - 2.63. Стрелками отмечены спектральные положения максимумов интенсивности основных полос фотолюминесценции в GaN.

Физика и техника полупроводников, 2016, том 50, вып. 10

энергия $hv_{YL} = 2.2 \, \text{эB}$), красной RL ($hv_{RL} = 1.85 \, \text{эB}$) и голубой BL ($h\nu_{\rm BL} = 2.9\, {\rm sB}$) фотолюминесценции, а также слабая ИК фотолюминесценция (IRL) в области *hv* < 1.3 эВ и полоса близкраевой УФ фотолюминесценции $3.4 > hv_{\rm UVL} > 3.2$ эВ, коротковолновый спад которой вызван самопоглощением в GaN. Широкая полоса коротковолнового излучения hvuvl и межзонной фотолюминесценции в GaN с максимумом $hv_p = 3.42$ эВ более отчетливо видна при возбуждении и детектировании фотолюминесценции со стороны п-области в флип-чип структуре (см. вставку к рис. 2, b). На рис. 2, b представлены спектры люминесценции флип-чип структуры при прямом смещении, измеренные при лазерном возбуждении (кривая 2) и в его отсутствии (кривая 1) и нормированные на максимум линии излучения InGaN/GaN активной области.

Из-за интерференционных эффектов в спектрах поглощения тонкопленочных светодиодных структур с квантовыми ямами InGaN/GaN и малой оптической плотности структур в видимом диапазоне в работе исследовались спектры поглощения объемных кристаллов GaN [14], спектры фотолюминесценции которых содержали все полосы дефектной фотолюминесценции, что и спектры светодиодных структур, представленные на рис. 2, а и b. На рис. 3, а и b представлены спектры фотолюминесценции (кривые 1) и оптического поглощения (кривые 2) двух кристаллов GaN, отличающихся интенсивностью желтой фотолюминесценции. Коэффициент поглощения $\alpha(hv)$ определялся как величина, обратная расстоянию, на котором поток монохроматического излучения уменьшается в результате поглощения в е раз: $\alpha(h\nu) = d^{-1} \cdot \ln \left(\Phi_0 (1 - R_{\text{GaN}})^2 / \Phi \right)$, где Φ_0, Φ — падающий и прошедший через кристалл поток монохроматического излучения соответственно; $R_{\text{GaN}} = 0.18$ [15] коэффициент отражения.

Как видно из рис. 3, оптическое поглощение резко растет в области энергий $h\nu = 1.1-1.3$ эВ, на коротковолновом крыле IRL-полосы, а также в области $h\nu = 3.2$ эВ, при этом наблюдается коротковолновый сдвиг поглощения относительно UVL-полосы.

В ближней ИК области наблюдается пик поглощения с пиковой энергией $h\nu_{\rm p} = 1.3 - 1.25$ эВ. Пик поглощения с максимумом при $hv_{\rm p} = 2.65 \, {\rm sB}$ наблюдается вблизи коротковолнового края полосы желтой люминесценции в кристалле с большой интенсивностью YL-полосы (рис. 3, b, (кривая 2)), при этом рост поглощения начинается вблизи максимума YL-полосы, а минимум поглощения при hv = 3.2 эВ соответствует началу резкого роста поглощения в области UVL-полосы. В кристалле с меньшей интенсивностью YL-полосы вблизи $hv_{\rm p} = 2.65$ эВ начинается замедление роста поглощения с энергией (рис. 3, а, кривая 2). В кристалле с меньшей интенсивностью YL-полосы спектр поглощения в видимой области имеет широкий минимум с абсолютным минимумом вблизи максимума желтой линии $(hv_{\min} = 2.13 \text{ эB})$ и относительным минимумом вблизи максимума красной линии ($hv_{\min} = 1.8$ эВ).

Рис. 3. Спектры фотолюминесценции, возбуждаемой He–Cdлазером ($\lambda = 325$ нм) (1), и оптического поглощения (2) кристаллов GaN с относительно низкой (*a*) и высокой (*b*) интенсивностью желтой фотолюминесценции. Стрелками отмечены спектральные положения максимумов интенсивности основных полос фотолюминесценции в GaN.

