19

Высокотемпературная теплоемкость ортованадатов $Ce_{1-x}Bi_xVO_4$

© Л.Т. Денисова, Л.Г. Чумилина, Н.В. Белоусова, В.М. Денисов

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 10 марта 2016 г.)

Твердофазным синтезом из исходных оксидов CeO_2 , Bi_2O_3 и V_2O_5 при ступенчатом обжиге получены ортованадаты $Ce_{1-x}Bi_xVO_4$ ($1 \ge x \ge 0$). Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость $Ce_{1-x}Bi_xVO_4$. По экспериментальным данным $C_p = f(T)$ рассчитаны термодинамические свойства (изменения энтальпии, энтропии и приведенная энергия Гиббса).

1. Введение

В течение длительного времени не ослабевает внимание исследователей к ортованадату церия CeVO₄ [1–4]. При этом наибольший интерес вызывают допированные ортованадаты [4-6]. К подобным соединениям относится и $Ce_{1-x}Bi_xVO_4$ [7,8]. Эти соединения могут быть использованы в качестве керамики для микроволнового диэлектрического резонатора, а также для технологических приложений низкотемпературной керамики [8]. Для ортованадатов $Ce_{1-x}Bi_xVO_4$ имеются данные о структуре [7,8], диэлектрической проницаемости и спектрах комбинационного рассеяния [8], электрических свойствах [7]. В то же время сведения об их теплофизических свойствах практически отсутствуют. Имеются данные только для высокотемпературной теплоемкости ортованадатов CeVO₄ [9] и BiVO₄ [10]. Поскольку диаграмма состояния системы CeVO₄-BiVO₄ не построена, представляется целесообразным исследовать теплофизические свойства $Ce_{1-x}Bi_xVO_4$.

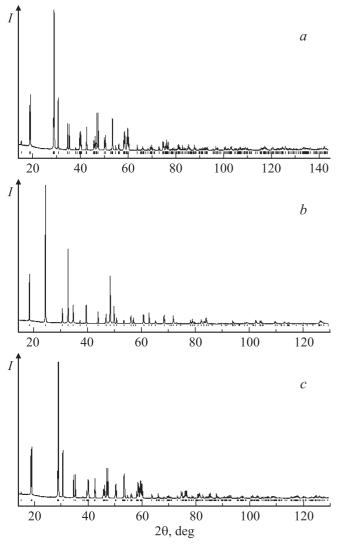
Целью настоящей работы является исследование высокотемпературной теплоемкости, а также определение теплофизических свойств $Ce_{1-x}Bi_xVO_4$.

2. Эксперимент

Ортованадаты $Ce_{1-x}Bi_xVO_4$ ($1 \ge x \ge 0$) готовились с помощью твердофазного синтеза из исходных $CeVO_4$ и $BiVO_4$, которые были получены из CeO_2 , Bi_2O_3 и V_2O_5 (все реактивы осч) аналогично [9] и [10] соответственно. Синтез $Ce_{1-x}Bi_xVO_4$ проводился на воздухе при $T=1173\,\mathrm{K}$ в течение $200\,\mathrm{h}$. Для достижения полноты протекания твердофазного взаимодействия реагентов через каждые $20\,\mathrm{h}$ образцы перетирались и снова прессовались. Контроль фазового состава синтезированных образцов осуществлялся с использованием рентгенофазового анализа на дифрактомере X'Pert Pro MPD (PANalytical, Нидерланды) в CuK_α -излучении. Регистрация выполнялась высокоскоростным детектором PIXcel с графитовым монохроматором в интервале углов $2\theta=14-144$ ° с шагом 0.013° .

Измерения теплоемкости проводились методом дифференциальной сканирующей калориметрии на приборе

STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной ранее [11]. Экспериментальные результаты обрабатывались с помощью пакета NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12.


3. Результаты и обсуждение

Рентгенограмма полученного однофазного образца ${\rm BiVO_4}$ представлена на рис. 1, a. Параметры решетки ${\rm BiVO_4}$ определены путем полнопрофильного уточнения методом минимизации производной разности [12]. Полученные значения (пр. гр I2/b, V=309.73(1) Å 3) приведены в табл. 1, из которой следует, что наши данные достаточно близки к известным значениям параметров решетки.

