03;04

Взаимодействие СВЧ-излучения с эрозионной плазменной струей

© В.Г. Бровкин, А.С. Пащина, Н.М. Рязанский

Объединенный институт высоких температур РАН, Москва E-mail: fgrach@mail.ru

Поступило в Редакцию 24 февраля 2016 г.

Представлены результаты исследований взаимодействия мощного импульсного СВЧ-излучения с плазменной струей, формируемой с помощью разряда в капилляре с аблирующей стенкой. Обнаружено существенное влияние импульса СВЧ-излучения на картину течения плазменной струи. В зависимости от уровня начального возмущения струи возможны различные сценарии его эволюции вниз по потоку: затухание либо усиление, сопровождающееся развитием турбулентности, вплоть до прерывания течения при превышении определенного порога энергетического воздействия. Обнаружено существенное влияние плазменной струи и ее состояния на пространственное положение зоны выделения энергии СВЧ-импульса.

Взаимодействие СВЧ-разряда с газоплазменными течениями является одной из важных проблем магнитоплазменной аэродинамики. Несомненным достоинством данного вида разряда является возможность управления параметрами, конфигурацией и местом пространственной локализации зоны энерговыделения путем изменения параметров СВЧ-излучения и системы его фокусировки. Эффективность воздействия на свойства набегающего потока убедительно показали эксперименты, в которых зажигание СВЧ-разряда в окрестности обтекаемого тела приводило к существенной деформации присоединенной ударной волны и снижению силы сопротивления [1]. В дальнейшем изучались комбинированные разряды, посредством которых удалось существенно понизить порог СВЧ-пробоя и обеспечить локализацию разряда в требуемой области пространства. Здесь для инициации СВЧ-разряда использовалась лазерная или импульсная высоковольтная искра [2].

Весьма интересным способом организации комбинированного разряда является применение тонкой плазменной струи, создаваемой посредством импульсного капиллярного разряда [3]. В принципе, такая

41

плазменная струя может также использоваться для эффективного управления параметрами сверхзвукового потока [4] с одновременной инициацией и существенным понижением порога СВЧ-пробоя. Более того, мощное СВЧ-излучение может оказывать влияние на газодинамические и плазменные свойства самой струи (в частности, на ее устойчивость), что может представлять самостоятельный методический и научный интерес для изучения динамики струйных течений [5,6] при внешнем дистанционном воздействии. Важным аспектом такого взаимодействия является возможность модификации параметров плотной плазмы, что в настоящее время вызывает повышенный интерес в связи с проблемой создания окон радиопрозрачности в условиях гиперзвукового полета [7]. Поэтому основной целью наших экспериментов было определение круга явлений, возникающих при взаимодействии плазменной струи с мощным СВЧ-излучением, что, на наш взгляд, представляет несомненный интерес для различных приложений.

Объектом наших исследований являлась плазменная струя, формируемая с помощью импульсного разряда в капилляре с аблирующей стенкой (материал — полиметилметакрилат), параметры и режимы которого детально изучены в предыдущих наших работах [3,8]. Начальный диаметр капилляра составляет 1 mm, длина — 4 mm. В ходе экспериментов изучалось два режима течения плазменной струи дозвуковой и сверхзвуковой — с существенно различными значениями скорости струи, продолжительности ее существования и мощности разрядного импульса. Типичные значения указанных параметров для дозвуковой и сверхзвуковой струй соответственно составляют: скорость фронта струи $v_{sub} \sim 30$ m/s и $v_{sup} \sim 300$ m/s, длительность разрядного импульса $t_{sub} = 9 \text{ ms}$ и $t_{sup} = 1 \text{ ms}$, пиковая мощность разряда $P_{sub} \approx 10 \, \mathrm{kW}$ и $P_{sup} \approx 80 \, \mathrm{kW}$. Выбор параметров разряда ограничен условием установления ламинарного течения, при котором достигается наибольшая длина (10-20 cm) плазменной струи. Причем в сверхзвуковом режиме пиковая мощность разряда выбрана несколько ниже порогового значения, превышение которого сопровождается развитием турбулентности и резким сокращением длины ламинарного участка, что позволяет повысить "чувствительность" струи к воздействию импульса СВЧ-излучения.

Капиллярный разрядник (рис. 1, *a*) устанавливался в металлической камере (диаметр 0.5 m, длина 1 m), в которую через торцевой фланец осуществляется ввод СВЧ-излучения (мощность $W \approx 600$ kW, длина волны $\lambda = 2.3$ cm, длительность импульса $\tau = 8 \mu$ s), для фокусировки

Рис. 1. Схема и фото капиллярного разрядника (a) и схема экспериментальной установки (b): I — капилляр, 2 — внутренний электрод, 3 — наружный электрод, F_0 — положение фокального пятна.