Таким образом, из рис. 3 виден основной тренд спектрального поведения оптического поглощения: рост поглощения с энергией при уменьшении интенсивности полосы фотолюминесценции и уменьшение поглощения при росте интенсивности полосы фотолюминесценции.

На длине волны $\lambda = 465$ нм коэффициент поглощения света в кристалле GaN с низкой интенсивностью желтой фотолюминесценции составил $\alpha = 78 \text{ см}^{-1}$ (рис. 3, *a*, кривая 2), что близко к значению коэффициента поглощения 90 см⁻¹, полученному ранее в структурах диодов В методом угловой зависимости интенсивности электролюминесценции [16]. Величину коэффициента поглощения для $\lambda = 465$ нм в кристалле GaN с более высокой интенсивностью YL-полосы (рис. 3, *a*, кривая 2) можно оценить как $\alpha = 40 \text{ см}^{-1}$, что ближе к величине коэффициента поглощения 23 см⁻¹, полученной ранее в структурах диодов В при измерениях поглощения света, распространяющегося латерально [15]. Как можно видеть из рис. 3, более высокой величине α соответствует более сильное спектрально-независимое в интервале 1.1–3.2 эВ поглощение. Можно предположить, что уменьшение прозрачности GaN вызывает поглощение на ростовых дефектах — включениях Ga (Ga droplets) [17].

4. Обсуждение результатов

4.1. Внутрицентровые переходы, ответственные за фотолюминесценцию и оптическое поглощение в GaN

Оптическое поглощение в слоях GaN в диапазоне 0.7–3 эВ характеризуется обычно широкими полосами поглощения [2–5]. Спектры поглощения в слоях GaN различной толщины, выращенных разными методами и измеренных разными методиками, как правило, сильно отличаются, но в то же время в них можно отметить некоторые общие черты. Резкое увеличение поглощения наблюдается вблизи одних и тех же оптических пороговых энергий $hv_{th} = 1.1-1.3, 2.1-2.5, 3.1-3.2$ эВ.

В литературе существуют различные точки зрения на механизм формирования спектров поглощения в GaN. Широкий хвост оптического поглощения связывается с энергетической зависимостью коэфициента поглощения моноэнергетических центров [5] или с непрерывным энергетическим распределением дефектных состояний в запрещенной зоне и урбаховским краем зон [2–4].

Как отмечалось выше, спектры поглощения кристаллов GaN, выращенных методом HVPE (рис. 3, *a*, *b*, кривые 2), коррелируют со спектральным положением полос фотолюминесценции (рис. 3, *a*, *b*, кривые 1). Рост полосы поглощения начинается при пороговой энергии hv_{th} , близкой к пиковой энергии hv_p полосы фотолюминесценции, что характерно для внутрицентровых переходов в центрах окраски, для которых спектр поглощения представляет собой зеркальное отражение спектра фотолюминесценции. О внутрицентровых переходах свидетельствуют также полосы поглощения в ближней ИК области с максимумом поглощения при $hv_p = 1.3$ эВ и видимой области спектра с максимумом при hv = 2.65 эВ в кристаллах с высокой интенсивностью желтой фотолюминесценции (рис. 3, *a*, *b*, кривые 2).

Наблюдаемая в данной работе корреляция между спектральным положением полос фотолюминесценции и поглощения позволяет сделать вывод, что комплексы дефектов в GaN, обусловливающие полосы фотолюминесценции в GaN, ответственны также за спектры поглощения.

4.2. Энергетический спектр дефектных состояний в GaN и эффективность светодиодов

В ряде работ отмечается определяющая роль туннелирования носителей сквозь барьеры в светодиодных p-n-структурах на основе GaN [6–8,18–20]. На несущественность надбарьерного переноса носителей при плотности тока 20–100 А/см² указывают, в частности, малые, по сравнению с напряжением плоских зон, равным ~ 3.4 В, пороговые напряжения $V_{\rm th} = 2.2-2.3$ В в GaN-светодиодах (рис. 1, *a*). Туннелирование электронов и дырок облегчается участием дефектных состояний в запрещенной зоне GaN [6–8,20].

