19,11

Анализ системы KNO₃-Al₂O₃ методом дифференциальной сканирующей калориметрии

© А.М. Амиров, М.М. Гафуров, К.Ш. Рабаданов

Аналитический центр коллективного пользования ДагНЦ РАН, Махачкала, Россия E-mail: malik52@mail.ru

(Поступила в Редакцию 11 января 2016 г. В окончательной редакции 3 марта 2016 г.)

Методом дифференциальной сканирующей калориметрии исследованы структурные и термодинамические свойства нитрата калия KNO₃ и его композитов с наноразмерным оксидом алюминия Al_2O_3 . Показано, что в композитах $(1-x)KNO_3-xAl_2O_3$ образуется аморфная фаза. Соответствующий ей тепловой эффект регистрируется при 316°C. Установлено, что с возрастанием доли оксида алюминия уменьшаются теплоты фазовых переходов нитрата калия.

Работа выполнена на оборудовании Аналитического центра коллективного пользования ДагНЦ РАН.

1. Введение

Композиционные твердые электролиты — особый класс твердофазных гетерогенных материалов, обладающих повышенной ионной проводимостью. Благодаря сочетанию высокой ионной проводимости с возможностью варьирования в широких пределах других физикохимических свойств эти материалы представляются перспективными для использования в различных электрохимических устройствах.

Эффект увеличения ионной проводимости ионных соединений при гетерогенном допировании инертным оксидом был впервые обнаружен Лиангом [1]. Интерес к исследованиям подобных систем возрастает как в связи с возможностью совершенствования методик синтеза композиционных твердых электролитов (ионная соль + оксид), так и в связи с перспективами проведения комплексного изучения их физико-химических свойств при варьировании состава ионной соли и оксида, температурного режима и фазового состояния композиционной системы [2–4].

Для понимания механизма влияния гетерогенной добавки на свойства ионной соли необходимо рассмотреть возможные механизмы разупорядочения, т.е. образования точечных дефектов, как в объеме кристаллической структуры соли, так и на поверхности частиц оксида. Такая информация будет способствовать выявлению причин роста ионной проводимости в композитных системах. Заметим, что и в жидкофазных электролитах допирование инертными оксидами влияет на структурно-динамические и ионпроводящие свойства электролитов [5–7], и в этом плане влияние твердого наполнителя носит универсальный характер.

Наиболее отчетливо процессы, связанные с разупорядочением и микроструктурными изменениями композиционной системы, проявляются в области фазовых переходов солевой подсистемы композита. Поэтому в окрестности температур фазовых переходов наблюдаются легко измеряемые экспериментально изменения энтальпии и энтропии кристалла, наличие межфазных границ (соль-оксид) также вносит вклад в дефектность кристалла, что отражается на изменении термодинамических параметров фазовых переходов.

Таким образом, исследуя термодинамику фазовых переходов в композитах, можно извлечь информацию о дефектности ионного компонента в композите. Теплота фазовых переходов может служить мерой беспорядка решетки, а изменение температуры — индикатором изменений термодинамических параметров вещества.

Нитраты щелочных металлов — удобная модельная система для изучения влияния кристаллохимических факторов на ориентационное разупорядочение анионной подрешетки и связанный с ним перенос катионов.

Гетерофазное допирование может привести к заметным изменениям структуры и термодинамических свойств ионного компонента. Было показано, что в нитратах [3,4,8–11] гетерогенное допирование приводит к образованию метастабильных фаз, характеризующихся ориентационным разупорядочением анионов и, следовательно, обладающих высокой ионной проводимостью. Композиты $KNO_3 - Al_2O_3$ не были изучены во всей области составов, однако сравнительное исследование чистого KNO_3 и композита $0.5KNO_3 - 0.5Al_2O_3$ было проведено авторами [10]. При этом было установлено, что проводимость KNO_3 при гетерогенном допировании увеличивается и отсутствует скачок проводимости, связанный с фазовым переходом, в чистом KNO_3 .

2. Эксперимент

Для синтеза композитов KNO₃-Al₂O₃ были использованы нитрат калия (квалификация хч, "Экрос"), γ -Al₂O₃ (99%, размерность ~ 20 nm, "ABCR"). Кривые ДСК

(ДСК — дифференциальная сканирующая калориметрия) измерялись на приборе синхронного термического анализа STA 449 F3 Jupiter ("NETZSCH") при скорости нагрева 10 K/min в атмосфере аргона в алундовых тиглях. Обработка данных и интегрирование пиков проводились с помощью встроенных прикладных программ фирмы "NETZSCH".

3. Результаты и обсуждение

Нами были исследованы термодинамические параметры фазовых переходов нитрата калия в композитах методом ДСК. Значения температур (T_t) и энтальпий (H_t) фазовых переходов в чистом нитрате калия согласуются с литературными данными [12,13]. Численные значения T_t и H_t для KNO₃ и композитов (1 - x)KNO₃-xAl₂O₃ (в пересчете на массу KNO₃) приведены в таблице, где $T_1(H_1)$ — температура (энтальпия) фазового перехода $\alpha \rightarrow \beta$ в KNO₃. При первом нагревании (непосредственно после смешивания исходных компонентов) значения H_t композитов не сильно отличаются от величин H_{t0} , где H_{t0} — соответствующие значения чистого KNO₃.