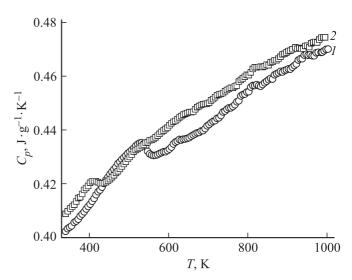
Для CeVO₄ данные о структуре приведены ранее в [9]. Для ортованадатов $Ce_{1-x}Bi_xVO_4$ со значением $0 \le x \le 0.5$ полученные нами данные рентгеноструктурного анализа практически совпадают с результатами работы [7]. В качестве примера такие данные для ортованадата $Ce_{0.5}Bi_{0.5}VO_4$ приведены на рис. 1, b. Параметры элементарной ячейки этого соединения были следующими: a=b=7.3538(1) Å, c=6.4787(1) Å, $V = 350.36(1) \, \text{Å}^3$, пр. гр. I4/amd. Согласно графическим данным работы [7], для указанного состава твердого раствора на основе CeVO₄ эти параметры равны $a = 7.354 \,\text{Å}, \quad c = 6.478 \,\text{Å}.$ Ортованадат $\text{Ce}_{0.1} \text{Bi}_{0.9} \text{VO}_4$ сохраняет моноклинную структуру $BiVO_4$ (рис. 1, c) с параметрами элементарной ячейки a = 5.1826(1) Å, $c = 11.7057(3) \text{ Å}, \quad \gamma = 90.357(1)^{\circ},$ b = 5.1030(1) Å, $V = 309.57(1) \,\text{Å}^3$ (пр. гр. I2/b). Эти результаты хорошо согласуются с имеющимися данными [8]: $a = 5.1801(0) \text{ Å}, \quad b = 5.0992(1) \text{ Å}, \quad c = 11.6997(8) \text{ Å},$

Таблица 1. Параметры элементарной ячейки BiVO₄

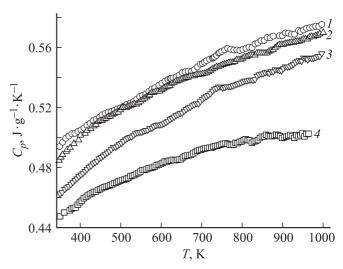
a, Å	b, Å	c, Å	γ, °	Лит. ссылка
5.1966(5)	5.0921(5)	11.704(1)	89.616(1)	[13]
5.1935(3) 5.195	5.0898(3) 5.092	11.6972(8) 11.701	90.387(4) 90.38	[14] [15]
5.193	5.092	11.701	90.38	[13] Наст. раб.

Рис. 1. Дифрактограммы $BiVO_4$ (*a*), $Ce_{0.5}Bi_{0.5}VO_4$ (*b*), $Ce_{0.1}Bi_{0.9}VO_4$ (*c*) при комнатной температуре.

 $\gamma=90.346(0)^\circ$. В области $0.5 \le x \le 0.9$ твердые растворы в системе $\text{CeVO}_4-\text{BiVO}_4$ не образуются и полученные образцы состоят из смеси фаз с моноклинной и тетрагональной структурой. Эти данные в целом согласуются с результатами [8], только в нашем случае область твердых растворов на основе CeVO_4 несколько больше $(x\approx 0.5 \text{ против } x=0.4)$. В то же время по данным [7] твердые растворы на основе CeVO_4 в системе $\text{CeVO}_4-\text{BiVO}_4$ образуются в интервале $0\le x\le 0.68$ при $1273\,\text{K}$. При этом нужно иметь в виду, что фазовое равновесие в керамике $\text{Ce}_{1-x}\text{Bi}_x\text{VO}_4$ зависит от температуры [8].


На рис. 2 показана температурная зависимость теплоемкости ${\rm BiVO_4}$ и ${\rm Ce_{0.1}Bi_{0.9}VO_4}$. Для того чтобы не учитывать молярные массы образующихся соединений, на рис. 2 приведены значения удельной теплоемкости. Видно, что на зависимости $C_p=f(T)$ для ${\rm BiVO_4}$ в области 532 К имеется экстремум. По данным [13,16] в этой области происходит переход моноклинной струк-

туры в структуру типа шеелита, кристаллизующуюся в тетрагональной сингонии (пр. гр. I4/a).