Обсудим влияние туннелирования с участием ловушек (trap-assisted tunneling, TAT) на механизм инжекции и эффективность светодиодов. В диодах типа A (и A*) на границе с квантовой ямой имеется слаболегированная область *n*-GaN [8,11], так что полный ток в барьерной структуре этих диодов контролируется электронным туннельным током. Для иллюстрации механизма инжекции при туннелировании с участием ловушек будем обращаться к электронному току, не ограничиваясь случаем диодов A (см. вставка к рис. 1, *a*).

В присутствии глубоких хвостов состояний, при приближении носителей к квантовой яме расстояние между соседними состояниями увеличивается, а вероятность прыжков между ними уменьшается. При низких уровнях инжекции значительная часть носителей захватывается мелкими состояниями вблизи края обедненной области, что увеличивает барьерную емкость [8,21]. Стационарный ток контролируется плотностью состояний на границе с квантовой ямой и их энергетическим распределением в запрещенной зоне $N_t(E)$.

 $I - V_j$ -характеристика низкоэффективного диода В в значительной степени определяется током $I_{n/rad}$, обусловленным безызлучательной рекомбинацией, и отражает распределение плотности состояний $N_t(E)$: быстрый рост их плотности на квазиуровнях Ферми при малых и больших смещениях и медленный при средних смещениях.

При $V > V_{\text{th}}$ плотности инжектированных электронов и дырок равны, n = p, и можно считать, что демаркационные уровни совпадают с квазиуровнями Ферми. Состояния между квазиуровнями Ферми являются центрами безызлучательной рекомбинации. С увеличением прямого смещения $V_j = \Delta F/q$ ($\Delta F = F_n - F_p$ — разность электронного и дырочного квазиуровней Ферми) число центров, переходящих из категории ловушек $N_t(E)$ в категорию центров рекомбинации $N_r(\Delta F)$, растет, и время жизни $\tau(\Delta F)$ уменьшается.

излучения Ширина спектра квантовой ямы (2.4 - 2.8)И спектральное положение его максимума $hv_{\rm p} = 2.65 \, {\rm sB}$ относительно слабо меняются с напряжением. Это предполагает, что при $hv_{QW} > qV_j > qV_{\text{th}}$ основной поток носителей, вносящих вклад в излучение, $I_{\rm rad} \sim n^2$, термически активируется на уровни туннелирования $\Delta E_t = h v_{OW} > \Delta F$ (см. вставку к рис. 1, a) (thermally activated trap-assisted tunneling, TATAT). Компонента тока $I_{n/\mathrm{rad}} \sim n/ au \left(\Delta F\right)$ растет с уровнем инжекции медленней, чем Irad, что обеспечивает рост эффективности.

В диоде А малая плотность глубоких состояний ограничивает инжекцию в *QW*, что приводит к низкой эффективности при малых смещениях *V_i* < 2.9 В

Физика и техника полупроводников, 2016, том 50, вып. 10

(рис. 1, *a*, *b*, кривые 1). В диоде A^* некоторое увеличение плотности глубоких состояний в результате токового стресса приводит к увеличению инжекции в квантовую яму и увеличению эффективности при малых токах (рис. 1, *a*, *b*, кривые 3). В то же время более высокая плотность глубоких состояний в диоде В приводит преимущественно к росту тока $I_{n/rad}$ и ограничивает эффективность (рис. 1, *a*, *b*, кривые 2).

Ограничение роста эффективности у всех диодов в области средних смещений связано с медленным ростом плотности состояний $N_t(E)$ с энергией, что уменьшает термически активированный перенос. Носители туннелируют в основном по состояниям на квазиуровнях Ферми (протекает ток I_{TAT}). Безызлучательное время жизни уменьшается с концентрацией носителей как $\tau \sim 1/n$, и ток $I_{n/\text{rad}} \sim n/\tau \sim n^2$ растет с концентрацией носителей так же быстро, как и ток $I_{\text{rad}} \sim n^2$, что ограничивает эффективность.