которого используется параболическое зеркало (рис 1, *b*). Напряженность электрического поля в фокальном пятне составляет примерно $E \sim 3 \, \mathrm{kV/cm}$, что существенно ниже порога зажигания самостоятельного СВЧ-разряда при атмосферном давлении. При выборе пространственного положения разрядника добивались совмещения оси плазменной струи с главной осью фокусирующей системы. Для совмещения средней части струи с фокальной областью СВЧ-излучения и предотвращения

Письма в ЖТФ, 2016, том 42, вып. 17

а

b

инициации СВЧ-разряда на металлических деталях капиллярного разрядника последний размещался на определенном удалении от фокального пятна. При этом расстояние между центром фокального пятна и срезом капилляра было выбрано равным 6 ст и не изменялось в ходе экспериментов.

Исследование взаимодействия СВЧ-излучения с плазменной струей проведено при различных задержках СВЧ-импульса относительно момента зажигания капиллярного разряда. Для регистрации временной эволюции плазменной струи в целом использовалась скоростная видеокамера Motion Pro N3 (длительность экспозиции — 1 μ s, частота кадров 10 kHz). Для детального изучения начальной стадии взаимодействия применялась однокадровая камера PCO Sensicam (длительность экспозиции — от 100 ns), допускающая возможность синхронизации кадра относительно начала СВЧ-импульса и момента зажигания капиллярного разряда, что позволяет проследить динамику взаимодействия как в течение СВЧ-импульса, так и в моменты времени, предшествующие его подаче и после его завершения.

Включение импульса СВЧ-излучения приводит к возмущению плазменной струи, кардинально изменяющему всю последующую картину течения. Многочисленные пуски показали, что в момент включения СВЧ-импульса возмущению подвергается ограниченный (сильно проводящий) участок струи, отстоящий на расстоянии 1-3 cm от среза капилляра, в окрестности которого, по-видимому, поглощается основная доля энергии импульса СВЧ-излучения. Более сильному воздействию подвержены дозвуковые струи, для которых скорость плазмы на срезе капилляра не превышает 150-200 m/s. Для таких струй включение СВЧ-импульса приводит к деформации начального участка (длиной около 10-15 mm), ядро которого принимает форму, близкую к синусоиде, а на периферии наблюдается формирование упорядоченных вихревых структур (рис. 2). Интервал времени между моментом включения СВЧимпульса и началом заметной деформации не превышает 2 µs, и к концу СВЧ-импульса (примерно за 1-2 µs до его окончания) амплитуда деформации и размеры вихревых структур достигают максимальных значений. Основные черты такой картины течения качественно сохраняются в течение продолжительного интервала времени — на протяжении оставшейся части СВЧ-импульса (примерно 2µs) и в течение 20-30µs после его окончания. По истечении указанного интервала времени становится заметным дрейф возмущения вниз по потоку, вызванный поступлением новых порций плазмы из капилляра, вследствие чего

Рис. 2. Картина течения дозвуковой плазменной струи, соответствующая моменту времени $t = 6 \mu s$ после подачи СВЧ-импульса: 1 — граница струи, 2 — высокотемпературное ядро, 3 — вихри, 4 — факел наружного электрода, 5 — срез капилляра, время задержки СВЧ-импульса $\tau_d = 3 \mu s$, длительность экспозиции $\tau_{exp} = 100$ ns.

амплитуда деформации начального участка плавно убывает, а полное восстановление его исходной формы наступает примерно через 50 µs после выключения СВЧ-импульса.

Последующая эволюция возмущения развивается по двум основным сценариям, соответствующим его усилению или затуханию. Начальная стадия первого сценария характеризуется дальнейшим увеличением поперечных размеров и трансформацией возмущенного участка, форма которого по мере эволюции все далее отклоняется от синусоидальной (см. кадр 2 на рис. 3, a). Трансформация затрагивает и вихревые структуры, размеры которых уменьшаются по сравнению с первоначальными, что, по-видимому, обусловлено их нелинейным взаимодействием [5,6]. Завершение данного сценария характеризуется кардинальной перестройкой течения, результирующая картина которого зависит от скорости потока. Для дозвуковых струй усиление возмущения, как правило, заканчивается прерыванием исходного потока и образованием в месте разрыва контактной границы, разделяющей участки струи,

Рис. 3. Динамика течения дозвуковой (a) и сверхзвуковой (b) плазменной струи после воздействия импульсом СВЧ-излучения: $a - t_d = 2 \text{ ms}, b - t_d = 200 \, \mu \text{s}$, частота кадров 10 kHz, стрелка F_0 — положение фокального пятна.

расположенные до и после разрыва (рис. 3, *a*). Скорость контактной границы в момент ее образования оказывается сравнимой (несколько ниже) со скоростью плазмы внутри струи, что позволяет оценить ее значение — $v_{pl} \approx 150-200$ m/s. Для сверхзвуковых струй этот сценарий завершается формированием турбулентного участка, который сносится вниз по потоку под воздействием новых поступлений плазмы

из капилляра (рис. 3, b). Отметим, что для дозвуковых струй переход к мелкомасштабной турбулентности в явном виде не наблюдается. Существует также и другой сценарий, согласно которому происходит затухание исходного возмущения. В этом случае наблюдается снижение амплитуды деформации и "расползание" области возмущения вдоль оси струи в обоих направлениях на фоне ее дрейфа вниз по потоку.

