13,04

Отклик емкости и диэлектрических потерь пленочной гетероструктуры SrRuO₃/SrTiO₃/SrRuO₃ на изменение температуры и электрическое поле

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: vu.boikov@mail.ioffe.ru

(Поступила в Редакцию 23 марта 2016 г.)

Методом лазерного испарения выращены трехслойные эпитаксиальные гетероструктуры, в которых слой из титаната стронция, толщиной в 750 nm, помещен между двух проводящих пленочных электродов из рутената стронция. Фотолитография и ионное травление использованы для формирования на базе выращенных гетероструктур плоско параллельных конденсаторов, емкость и тангенс угла диэлектрических потерь (tan δ) которых были измерены в интервале температуры T = 4.2-300 K, при подаче напряжения смещения до ± 2.5 V и без него. При T > 100 K температурная зависимость диэлектрической проницаемости (ε) слоя SrTiO₃ хорошо апроксимировалась соотношением Кюри–Вейсса с учетом емкости, индуцированной проникновением электрического поля в оксидные электроды. При $T \approx 20$ K, ε промежуточного слоя SrTiO₃ уменьшалась примерно на 20% в электрическом поле 25 kV/cm. tan δ пленочных емкостных гетероструктур монотонно уменьшался с температурой в интервале 300-80 K и практически не зависел от напряженности электрического поля. Однако в интервале 80-4.2 K наблюдалось резкое, не монотонное увеличение диэлектрических потерь с понижением температуры и их существенное уменьшение в электрическом поле.

Финансовая поддержка для проведения данных исследований была частично получена с проекта РФФИ № 15-02-03996.

1. Введение

Тонкие слои проводящих рутенатов и манганитов перспективны [1,2] для использования в качестве проводящих электродов в перенастраиваемых емкостных пленочных системах с промежуточным слоем из нелинейного перовскито-подобного сегнетоэлектрика. Титанат стронция относят к начинающим сегнетоэлектрикам, спонтанная поляризация в механически ненапряженных кристаллах не проявляется [3] вплоть до сверхнизких температур. Сегнетоэлектричество может быть индуцировано [4] в кристаллах SrTiO₃ (STO) при деформации последних. Изоморфность по структуре и незначительное рассогласование в параметрах кристаллических решеток позволяют интегрировать слой STO и электроды SrRuO₃ (SRO) в эпитаксиальной пленочной системе с резкими межфазными границами. Важной особенностью рутената стронция является аномально высокая концентрация электронов ($\approx 2 \times 10^{22} \, {\rm cm}^{-3}$ [5]). Это обуславливает малую глубину проникновения электрического поля в электрод, выполненный из SRO и практическую независимость удельной емкости межфазной границы SRO/STO от температуры и электрического поля.

2. Эксперимент

Трехслойные гетероструктуры SrRuO₃/SrTiO₃/SrRuO₃ (SRO/STO/SRO) были выращены методом лазерного испарения (KrF, $\lambda = 248$ nm, $\tau = 30$ nm) на подложках La_{0.29}Sr_{0.71}Al_{0.65}Ta_{0.35}O₃ ((001)LSATO). Электроды из

рутената стронция имели толщину 60 nm, а толщина (d) промежуточного слоя STO равнялась 750 nm. Давление кислорода в ростовой камере в процессе формирования пленок SRO и STO поддерживалось на уровне 0.3 mbar, а температура подложки равнялась 780°С. Плотность лазерного излучения на поверхности испаряемых объемных керамических мишеней SRO и STO составляла 1.5 J/cm².

Рентгеновская дифракция (Philips X'pert MRD, Cu $K_{\alpha 1}$, $\omega/2\theta$ - и ϕ -сканы, кривые качания) была использована для получения информации о параметрах кристаллических решеток в выращенных слоях и об ориентации последних как азимутально, так и относительно нормали к поверхности подложки. Рентгеновские сканы были визуализированы в условиях, когда падающий и отраженный пучки находились в плоскости перпендикулярной (001) или (101)LSATO. При оценке параметров ячейки в слое STO использовались значения 2θ для рентгеновских пиков (004) и (303)STO. Морфология свободной поверхности выращенных гетероструктур исследовалась с использованием микроскопа атомных сил (Nanoscope IIIa).