Падение эффективности при токах $I > I_p$ (I_p — пиковый ток) вызвано быстрым ростом со смещением плотности центров безызлучательной рекомбинации $N_r(\Delta F) \sim \exp(\Delta F/E_0), E_0 = \beta kT$ ($\beta > 1$). При этом число центров рекомбинации растет как $N_r \propto n^{kT/E_0}$ [22] и концентрация инжектированных носителей и интенсивность излучения растут с током сублинейно, как $n \sim I^{\beta/(1+\beta)}$ [22,9], а эффективность падает как $\eta \sim I^{-1/(1+\beta)}$.

Спектр оптического поглощения кристалла GaN (рис. 3, *a*, кривая 2), в котором коэффициент поглощения для $\lambda = 465$ нм близок к измеренному ранее в структуре диода В (см. разд. 3.2), представлен также на рис. 1, кривая 4 в области hv = 2.2-3.3 эВ. Из рисунка виден подобный характер кривых $\alpha(hv)$ и log $I(V_j)$, $V_j = \Delta F/q$, для диода В (рис. 1, кривая 2).

Коэффицент поглощения пропорционален произведению начальных и конечных состояний для внутрицентровых переходов при поглощении фотонов с данной энергией hv. Доминирующие переходы для подзонного оптического поглощения (hv < 3.42 эВ) в GaN *n*-типа — переходы из заполненных акцепторных состояний в пустые донорные состояния. Соответственно рекомбинация на этих центрах осуществляется при заполнении донорных состояний потоком электронов и заполнении равным по величине потоком дырок глубоких акцепторных состояний при $\Delta F = hv$ и $V_i = \Delta F/q$.

Близкий характер зависимостей тока диода В от разности квазиуровней Ферми (рис. 1, кривая 2) и оптического поглощения от энергии (кривая 4) позволяет предположить, что и оптическая прозрачность GaN в интервале энергий hv = 2.2-3.3 эВ, и туннельная прозрачность GaN барьеров в интервале разностей квазиуровней Ферми $\Delta F = 2.2-3.3$ эВ обусловлены одними и теми же центрами в запрещенной зоне GaN.

Ступенчатый рост эффективности диодов А вблизи $V_j = 2.5$ и 2.67 В можно связать с увеличением концентрации глубоких центров, ответственных за желтую ($hv_{\rm YL} = 2.25$ эВ) и голубую (hv = 2.7-3 эВ) фотолюминесценцию при перемещении квазиуровней Ферми

Рис. 4. Температурные зависимости эффективности, измеренные при постоянной величине тока (1, 2), тока (3) и емкости, измеренные при постоянном прямом напряжении (45), GaN-светодиодов A (1, 3, 4) и B (2, 5). Ток, мA: 1 - 5, 2 - 20. Напряжение, B: 3 - 2.9, 4 - 2, 5 - 0.

 $\Delta F = qV_i$. После токового стресса пороговое напряжение снижается от 2.5 до 2.3 В, а эффективность диода А* наиболее значительно растет вблизи $V_i = 2.3 \,\mathrm{B}$, вблизи 2.5 и 2.67 В рост эффективности уменьшается. Это указывает на рост концентрации глубоких центров, ответственных за красную ($h\nu_{\rm RL} = 1.85$ эВ) фотолюминесценцию после токового стресса. Эффективность диода А начинает падать вблизи $V_i = 2.9 \,\mathrm{B}$ и более быстро при $V_i = 3.2 \,\mathrm{B}$, вблизи максимумов интенсивности голубой $(h\nu_{\rm BL} = 2.9\,{}_{9}{\rm B})$ и ультрафиолетовой фотолюминесценции ($hv_{\rm UVL} = 3.2\,$ эВ). Эффективность диода В также падает в области $V_i = 3$ В. Эти результаты позволяют сделать вывод, что падение эффективности при высоких уровнях инжекции вызвано высокой коцентрацией мелких центров, ответственных за голубую и ультрафиолетовую фотолюминесценцию.

