01

Анализ дислокационной структуры в монокристаллах германия на основе данных мультифизического моделирования

© О.И. Подкопаев,¹ В.В. Артемьев,² А.Д. Смирнов,² В.М. Мамедов,² А.П. Сидько,² В.В. Калаев,² Е.Д. Кравцова,³ А.Ф. Шиманский³

¹ АО "Германий",
 660027 Красноярск, Россия
 ² ЗАО "Группа СТР",
 194156 Санкт-Петербург, Россия
 ³ ФГАОУ ВПО "Сибирский федеральный университет",
 660041 Красноярск, Россия
 e-mail: vladimir.artemyev@str-soft.com

(Поступило в Редакцию 12 октября 2015 г.)

Получение высококачественных кристаллов германия является одной из важнейших задач ростовой промышленности. Важным параметром качества монокристаллов является величина плотности дислокаций. Представлены экспериментальные данные по плотности дислокаций в кристаллах германия диаметром 100 mm различной формы боковой поверхности, выращенные по методу Чохральского. Получены результаты численного моделирования роста кристаллов с использованием моделей теплообмена, гидродинамики и модели дислокаций Александера—Хаасена в программе CGSim. Сравнение экспериментальной и расчетной величины плотности дислокаций показало пригодность модели дислокаций для изучения дефектов структуры кристаллов германия и повышения их качества.

Введение

К наиболее наукоемким и высокотехнологичным промышленным секторам, потребляющим монокристаллический германий, принадлежат производства инфракрасной оптики и солнечных батарей космического базирования. Основным типом ростовых дефектов, оказывающих значительное влияние на свойства кристаллов, являются дислокации. Наличие дислокаций как источника оптических аномалий затрудняет применение монокристаллического германия в оптике и практически исключает возможность его использования для изготовления солнечных элементов в качестве подложек для эпитаксиальных структур типа GaInP/GaInAs/Ge. Для изготовления фотопреобразователей требуются бездислокационные кристаллы, так как дислокации приводят к несоответствию параметров кристаллических решеток Ge и соединений А^{ШВV}, препятствуя росту высококачественных эпитаксиальных слоев [1-3]. Основным производителем бездислокационного германия является компания Umicore Group [4]. Получение бездислокационных кристаллов диаметром 100 mm и более в нашей стране сдерживается нерешенными технологическими проблемами, несмотря на то что в большом числе работ [1,5-8] обсуждаются подходы к получению кристаллов с совершенной структурой, в основе которых лежат следующие положения: плоский или слабовогнутый фронт кристаллизации; однородное распределение температуры по высоте кристалла; низкий осевой температурный градиент в расплаве и кристалле в отсутствие радиального градиента температуры; плоская форма изотерм и т.п. Наш опыт получения монокристаллического германия

показывает, что в таком виде требования к процессу выращивания кристаллов имеют общий характер и не дают представления о его количественных параметрах.

Поиск оптимальных условий роста, дизайна ростовой печи, температурного режима и др. экспериментальным путем требует значительных финансовых и временны́х затрат. Компьютерное моделирование служит эффективным альтернативным методом изучения и оптимизации ростового процесса в условиях ограниченности ресурсов, времени и финансирования. В настоящей работе приводятся апробация компьютерной модели и ее верификация с использованием экспериментальных данных. Расчеты были проведены с использованием пакета CGSim [9], который позволяет моделировать процессы тепло- и массопереноса, рассчитывать напряжения в кристалле с учетом возникновения и распространения дислокаций.

Методика эксперимента

Слитки германия диаметром 100 mm выращивали методом Чохральского на установках типа РЕДМЕТ. Принципиальная схема теплового блока установки представлена на рис. 1. Он состоит из двух графитовых нагревателей: основного диаметром 340 mm, и дополнительного диаметром 120 и 130 mm соответственно в конструкциях на рис. 1, *а* и рис. 1, *b*. Основной нагреватель обеспечивает донно-боковой нагрев тигля с расплавом. Назначение дополнительного нагревателя — подогрев боковой поверхности слитка. Нижняя кромка дополнительного нагревателя располагается непосредственно над уровнем расплава, его высота составляет 200 mm.

Рис. 1. Конструкции теплового блока установки: *а* — для слитка *I*, *b* — для слитка *2*: *I* — шток вращения затравки, *2* — кварцевый экран, *3* — обратный конус-экран, *4* — дополнительный нагреватель, *5* — внутренний тигель, *6* — основной тигель, *7* — ножка тигля, *8* — основной нагреватель, *9* — графитовый утеплитель.

Рис. 2. Фотографии выращенных кристаллов: *а* — слиток *1*, *b* — слиток *2*.