Фотолитография и ионное травление (Ar, 500 V, 0.2 mA) были использованы для формирования квадратных электродов ($S = 70 \times 70 \,\mu m^2$) в верхнем слое SRO и "окон" в промежуточном слое STO для формирования контакта к нижнему электроду в гетероструктуре SRO/STO/SRO. Емкость (C) и диэлектрические потери (tan δ) сформированных пленочных конденсаторов измерялись с использованием LCR hp 4263A meter при подаче на электроды напряжения смещения (V_b) и без него, V_b считалось положительным, когда "+" был подан на верхний электрод. Напряжение измерительного сигнала равнялось 50 mV, а его частота (f) варьировалась в интервале 1–100 kHz. Реальная часть диэлектрической проницаемости (ε) промежуточного слоя STO рассчитывалась с использованием соотношения $\varepsilon = Cd/S$.

3. Результаты и их обсуждение

Параметр псевдокубической элементарной ячейки SRO ($a_{\text{SRO}} = 3.928$ Å [6]) больше соответствующего параметра LSATO ($a_{\text{LSATO}} = 3.868$ Å [7]) и параметра кубической ячейки STO ($a_{\text{STO}} = 3.905$ Å[8]). Рассогласование m в параметрах кристаллических решеток рутената стронция с LSATO составляет порядка 1.5%, а с STO примерно 0.5%, ($m = (a_{\text{F}} - a_{S})/a_{S}$)), где a_{F} и a_{S} параметры решетки пленки и подложки соответственно. Температурные коэффициенты линейного расширения интегрированных в гетероструктуре SRO/STO/SRO слоев и подложки имеют близкие значения[8,9].

3.1. Структура выращенных трехслойных пленочных систем. Дифрактограмма $\omega/2\theta$, визуализированная в условиях, когда плоскость, включающая падающий и отраженный рентгеновские пучки, была нормальна к плоскости подложки, показана на рис. 1, а. На полученном скане присутствовали пики только от подложки LSATO, промежуточного слоя STO и электродов SRO. Это свидетельствует об отсутствии в выращенных гетероструктурах макровключений вторичных кристаллических фаз. Из рентгеновских данных следует, что параметр элементарной ячейки электродов SRO вдоль нормали к плоскости подложки имел величину порядка 3.95 ± 0.01 (рефлексы от нижнего и верхнего электродов в гетероструктуре перекрывались). Причиной увеличения параметра ячейки в электродах SRO вдоль нормали к плоскости подложки является их двухосное латеральное сжатие, вследствие положительного рассогласования в параметрах кристаллических решеток рутената стронция с LSATO и STO. Параметры элементарной ячейки промежуточного слоя STO в плоскости подложки ($\sim 3.911 \pm 0.005$ Å) и вдоль нормали к ее поверхности ($\sim 3.912 \pm 0.005$ Å) практически совпадали и незначительно превышали величину а_{STO}. Это свидетельствует о частичной релаксации механических напряжений в промежуточном слое STO и о присутствии в его объеме кислородных вакансий. Полуширина кривой качания $\omega - 2\theta$ для рентгеновского рефлекса (002)STO, см. вставку на рис. 1, a, равнялась 0.05° и примерно в 5 раз превышала полуширину соответствующей кривой качания для монокристаллической подложки LSATO. Промежуточный слой состоял из четко преимущественно орентированных относительно нормали к плоскости подложки кристаллических блоков STO, эффективная азимутальная разориентация которых составляла примерно 0.2°, оценка получена с использованием данных

Рис. 1. *а*) Дифрактограмма ($\omega/2\theta$), полученная для гетероструктуры SRO/STO/SRO в условиях, когда падающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (001)LSATO. На вставке показана кривая качания ($\omega - 2\theta$) для рентгеновского рефлекса (002)STO от той же гетероструктуры. *b*) Дифрактограмма ($\omega/2\theta$), полученная для гетероструктуры SRO/STO/SRO в условиях, когда падающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (101)LSATO. На вставке показана и и марающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (101)LSATO. На вставке показан пик на визуализированном рентгеновском ϕ -скане для рефлекса (111)STO.