Проведенное выше обсуждение приводит к следующим качественным выводам. Группы дефектных комплексов формируют широкие полосы состояний в запрещенной зоне GaN, внутрицентровые переходы в которых ответственны за полосы оптического поглощения, сдвинутые в коротковолновую область относительно полос фотолюминесценции. Вблизи границ с квантовой ямой InGaN/GaN дефектные состояния, энергетически расположенные между квазиуровнями Ферми, для которых $\Delta E_t < \Delta F = qV_j$, являются центрами безызлучательной рекомбинации Nr. Более мелкие состояния, для которых $\Delta E_t > \Delta F = qV_j$, являются транспортными и обеспечивают прыжковый перенос термоактивированных носителей, электронов с энергией $E > F_n$ и дырок с энергией $E < F_p$ в квантовую яму.

Эффективность растет с ростом уровня инжекции, когда квазиуровни Ферми пересекают состояния, ответ-

ственные за минимум поглощения в полосе, так как при этом доминирует инжекция термоактивированных носителей. Рост эффективности замедляется, когда квазиуровни Ферми пересекают состояния, ответственные за максимум поглощения в полосе. К падению эффективности при высоких уровнях инжекции приводит уменьшение безызлучательного времени жизни при приближении квазиуровней Ферми к краям зон.

4.3. Природа центров, ответственных за безызлучательную рекомбинацию

Связь полос фотолюминесценции в структурах с квантовыми ямами InGaN/GaN с полосами подзонного поглощения в кристаллах GaN, показанная в разд. 4.1, дает возможность идентифицировать центры безызлучательной рекомбинации в GaN, используя известные из литературы результаты идентификации дефектов, ответственных за фотолюминесценцию в GaN. Комплексы V_{Ga}O_N, образованные глубоким акцептором, вакансией галлия V_{Ga}, и мелким донором, кислородом в азотных вакансиях O_N являются основными кандидатами на роль дефектов, ответственных за желтую фотолюминесценцию в GaN [1]. Гидрогенизация вакансий галлия V_{Ga}H_n $(n \le 4)$ приводит к образованию более мелких акцепторов, образование комплексов V_{Ga}H_n-O_N приводит к возникновению голубой полосы фотолюминесценции [1]. Предполагается также вовлеченность водорода в дефектные комплексы, ответственные за UVL-линию излучения донорно-акцепторных пар [23].

Это позволяет сделать вывод, что мелкие центры безызлучательной рекомбинации, вызывающие падение

эффективности при высоких уровнях инжекции, включают пассивированные водородом оборванные связи и, в частности, гидрогенизированные вакансии галлия V_{Ga}H_n. Депассивация дефектов с оборванными связями в процессе деградации увеличивает концентрацию глубоких центров рекомбинации — комплексов V_{Ga}O_N и приводит к уменьшению эффективности уже при низких уровнях инжекции.

Роль водорода в формировании энергетического спектра дефектных состояний в запрещенной зоне GaN подтверждается характером температурных зависимостей эффективности, тока и емкости диодов A и B, представленных на рис. 4. При понижении температуры эффективность при I = const падает (рис. 4, кривые 1 и 2). Падение эффективности вызвано уменьшением прыжковой проводимости через обедненную область при понижении температуры. Это подтверждается близким характером температурных зависимостей тока при $V_j = \text{const}$ (рис. 4, кривая 3).

Падение эффективности связано с увеличением напряжения смещения для поддержания постоянной величины тока, что ведет к увеличению числа центров рекомбинации и уменьшению времени жизни. Подобный характер имеют и температурные зависимости емкости (рис. 3, кривые 4 и 5) при $V_j < V_{\rm th}$. Уменьшение емкости при понижении температуры связано с уменьшением прыжковой проводимости по мелким состояниям хвоста вблизи края области объемного заряда и соответственно увеличением ширины обедненной области (разд. 4.2).