Из рис. 2 следует, что допирование BiVO₄ церием $(Ce_{0.1}Bi_{0.9}VO_4)$ приводит как к смещению экстремума в сторону низких температур, так и к его уменьшению. Отметим, что подобное наблюдалось при допировании La_2CuO_4 стронцием [17]. Кроме того, избыточный относительно стехиометрии кислород в $La_2CuO_{4+\delta}$ также смещает переход в сторону низких температур [18].

Исследовать дальнейшее влияние допирования $BiVO_4$ церием при x>0.1 не представлялось возможным, так как Ce^{3+} может только частично замещать Bi^{3+} в моноклинном $BiVO_4$ и твердый раствор с моноклинной структурой $Ce_{1-x}Bi_xVO_4$ может быть получен только при $x\leq 0.1$.

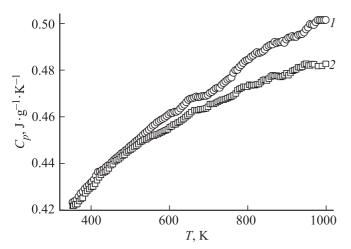

На рис. 3 показана температурная зависимость удельной теплоемкости твердых растворов Ce_{0.9}Bi_{0.1}VO₄,

Рис. 2. Температурные зависимости теплоемкости $BiVO_4$ (*I*) и $Ce_{0.1}Bi_{0.9}VO_4$ (*2*).

Рис. 3. Влияние температуры на теплоемкость CeVO₄ (*1*) и твердых растворов Ce_{1-x} Bi_x VO₄ с x = 0.1 (*2*), 0.3 (*3*) и 0.5 (*4*).

Рис. 4. Теплоемкость ортованадатов $Ce_{1-x}Bi_xVO_4$, $x=0.8\ (1)$ и $0.7\ (2)$.

 $Ce_{0.7}Bi_{0.3}VO_4$ и $Ce_{0.5}Bi_{0.5}VO_4$. Видно, что с ростом температуры значения теплоемкости закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет экстремумов.

Для ортованадатов составов $Ce_{0.3}Bi_{0.7}VO_4$ и $Ce_{0.2}Bi_{0.8}VO_4$ температурные зависимости теплоемкости показаны на рис. 4. Значения C_p и в данном случае, несмотря на то что эти ортованадаты состоят из двух структур, закономерно изменяются с ростом температуры.

Полученные температурные зависимости молярной теплоемкости исследованных ортованадатов могут быть описаны классическим уравнением Майера—Келли для $Ce_{0.1}Bi_{0.9}VO_4$

$$C_p = (126.44 \pm 0.37) + (25.4 \pm 0.4) \cdot 10^{-3} T$$

- $(6.56 \pm 0.37) \cdot 10^5 T^{-2}$, (1)

для Ce_{0.5}Bi_{0.5}VO₄

$$C_p = (138.43 \pm 0.34) + (9.8 \pm 0.4) \cdot 10^{-3}T$$

- $(15.94 \pm 0.37) \cdot 10^5 T^{-2},$ (2)

для Ce_{0.7}Bi_{0.3}VO₄

$$C_p = (129.81 \pm 0.46) + (25.2 \pm 0.5) \cdot 10^{-3}T$$

- $(14.02 \pm 0.37) \cdot 10^5 T^{-2},$ (3)

для Ce_{0.9}Bi_{0.1}VO₄

$$C_p = (132.05 \pm 0.20) + (18.4 \pm 0.2) \cdot 10^{-3} T$$

- $(13.45 \pm 0.22) \cdot 10^5 T^{-2}$. (4)

Коэффициенты корреляции для уравнений (1)—(4) равны 0.9982, 0.9966, 0.9985, 0.9995 соответственно.