Кроме диаметра дополнительного нагревателя, конструкции двух тепловых блоков различались наличием (рис. 1, a) или отсутствием (рис. 1, b) графитового войлока вокруг основного донно-бокового нагревателя.

В качестве исходного сырья использовали зонноочищенный поликристаллический германий ГПЗ. Химическая чистота ГПЗ, соответствующая марке 6N (99.9999%), определяет удельное электросопротивление материала более 47 Ωm cm при комнатной температуре. Выращивание кристаллов производили в среде аргона, уровень расплава поддерживали постоянным путем перемещения нижнего штока. Направление роста было [100].

Анализ дислокационной структуры монокристаллов германия проводился методом селективного травления в смеси H_2O HNO₃ HCl в соотношении $1 \times 1 \times 2$ с добавлением 0.25% нитрата меди.

На рис. 2 представлены фотографии выращенных кристаллов с различной формой боковой поверхности.

Численная модель

В программе CGSim [9] были построены геометрии тепловых блоков, соответствующие конфигурациям на рис. 1.

Неравномерная расчетная сетка в кристалле со сгущениями к границам характеризовалась размерами ячейки 1.5 × 2.5 mm. Общее количество ячеек в кристалле составило 6000. Исследование сеточной зависимости на измельченной в два раза сетке в кристалле по каждому координатному направлению показало отличие по плотности дислокаций в пределах 10%.

Рост кристалла германия моделировался в нестационарной осесимметричной постановке с коррекцией межфазной границы кристалл/расплав [9,10]. Теплообмен в ростовом процессе учитывался теплопроводностью, лучистым теплообменом и конвекцией в расплаве. Для лучистого теплообмена использовалась модель, основанная на приближении диффузного серого излучения. Течение в расплаве рассчитывалось с использованием системы уравнений Навье—Стокса с приближением Буссинеска. Учет турбулентности в расплаве осуществлялся при помощи модели одного уравнения переноса кинетической энергии турбулентности. Имитировалось явление смачивания кристалла расплавом. Теплофизические свойства кристалла и расплава германия брались из литературных источников [11–17].

Германий — расплав:

- коэффициент теплопроводности: 39 W/m/K,
- зависимость плотности от температуры:
- $6170 0.442 T \text{ kg/m}^3$,
- степень черноты: 0.2,
- температура кристаллизации: 1210 К (937°С),
- скрытая теплота кристаллизации: 4.65 · 10⁵ J/kg,
- поверхностное натяжение: 0.621 N/m,
- краевой угол смачивания: 13°,

Рис. З. Модуль градиента температуры и температура в кристаллах: а — слиток 1; b —слиток 2.

— удельная теплоемкость: 390 J/kg/K,

— коэффициент вязкости: 0.0074 Pa·s,

— температурный коэффициент поверхностного натяжения: $7.32\cdot 10^{-5}~N/m/K.$

Германий — кристалл:

- коэффициент теплопроводности: 17 W/m/K,
- степень черноты: 0.55,
- зависимость плотности от температуры:

 $5351 - 0.094 T \text{ kg/m}^3$,

— удельная теплоемкость: 390 J/kg/K.

В программном пакете CGSim моделировались тепловые напряжения, возникающие из-за неоднородности температуры в кристалле, и учитывался процесс релаксации напряжений с образованием дислокаций на основе известной модели Александера–Хаасена (АХ) [18].

Изложим основные положения этой модели дислокаций. В процессе метода Чохральского кристалл вытягивается из расплава и постепенно переходит из горячей области ростовой зоны в более холодную. Из-за этого в слитке возникают радиальный и осевой перепады температуры, приводящие к деформации кристалла и возникновению тепловых напряжений. Высокий уровень напряжений может приводить к образованию дислокаций [18]. Результирующая деформация є в кристалле определяется суперпозицией эластичной, тепловой и пластичной деформаций:

$$\varepsilon = \varepsilon^e + \varepsilon^T + \varepsilon^c, \tag{1}$$

где ε^{e} — эластичная деформация, ε^{T} — тепловая деформация, ε^{c} — пластичная деформация.

Тепловая деформация возникает из-за разности температуры в кристалле:

$$\varepsilon^T = \beta \left(T - T_{\rm ref} \right), \tag{2}$$

где β — объемный коэффициент температурного расширения, T — локальная температура, $T_{\rm ref}$ — опорная температура.

Рис. 4. Остаточные напряжения и плотность дислокаций в кристалле: а — слиток 1, b — слиток 2.

Тензор эластичной деформации ε_{ij}^{e} и напряжения в кристалле σ_{ij} подчиняются закону Гука:

$$\sigma_{ij} = \Sigma_j c_{ij} \times \varepsilon^e_{ij}, \qquad (3)$$

где c_{ij} — матрица жесткости.