Отсюда можно сделать вывод, что прыжковая проводимость через область объемного заряда резко увеличивается при $T > 150 \, \text{K}$, слабо зависит от температуры в области от 150 до 200-220 К и вновь растет при T > 220-250 К. Подобная зависимость проводимости от температуры наблюдалась ранее в аморфном SiO₂ [24], на границе Si/SiO₂ [25], poly-Si [26]. Характерное плато в области от 150 до 220 К обусловлено химической природой водорода и объясняется реакцией димеризации-диссоциации атомарного и молекулярного водорода $2H^0 \leftrightarrow H_2$ [25], оказывающей влияние на реакционную способность водорода при пассивации-депассивации дефектов с оборванными связями. Этот вывод подтверждает, в частности, антикорреляция между температурными зависимостями эффективности (рис. 4, кривые 1 и 2) и интенсивности метастабильной голубой полосы фотолюминесценции, наблюдавшейся в GaN [1].

5. Заключение

Анализ результатов показывает, что полосы подзонного оптического поглощения в GaN обусловлены теми же центрами, что и полосы фотолюминесценции, при этом оптические пороговые энергии соответствуют пиковым энергиям полос фотолюминесценции. В p-n-структурах с квантовыми ямами InGaN/GaN полосы этих центров в запрещенной зоне облегчают подбарьерное туннелирование носителей.

Эффективность излучательной рекомбинации в GaNсветодиодах с ростом уровня инжекции определяется плотностью и энергетическим спектром дефектных состояний. При малых напряжениях носители инжектируются в квантовую яму, термически активируясь на высоту эффективного барьера, численно равную пиковой энергии излучения квантовой ямы hvow. В эффективных светодиодах рост эффективности с увеличением прямого смещения при $\Delta F < h v_{OW}$ обеспечивается более высокой плотностью глубоких дефектных состояний с $\Delta E_t = h v_{OW}$ на границе с квантовой ямой, по сравнению с плотностью глубоких состояний с $\Delta E_t = \Delta F$ на квазуровнях Ферми, определяющей безызлучательное время жизни. При $\Delta F \ge h v_{OW}$ время жизни и эффективность уменьшаются в результате роста плотности мелких дефектных состояний на квазиуровнях Ферми. Падение эффективности связано с водородными комплексами, ответственными за голубую и УФ фотолюминесценцию в GaN.