Реализация того или иного сценария, очевидно, определяется интенсивностью исходного возмущения, зависящей от плотности мощности СВЧ-излучения в зоне поглощения и ее пространственного положения относительно струи, которые, в свою очередь, зависят от параметров плазмы в окрестности струи, отслеживающих изменение мощности эрозионного разряда [8]. Существование такой зависимости подтверждается результатами многочисленных экспериментов, проведенных при различных задержках СВЧ-импульса относительно момента зажигания эрозионного разряда, в которых было обнаружено — чем выше мощность разряда, тем далее зона энерговыделения отстоит от среза капилляра. Однако ее положение никогда не достигает положения фокального пятна, даже если длина плазменной струи к моменту включения СВЧ-импульса значительно перекрывает это расстояние.

Таким образом, динамика возмущения плазменной струи во многом сходна с эволюцией неустойчивости свободных сдвиговых течений и содержит характерные признаки такой неустойчивости, а именно: усиление первичной неустойчивости Кельвина-Гельмгольца, приводящей к последовательному сворачиванию слоев сдвига в вихревые структуры, их нелинейное взаимодействие, разрушение и развитие турбулентности [5,6]. Однако существуют некоторые особенности. Во-первых, эволюция неустойчивости зависит от начального уровня возмущения. В частности, сценарий, заканчивающийся развитием турбулентности, реализуется при высокой интенсивности начального возмущения и достаточно высокой скорости течения, близкой к порогу ламинарно-турбулентного перехода Re ~ Re_{cr}. Принимая во внимание данные Re_{cr} ~ 100-600 для газовых струй [9], получим скорость потока $v_{cr} \sim 1-6$ km/s (рабочий газ — водород, T = 4000 K, p = 1 Bar, d = 1 mm). Такая скорость достигается в сверхзвуковых струях, в экспериментах с которыми и наблюдается формирование турбулентного участка. В дозвуковых струях перехода к турбулентности не наблюдается, а превышение некоторого порога интенсивности исходного возмущения приводит в итоге к прерыванию течения. При низкой интенсивности возмущения не происходит его усиления как для дозвуковых, так и

для сверхзвуковых струй. Во-вторых, воздействие СВЧ-импульса всегда приводит к развитию асимметричной (спиральной) моды неустойчивости, которая, как правило, доминирует в струйных течениях с пуазейлевским профилем скорости, а также в условиях несимметричного внешнего воздействия [6]. Допуская возможность формирования на срезе капилляра профиля скорости, близкого к пуазейлевскому, что может оказаться вполне вероятным в силу существенно неоднородных радиальных профилей температуры и концентрации компонент плазмы [8], нам все же представляется, что главной причиной возбуждения асимметричной моды является несимметричное расположение зоны энерговыделения относительно оси струи в силу особенностей схемы организации разряда [3]. В заключение отметим, что обнаруженная взаимосвязь места пространственной локализации СВЧ-разряда (его смещение до 4-5 cm относительно фокуса) с параметрами плазменной струи позволяет по-новому подойти к постановке задачи управления пространственным положением и параметрами зоны энерговыделения, что является важным для многих приложений, в частности магнитоплазменной аэродинамики.

Авторы выражают благодарность д.ф.-м.н. Битюрину В.А. за полезные советы и замечания, высказанные при обсуждении данной работы.

Список литературы

- Kolesnichenko Y.F., Brovkin V.G., Leonov S.B. et al. // 32nd AIAA Plasmadynamics Lasers Conf. 4th Weakly Ioniz. Gases Work. USA, Anaheim, CA, 2001. N June. P. 1–26.
- [2] Афанасьев С.А., Бровкин В.Г., Колесниченко Ю.Ф., Машек И.Ч. // Письма в ЖТФ. 2011. Т. 37. В. 15. С. 40–46.
- [3] Пащина А.С., Климов А.И. // Хим. физика. 2014. Т. 33. № 2. С. 78-86.
- [4] Leonov S., Nebolsin V., Shilov V. // I Int. Work. Perspect. MHD Plasma Technol. Aerosp. Appl. / Ed. Bityurin V. Moscow, Russia: IVTAN, 1999. P. 58–65.
- [5] Анискин В.М., Бунтин Д.А., Маслов А.А. и др. // ЖТФ. 2012. Т. 82. В. 2. С. 17–23.
- [6] Козлов Г.В., Грек Г.Р., Литвиненко М.В. и др. // Вестник НГУ. Сер. Физика. 2010. Т. 5. № 1. С. 9–28.
- [7] Keidar M., Kim M., Boyd I. // J. Spacecr. Rockets. 2008. V. 45. N 3. P. 445-453.
- [8] Пащина А.С., Ефимов А.В., Чиннов В.Ф. // ТВТ. 2016. Т. 54. № 4. С. 1–18.
- [9] Леманов В.В., Терехов В.И., Шаров К.А., Шумейко А. // Письма в ЖТФ. 2013. Т. 39. В. 9. С. 34-40.