Скорость изменения пластичной деформации пропорциональна значению плотности мобильных дислокаций и их скорости перемещения [18–20]:

$$\dot{\varepsilon}^c = b \, v \, N_m, \tag{4}$$

где *b* — вектор Бюргерса, *N_m* — плотность дислокаций. Скорость перемещения дислокаций *v* пропорциональ-

на эффективному напряжению:

$$\tau_{\rm eff} = \sqrt{J_2} - R \, \frac{Eb}{4\pi (1-\nu^2)} \, \sqrt{N_m},\tag{5}$$

$$v = k_0 \tau_{\rm eff}^p \exp\left(-\frac{Q}{kT}\right),\tag{6}$$

где J_2 — второй инвариант тензора $S_{ij} = \sigma_{ij} - \frac{1}{3} \delta_{ij} \Sigma_k \sigma_{kk}$, R — коэффициент жесткости, E — модуль Юнга, ν — коэффициент Пуассона, δ_{ij} — единичный тензор.

Скорость образования дислокаций пропорциональна плотности дислокаций и имеет вид

$$\dot{N}_m = K k_0 \tau_{\text{eff}}^{p+l} \exp\left(-\frac{Q}{kT}\right) N_m, \tag{7}$$

где K, k₀, p, l — константы материала, Q — потенциал Пайерлса, k — константа Больцмана.

Образование новых дислокаций происходит, если напряжение $\tau_{\rm eff}$ больше нуля, т.е. в случаях, когда прило-

Рис. 5. Сравнение плотности дислокаций по радиусу слитка 1: а — середина кристалла, b — низ кристалла.

Рис. 6. Сравнение плотности дислокаций по радиусу слитка 2: а — середина кристалла, b — низ кристалла.

женное внешнее воздействие по величине превосходит внутреннее сопротивление материала.

Константы модели АХ для германия были получены из работ [19–21] и представлены в таблице.

Начальная плотность дислокаций в затравочном кристалле $N_0 = 1 \ 1/\text{cm}^2$.

Значения параметров	модели	дислокаций	AX
---------------------	--------	------------	----

Параметр модели	Величина
Вектор Бюргерса <i>b</i> , m Коэффициент жесткости <i>R</i> Константа материала <i>p</i> Константа материала <i>l</i> Константа материла <i>k</i> ₀ , m ^{4.4} /N ^{1.7} /s Константа материала <i>K</i> , m/N	$\begin{array}{r} 3.98 \cdot 10^{-10} \\ 0.723 \\ 1.7 \\ 1 \\ 6.76 \cdot 10^{-8} \\ 1.07 \cdot 10^{-3} \\ 1.62 \end{array}$
Модуль Юнга E, Pa Коэффициент Пуассона v	$ 10.3 \cdot 10^{10} \\ 0.26 $

Результаты и обсуждение

Моделирование роста кристаллов германия в CGSim проводилось по данным скорости вытягивания кристаллов. Мощность нагревателей подгонялась при помощи PID-алгоритма. Было достигнуто удовлетворительное согласование между экспериментальной и расчетной эпюрой скорости. Отличие по центральному прогибу межфазной границы от эксперимента для слитка 1 составило менее 0.5 mm, для слитка 2 менее 1 mm.

На рис. 3 приведены модуль градиента температуры и температура в кристаллах.

Результаты численного моделирования показали, что для слитка *I* значения градиента температуры оказались меньше 11 К/ст по сравнению со слитком *2*, для которого величина градиента составила 13 К/ст в цилиндрической части кристалла. В эксперименте всегда стремятся понизить градиент температуры, обеспечив этим лучшие условия роста и повышение качества готовых слитков [2]. Величина напряжений, определяющих уровень плотности дислокаций в кристалле, зависит не от градиента температуры, а от его изменения, которое явно прослеживается в местах перехода от верхнего конуса к цилиндру и от цилиндра к нижнему конусу на периферии кристаллов (рис. 3).

Распределения плотности дислокаций с остаточными напряжениями в кристаллах приводятся на рис. 4.

Качественный анализ уравнений модели дислокаций AX [18–20] выделяет два ключевых фактора, ответственных за генерацию дислокаций:

— высокие термические напряжения,

— высокая температура в кристалле.

На рис. 4. видна корреляция между зоной с максимальной плотностью дислокаций и областью с высокими остаточными напряжениями.

Адекватность численной модели проверялась сопоставлением плотности дислокаций между данными экспериментов и результатами расчетов, которое иллюстрируется на рис. 5 для слитка *1* и на рис. 6 для слитка *2*.