По уравнениям (1)-(4) рассчитаны значения C_p^0 при 298 К. Эти данные представлены на рис. 5. Видно, что для всех исследованных составов ортованадатов $\mathrm{Ce}_{1-x}\mathrm{Bi}_x\mathrm{VO}_4$ значения C_p^0 имеют меньшие значения по сравнению с рассчитанными по уравнению

Неймана-Коппа [19]

$$C_{p298}^{0}(j) = \sum_{i} m_{i} C_{p298}^{0}(i), \tag{5}$$

где $C^0_{p298}(j)$ — удельная теплоемкость сложного оксидного соединения, $C^0_{p298}(i)$ — удельная теплоемкость

Таблица 2. Термодинамические свойства твердых растворов на основе $CeVO_4$

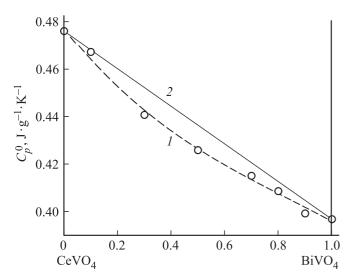

<i>T</i> , K	$C_p, \\ \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$	$H^{0}(T) - H^{0}$ (350 K), $kJ \cdot mol^{-1}$	$S^{0}(T) - S^{0}$ (350 K), $J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$ \begin{array}{c} \Phi^{0}(T), \\ J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \end{array} $
		$Ce_{0.9}Bi_{0.}$	$_{1}VO_{4}$	
350	127.5	_	_	_
400	131.0	6.47	17.27	1.10
450	133.7	13.09	32.86	3.77
500	135.9	19.83	47.06	7.40
550	137.7	26.67	60.10	11.61
600	139.3	33.60	72.15	16.16
650	140.8	40.60	83.36	20.90
700	142.2	47.68	93.85	25.74
750	143.5	54.82	103.7	30.61
800	144.7	62.02	113.0	35.48
850	145.8	69.28	121.8	40.30
900	147.0	76.60	130.2	45.06
950	148.0	83.98	138.1	49.75
1000	149.1	91.40	145.8	54.36
		$Ce_{0.5}Bi_{0.5}$	5VO ₄	
350	128.8	-	_	_
400	132.4	6.54	17.45	1.11
450	135.0	13.22	33.20	3.81
500	137.0	20.02	47.53	7.48
550	138.5	26.91	60.66	11.73
600	139.9	33.87	72.77	16.30
650	141.0	40.90	84.01	21.10
700	142.0	47.97	94.50	26.00
750	143.0	55.10	104.3	30.87
800	143.8	62.27	113.6	35.75
850	144.6	69.47	122.3	40.59
900	145.3	76.72	130.6	45.36
950	146.0	84.00	138.5	50.06
1000	146.6	91.32	146.0	54.67
$Ce_{0.7}Bi_{0.3}VO_4$				
350	127.2	_	_	_
400	131.1	6.46	17.25	1.10
450	134.2	13.10	32.88	3.77
500	136.8	19.88	47.16	7.41
550	139.0	26.77	60.31	11.63
600	141.0	33.77	72.49	16.20
650	142.9	40.87	83.85	20.97
700	144.6	48.06	94.50	25.85
750	146.2	55.33	104.5	30.76
800	147.8	62.68	114.0	35.67
850	149.3	70.11	123.0	40.55
900	150.8	77.61	131.6	45.37
950	152.2	85.18	139.8	50.12
1000	153.6	92.83	147.6	54.81

Таблица 3.	Термодинамические	свойства	ортованадата
$Ce_{0.1}Bi_{0.9}VO_4$			

T,K	$C_p, \\ \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$	$H^{0}(T) - H^{0}$ (350 K), kJ·mol ⁻¹	$S^{0}(T) - S^{0}$ (350 K), $J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$\Phi^0(T),$ $\mathbf{J} \cdot mol^{-1} \cdot \mathbf{K}^{-1}$
350	131.0	-	_	_
400	132.5	6.33	17.53	1.71
450	134.6	12.74	33.26	4.96
500	1365	19.21	47.54	9.12
550	138.2	25.75	60.64	13.82
600	139.9	32.34	72.73	18.84
650	141.4	38.97	84.00	24.03
700	142.9	45.65	94.52	29.31
750	144.3	52.37	104.4	34.60
800	145.7	59.13	113.8	39.88
850	147.1	65.93	122.7	45.10
900	148.5	72.76	131.1	50.27
950	149.8	79.63	139.2	55.35
1000	151.2	86.54	146.9	60.36

i-го простого оксида, m_i — мольная доля соответствующего простого оксида. Согласно [20], такие отклонения от аддитивности отражают изменения в частотах колебаний атомов в сложном оксидном соединении по сравнению с простыми оксидами. В [21] установлена корреляция между составом оксидов и их удельной теплоемкостью для системы ${\rm GeO_2-PbO}$. Из рис. 5 следует, что подобная закономерность реализуется и для системы ${\rm CeVO_4-BiVO_4}$.