Список литературы

- M.A. Reshchikov, H. Morkoç. J. Appl. Phys., 97, 061301 (2005).
- [2] C.H. Qiu, C. Hoggatt, W. Melton, M.W. Leksono, J.I. Pankove. Appl. Phys. Lett., 66, 2712 (1995).
- [3] L. Balagurov, P.J. Chong. Appl. Phys. Lett., 68, 43 (1996).
- [4] O. Ambacher, W. Reiger, P. Ansmann, H. Angerer, T.D. Moustakas, M. Stutzmann. Sol. St. Commun., 97, 365 (1996).
- [5] P.B. Klein, S.C. Binari. J. Phys.: Condens. Matter, 15, R1641 (2003).
- [6] P. Perlin, M. Osinski, P.G. Eliseev, V.A. Smagley, J. Mu, M. Banas, P. Sartori. Appl. Phys. Lett., 69, 1680 (1996).
- [7] N.I. Bochkareva, V.V. Voronenkov, R.I. Gorbunov, A.S. Zubrilov, Y.S. Lelikov, P.E. Latyshev, Y.T. Rebane, A.I. Tsyuk, Y.G. Shreter. Appl. Phys. Lett., 96, 133502 (2010).
- [8] Н.И. Бочкарева, В.В. Вороненков, Р.И. Горбунов, Ф.Е. Латышев, Ю.С. Леликов, Ю.Т. Ребане, А.И. Цюк, Ю.Г. Шретер. ФТП, 47, 115 (2013).
- [9] Н.И. Бочкарева, Ю.Т. Ребане, Ю.Г. Шретер. ФТП, 49, 1714 (2015).
- [10] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai. Jpn. J. Appl. Phys., 34, L1332 (1995).
- [11] T. Mukai, K. Takekava, S. Nakamura. Jpn. J. Appl. Phys., 37, L839 (1996).
- [12] Y.T. Rebane, N.I. Bochkareva, V.E. Bougrov, D.V. Tarkhin, Y.G. Shreter, E.A. Girnov, S.I. Stepanov, W.N. Wang, P.T. Chang, P.J. Wang. Proc. SPIE, **4996**, 113 (2003).
- [13] А.А. Ефремов, Н.И. Бочкарева, Р.И. Горбунов, Д.А. Лавринович, Ю.Т. Ребане, Д.В. Тархин, Ю.Г. Шретер. ФТП, 40, 621 (2006).
- [14] V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, Y. Shreter. Jpn. J. Appl. Phys., 52, 08JE14 (2013).
- [15] Ю.С. Леликов, Н.И. Бочкарева, Р.И. Горбунов, И.А. Мартынов, Ю.Т. Ребане, Д.В. Тархин, Ю.Г. Шретер. ФТП, 42, 1371 (2008).
- [16] А.А. Ефремов, Д.В. Тархин, Н.И. Бочкарева, Р.И. Горбунов, Ю.Т. Ребане, Ю.Г. Шретер. ФТП, 40, 380 (2006).

- [17] M.A. Mastroa, O.M. Kryliouka, T.J. Andersona, A. Davydovb, A. Shapiro. J. Cryst. Growth, 274, 38 (2005).
- [18] В.Е. Кудряшов, А.Н. Туркин, А.Э. Юнович, А.Н. Ковалев, Ф.И. Маняхин. ФТП, **33**, 445 (1999).
- [19] L. Hirsch, A.S. Barriere. J. Appl. Phys., 94, 5014 (2003).
- [20] M. Mandurrino, G. Verzellesi, M. Goano, M. Vallone, F. Bertazzi, G. Ghione, M. Meneghini, G. Meneghesso, E. Zanoni. Phys. Status Solidi A, 212, 947 (2015).
- [21] Н.И. Бочкарева, Ю.Т. Ребане, Ю.Г. Шретер. ФТП, **48**, 1107 (2014).
- [22] A. Rose. Concept in Photoconductivity and Allied Problems (Krieger, N. Y., 1978).
- [23] O. Gelhausen, M. R. Phillips, E. M. Goldys, T. Paskova, B. Monemar, M. Strassburg, A. Hoffmann. Phys. Rev. B, 69, 125210 (2004).
- [24] D. Han, K. Wang, L. Yang. J. Appl. Phys., 80, 2475 (1996).
- [25] D.L. Gricom. J. Appl. Phys., 58, 2524 (1985).
- [26] N.H. Nickel, N.M. Johnson, C.G. Van de Walle. Phys. Rev. Lett. 72, 3393 (1994).

Редактор Г.А. Оганесян

Efficiency droop at high injection levels in GaN light-emitting diodes: role of hydrogen

N.I. Bochkareva+, I.A. Sheremet*, Y.G. Shreter+

⁺ loffe Institute,
194021 St. Petersburg, Russia
* Financial university under the Government of the Russian Federation,

125993 Moscow, Russia

Abstract Analysis of point defects in GaN, particularly, their manifestation in photoluminescence, optical absorption and recombination current in the InGaN/GaN quantum well light-emitting diodes is presented. The results suggest that the wide tail of defect states in the forbidden gap of GaN facilitate the trap-assisted tunneling of thermally activated carriers into the quantum well, but simultaneously causes a decrease of the nonradiative recombination lifetime and the efficiency droop as the quasi-Fermi levels intersect the defect states with increasing forward bias. The results clarify the predominant role of hydrogen in the recombination activity of dangling bond-type defects and the efficiency of GaN-based devices.