по полуширине пиков на рентгеновском ϕ скане, полученном для рефлекса (111)STO, см. вставку на рис. 1, *b*. Верхний электрод SRO в гетероструктуре состоял из кристаллических зерен с латеральным размером порядка 40 nm, см. вставку на рис. 2, *a*, а межзеренные границы были декорированы характерными углублениями на его свободной поверхности.

3.2. Температурные и полевые зависимости ε и tan δ промежуточного слоя STO. Температурная зависимость емкости сформированного плоско параллельного пленочного конденсатора SRO/STO/SRO показана на рис. 2, *а*. В температурном интервале 20–300 К емкость *С* практически не зависе-

Рис. 2. *а*) Температурные зависимости емкости C(1, 2) сформированных пленочных плоскопараллельных конденсаторов и отношения $\varepsilon_0/\varepsilon$ (3, 4) для промежуточного слоя STO (3, 4). $1, 4 - V_b = 0, 2, 3 - V_b = +2$ V. На вставке приведено изображение свободной поверхности верхнего электрода в гетероструктуре SRO/STO/SRO. Отношение $\varepsilon_0/\varepsilon_1$ показано двухсторонней стрелкой. *b*) Температурные зависимости tan δ для сформированных конденсаторов, измеренные при напряжении смещения 0 и +2 V, f = 10 kHz. На вставке приведены температурные зависимости tan δ , измеренные при f = 1 и 100 kHz.

ла от частоты (1-100 kHz) измерительного сигнала и монотонно возрастала с понижением температуры. При T > 100 K обратная величина диэлектрической проницаемости слоя STO линейно возрастала с температурой, причем зависимость отношения $\varepsilon/\varepsilon_0$ от T хорошо апроксимировалась соотношением

$$\varepsilon_0/\varepsilon = C_0^{-1}(T - T_{\rm CW}) + \varepsilon_0/\varepsilon_{\rm I},\tag{1}$$

где ε_0 — диэлектрическая постоянная вакуума, $T_{\rm CW} = 30 \, {\rm K}$ — температура Кюри-Вейсса для монокристаллов титаната стронция, коэффициент $C_0 \approx 1.1 \cdot 10^5 \, {\rm K}$ был рассчитан по наклону касательной к кривой $\varepsilon_0 / \varepsilon(T)$ при $T > 100 \, {\rm K}$ и его величина не значительно отличалась от величины постоянной Кюри для объемных кристаллов STO [10].

Второе слагаемое в правой части соотношения (1) учитывает влияние проникновения [11] электрического поля в оксидные электроды на эффективную диэлектрическую проницаемость промежуточного слоя STO. Отношение $\varepsilon_0/\varepsilon_{\rm I} \approx 3.6\cdot 10^{-4}$ показано двухсторонней стрелкой на рис. 2, а. Удельная емкость межфазной границы, индуцированная проникновением электрического поля в оксидный электрод, не зависела от напряженности электрического поля и составляла ~ $6.6\,\mu\text{E/cm}^2$. При сканировании V_b в последовательности $+2.5V \rightarrow 0 \rightarrow -2.5V$ максимальные значения диэлектрической проницаемости промежуточного слоя наблюдались при напряжении смещения порядка +0.05 V. Низкая (> 700 V/cm) напряженность внутреннего электрического поля в промежуточном слое STO свидетельствует о незначительной разнице микроструктуры и зарядового состояния верхней и нижней межфазных границ в пленочной системе SRO/STO/SRO.

Температурная зависимость тангенса угла диэлектрических потерь для сформированных пленочных конденсаторов SRO/STO/SRO показана на рис. 2, b. При $V_b=0 \, \tan \delta$ уменьшался с понижением температуры в интервале 300-75 К, что хорошо согласуется с температурной зависимостью диэлектрических потерь для объемных кристаллов STO [12]. Абсолютные значения $\tan \delta$ для промежуточного слоя STO в несколько раз превышали соответствующие данные для монокристалла титаната стронция. Вероятной причиной увеличения потерь в промежуточном слое STO по сравнению с их величиной в монокристалле в указанном температурном интервале является относительно высокая концентрация дефектов структуры (дислокации, малоугловые границы, кислородные вакансии, и т.д.). С увеличением частоты измерительного сигнала в интервале $1-100 \,\mathrm{kHz}$ tan δ сформированных пленочных конденсаторов возрастал примерно в два раза, см. вставку на рис. 2, b.