С использованием уравнений (1)-(4) по известным термодинамическим соотношениям рассчитаны термодинамические свойства (изменение энтальпии, энтропии и приведенная энергия Гиббса) исследованных ортованадатов. Эти данные приведены в табл. 2 и 3.

Рис. 5. Связь состава и удельных значений теплоемкости ортованадатов системы ${\rm CeVO_4-BiVO_4}$ (1). 2 — расчет методом Неймана—Коппа.

4. Заключение

Измерена теплоемкость ортованадатов $\mathrm{Ce}_{1-x}\mathrm{Bi}_x\mathrm{VO}_4$ методом дифференциальной сканирующей калориметрии в зависимости от температуры и состава. Показано, что во всем исследованном интервале температур зависимости $C_p = f(T)$ описываются уравнением Майера—Келли. Рассчитаны основные термодинамические функции ортованадатов системы $\mathrm{CeVO}_4\mathrm{-BiVO}_4$.

Список литературы

- N. Suresh Rao, O.G. Palanna. Bull. Mater. Sci. 18, 5, 593 (1995).
- [2] M. Yoshimura, T. Sata. Bull. Chem. Soc. Jpn. 42, 11, 3193 (1969).
- [3] J. Matta, D. Courcot, E. Abi-Aad, A. Aboukaïs. Chem. Mater. 14, 4118 (2002).
- [4] C.T.G. Petit, R. Lan, I.P. Cowin, S. Tao. J. Solid State Chem. 183, 1231 (2010).
- [5] P. Porta, N. Franceschini, G. Minelli. Mater. Chem. Phys. 70, 17 (2001).
- [6] R.J. Packer, J. Barlow, A. Cott, S.J. Skinner. Solid State Ionics 179, 1094 (2008).
- [7] A. Watanabe. J. Solid State Chem. **153**, 174 (2000).
- [8] D. Zhou, L.-X. Pang, J. Guo, Z.-M. Qi, T. Shao, Q.-P. Wang, H.-D. Xie, X. Yao, C.A. Rondall. Inorg. Chem. 53, 1048 (2014).
- [9] Л.Т. Денисова, Л.Г. Чумилина. Ю.Ф. Каргин, В.М. Денисов. Неорган. материалы **52**, *1*, 47 (2016).
- [10] Л.Т. Денисова, А.Д. Изотов Л.Г. Чумилина, Ю.Ф. Каргин, В.М. Денисов. ДАН 467, 58 (2016).
- [11] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, *7*, 1274 (2010).
- [12] L.A. Solovyov. J. Appl. Cryst. 37, 743 (2004).
- [13] W.I.F. David, A.M. Glazer, A.W. Hewat. Phase Transit. 1, 155 (1979).
- [14] A.W. Sleight, H.-Y. Chen, A. Ferretti, D.E. Cox. Mater. Res. Bull. 14, 1571 (1979).
- [15] M. Gatić, S. Musić, M. Ivanda, M. Śoufek, S. Popović. J. Mol. Struct. 744–747, 535 (2005).
- [16] T.H. Yeom, S.H. Choh. J. Korean Phys. Soc. 33, 5, L529 (1998).
- [17] K. Sun, J.H. Cho, F.C. Chou, W.C. Lee, L.L. Miller, D.C. Johnston. Phys. Rev. B 43, 1, 239 (1991).
- [18] Г.Ф. Сырых, В.П. Глазков, А.В. Суетин, М.Н. Хлопкин, И.Л. Сашин. Е.А. Горемычкин. ФТТ **37**, *12*, 3661 (1995).
- [19] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Streje, P. Abrman. Thermochim. Acta 395, 27 (2003).
- [20] Л.К. Резницкий. Калориметрия твердого тела. Изд-во МГУ, М. (1981). 184 с.
- [21] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова. ФТТ **53**, *4*, 642 (2011)