Неоднородное распределение плотности дислокаций по подложке с максимумом в центре кристалла является характерным для слитков, выращиваемых в рассмотренных установках типа РЕДМЕТ: 650 1/cm² и 1100 1/cm² для слитков I и 2 соответственно. От центра подложки к ее периферии величина плотности дислокаций уменьшается до значений 150 1/cm² и 650 1/cm² для слитков I и 2 соответственно. Для внешней области подложек плотность дислокаций увеличивается до значений 300 1/cm² и 1000 1/cm² для слитков I и 2 соответственно. Характер и тенденция распределений плотности дислокаций по результатам моделирования в CGSim согласуется с экспериментом.

На рис. 5, 6 видно, что распределения расчетной плотности дислокаций находятся в пределах интервала разброса экспериментальных данных. Отклонение величин плотности дислокаций от экспериментальных не превышает 30%.

Заключение

Плотность дислокаций в германиевых монокристаллах зависит от различных факторов и параметров ростового процесса, таких как температурный режим роста и охлаждения, скорость вытягивания, форма фронта кристаллизации, форма боковой поверхности кристаллов, дизайн теплового блока и др.

В настоящей работе впервые представлены результаты моделирования роста кристаллов германия диаметром 100 mm различной формы боковой поверхности и условий роста методом Чохральского с применением модели дислокаций АХ.

Рассогласование плотности дислокаций составляет не более 30%, и находится в пределах погрешности экспериментальных измерений. Это свидетельствует о фундаментальной пригодности модели дислокаций АХ для анализа дефектов структуры кристалла и возможности дальнейшего использования модели для улучшения качества выращиваемых кристаллов.

Работа выполнена организацией ЗАО "Группа СТР".

Список литературы

- [1] *Claeys Cor L.* Germanium-based technologies: from materials to devices. Berlin [etc.]: Elsevier, 2007. 449 p.
- [2] Depuydt B., Theuwis A., Romandic I. Mat. Sci. Semicon. Proc. 2006. Vol. 9. N 4–5. P. 437–443.
- [3] Dimroth F., Kurtz S. // MRS Bull. 2007. Vol. 32. N 3. P. 230–235.
- [4] http://eom.umicore.com/en/materials/library/ brochuresAndMarketingMaterial/ show_GermaniumOpticsBrochure.pdf
 GermaniumOpticsBrochure.pdf
- [5] Wang G., Sun Y., Xiang W. // et al. J. Cryst. Growth. 2012.
 Vol. 352. P. 27–30.
- [6] Конаков П.К., Веревочкин Г.Е., Горяинов Л.А. и др. Тепло- и массообмен при получении монокристаллов. М.: Металлургия, 1971. 239 с.
- [7] Moskovskih V.A., Kasimkin P.V., Shlegel V.N., Vasiliev Y.V., Gridchin V.A., Podkopaev O.I. // J. Cryst. Growth. 2014. Vol. 401. P. 767–771.
- [8] Каплунов И.А., Шелопаев А.В., Колесников А.И. // Поверхность, рентгеновские, синхротронные и нейтронные исследования. 2010. № 12. С. 22–25.
- [9] http://www.str-soft.com/products/CGSim/
- [10] Kalaev V.V., Evstratov I.Yu., Makarov Yu.N. // J. Cryst. Growth. 2003. Vol. 249. P. 87–99.
- [11] Rupp R., Muller G. // J. Cryst. Growth. 1991. Vol. 113. P. 131–139.
- [12] Artemyev V.K., Folomeev V.P., Ginkin V.P., Kartavykh A.V., Milvidskii M.G., Rakov V.V. // J. Cryst. Growth. 2001. Vol. 223. P. 29–37.
- [13] Sampath R., Zabaras N. // J. Phys. Chem. B. 2001. Vol. 105.
 P. 121 126-12 133.
- [14] Patzold O., Fischer B., Croll A. // Cryst. Res. Technol. 2002.
 Vol. 37. P. 1058–1065.
- [15] Van den Bogaert N, Dupret F. // J. Cryst. Growth. 1997.
 Vol. 171. P. 65–76.
- [16] Nakanishi H. // J. Cryst. Growth. 1998. Vol. 191. P. 711-717.
- [17] Kuandakov L.L. // J. Cryst. Growth. 2001. Vol. 222 P. 852–861.
- [18] Alexander H., Haasen P. // Solid State Phys. 1969. Vol. 22. P. 27–158.
- [19] Sumino K., Kodaka S. // Mater. Sci. Eng. 1974. Vol. 13. P. 263–268.
- [20] Sumino K. // Mater. Sci. Eng. 1974. Vol. 13. P. 269-275.
- [21] [Электронный ресурс] режим доступа: http://www.ioffe.ru/SVA/NSM/Semicond/Ge/mechanic.html