При понижении температуры (*T* < 80 K) наблюдался существенный рост $tan \delta$ конденсаторов SRO/STO/SRO, вероятно обусловленный изменением "остаточной сегнетоэлектрической поляризации" в объеме промежуточного слоя STO [12-14]. При подаче на электроды SRO напряжения смещения наблюдалось существенное уменьшение $\tan \delta$. Следует отметить, что отмеченные особенности на температурных зависимостях $\tan \delta$ для выращенных героструктур появлялись при температурах чуть ниже температуры структурного фазового перехода ($T_S \approx 110 \,\mathrm{K}$ [15]) в монокристаллах STO. При температурах выше T_S влияния электрического поля на потери в гетероструктуре SRO/STO/SRO не прослеживалось, см. рис. 2, b. Рутенат стронция является ферромагнетиком, температура Кюри $(T_{\rm C})$ для объемных кристаллов которого составляет порядка 150 К [5]. Самоиндукция электродов при $T \leq T_{\rm C}$ вносит вклад в мнимую часть эффективной диэлектрической проницаемости гетероструктуры SRO/STO/SRO, что может приводить к немонотонному изменению $tan \delta(T)$ с температурой.

4. Заключение

При T > 100 К температурная зависимость диэлектрической проницаемости промежуточного слоя STO в гетероструктуре хорошо апроксимировалась соотношением Кюри—Вейсса, в котором T_{CW} и C_0 практически совпадали с соответствующими значениями для монокристаллов титаната стронция. При T < 20 К, ε промежуточного слоя SrTiO₃ уменьшалась примерно на 20% в электрическом поле 25 kV/ст. tan δ пленочных емкостных гетероструктур монотонно уменьшался с температурой в интервале 300–80 К и практически не зависел от электрического поля. Однако, в интервале 80–4.2 К наблюдалось резкое немонотонное увеличение диэлектрических потерь с понижением температуры и их существенное уменьшение в электрическом поле.

Список литературы

- B. Nagaraj, T. Sawhney, S. Perusse, S. Agganwal, R. Ramesh, V.S. Kaushik, S. Zafar, R.E. Jones, J.-H. Lee, V. Balu. J. Lee. Appl. Phys. Lett. 74, 3194 (1999).
- [2] Yu.A. Boikov, K. Khamchane, T. Claeson. J. Appl. Phys. 96, 4392 (2004).
- [3] K.A. Muller, H. Burkhard. Phys. Rev. B 19, 3593 (1979).
- [4] J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom. Lett. Nature 430, 758 (2004).
- [5] P.A. Cox, R.G. Egdell, J.B. Goodenough, A. Hamnett, C.C. Naish. J. Phys. C 16, 6221 (1983).
- [6] J.C. Jiang, W. Tian, X. Pan, Q. Gan, C.B. Eom. Mater. Sci. Engin. B 56, 152 (1998).
- [7] M. Ziese, H.C. Semmelhack, K.H. Han, S.P. Sena, H.J. Blythe. J. Appl. Phys. 91, 9930 (2002).
- [8] J.M. Phillips. J. Appl. Phys. 79, 1829 (1996).
- [9] J.-P. Maria, H.L. Mc Kinstry, S. Trolier-Mc Kinstry. Appl. Phys. Lett 76, 3382 (2000).
- [10] A.D. Hilton, B.W. Ricketts. J. Phys. D 29, 1321 (1996).
- [11] H.Y. Ku, F.G. Ullman. J. Appl. Phys. 35, 265 (1964).
- [12] Chen Ang, A.S. Bhalla, Ruyan Guo, L.E. Cross. Appl. Phys. Lett. 76, 1929 (2000).
- [13] J. Hemberger, P. Lunkhemer, R. Viana, R. Bohmer, A. Loidl. Phys. Rev. B 52, 13159 (1995).
- [14] O.G. Vendik, L.T. Ter-Martirosyan, S.P. Zubko. J. Appl. Phys. 84, 993 (1998).
- [15] F.T. Lytle. J. Appl. Phys. 35, 2212 (1964).