После прогрева в течение 30 min при 360° C (что на 26° C выше температуры плавления KNO₃) значения H_t заметно уменьшаются (рис. 1).

На рис. 2, *а* и *b* показаны концентрационные зависимости температур и энтальпий фазовых переходов KNO₃ в исследованных нанокомпозитах. Температуры фазовых переходов нитрата калия, в том числе плавления, практически не зависят от *x* и остаются постоянными. В отличие от T_t соответствующие энтальпии резко уменьшаются с ростом *x*. При $x \ge 0.7$ на кривых ДСК не остается ни одного теплового эффекта, указывающего на присутствие в композите кристаллического нитрата калия.

Температура и энтальпия фазовых переходов нитрата калия в композитах (1-x)KNO3-xAl₂O3

<i>x</i> , mol.%	$T_t, \ ^{\circ}\mathrm{C}$		H_t , J/g	
	T_1	T_2	H_1	H_2
Свежеприготовленные образцы (первый нагрев)				
0	129.4	334.2	51.94	93.23
15	130.4	332.8	47.92	68.83
30	131.0	333.0	43.60	67.66
50	131.2	332.6	41.94	59.09
70	131.5	332.4	40.63	52.67
Образцы, прогретые в течение 30 min при 360°C				
0	128.9	333.8	50.61	92.34
15	127.2	329.9	28.67	68.22
30	131.1	333.3	17.09	67.29
50	132.2	332.0	5.30	17.75
70				

Рис. 1. Кривые ДСК композитов (1-x) KNO₃-xAl₂O₃, прогретых при 360°С в течение 30 min. Концентрации Al₂O₃ x = 0 (1), 0.15 (2), 0.5 (3), 0.7 (4).

Рис. 2. Концентрационные зависимости энтальпий (a) и температур (b) фазовых переходов в композитах (1-x)KNO₃-xAl₂O₃.

Параллельно с уменьшением энтальпии фазовых переходов, связанных с наличием кристаллического KNO₃, на кривых ДСК композитов появляется новый пик, соответствующий тепловому эффекту в области 316°С. Мы полагаем, что данный пик отвечает аморфной фазе нитрата калия, локализующейся вблизи поверхности частиц наполнителя. Чтобы убедиться в том, что наблюдаемые эффекты обусловлены поверхностным взаимодействием, был приготовлен композит $0.5 \text{KNO}_3 - 0.5 \text{Al}_2 \text{O}_3$ с большими ($\sim 5 \,\mu$ m) частицами $\text{Al}_2 \text{O}_3$, т.е. с малой величиной удельной поверхности. В этом случае аномального уменьшения тепловых эффектов не наблюдалось, несмотря на то что композит был приготовлен в тех же условиях, в которых синтезировались другие образцы.

Следует также отметить, что процесс аморфизации в композитной системе зависит от степени механической обработки исходных компонентов. Если исходные компоненты не перемешаны, то процесс поверхностного взаимодействия начинается в точке плавления нитрата калия, о чем свидетельствует появление экзотермического эффекта. При плавлении происходит жидкофазное растекание, сопровождаемое выделением теплоты смачивания. При повторном нагреве того же образца кривые ДСК соответствуют смеси остаточной кристаллической и аморфной фаз. Если исходные компоненты перемешать более тщательно, то процесс поверхностного взаимодействия и самодиспергирования идет с заметной скоростью и при температурах ниже температуры плавления, т.е. когда нитрат калия находится в кристаллическом состоянии. Иными словами, при механическом перемешивании возможно твердофазное растекание солевой подсистемы с образованием аморфной фазы, т.е. происходит механохимическая активация перехода из кристаллического состояния в аморфное.

Возможной причиной спонтанной аморфизации нитрата калия в композитах KNO₃-Al₂O₃ при жидкофазном и твердофазном растекании может служить релаксация упругих напряжений, возникающих в объеме ионной соли KNO₃, локализованной на поверхности и в порах оксидной матрицы. Если между кристаллическими решетками контактирующих фаз нет структурного соответствия, то вклад упругой энергии становится существенным. Кроме того, в нанопорах частицы КNO3 адгезионно связаны с окружающими пору случайно ориентированными поверхностями оксида, что должно привести к существенной микродоменизации частиц и дополнительному росту избыточной энергии. По-видимому, в этом случае возможна структурная релаксация путем спонтанной аморфизации ионной соли.

4. Заключение

Установлено, что в композитах KNO₃–Al₂O₃ с возрастанием доли инертного наполнителя уменьшаются энтальпии фазовых переходов нитрата калия (как перехода $\alpha \rightarrow \beta$, так и плавления соли). Данный факт может быть обусловлен снижением доли кристаллического нитрата калия в нанокомпозитах, вызванным аморфизацией соли.

Список литературы

- [1] C.C. Liang. J. Electrochem. Soc. 120, 1289 (1973).
- [2] Н.Ф. Уваров. Успехи химии 76, 454 (2007).
- [3] М.М. Гафуров, К.Ш. Рабаданов, М.Б. Атаев, А.Р. Алиев, А.М. Амиров, З.Ю. Кубатаев. ЖСХ 56, 481 (2015).
- [4] М.М. Гафуров, К.Ш. Рабаданов, М.Б. Атаев, А.М. Амиров, З.Ю. Кубатаев, М.Г. Какагасанов. ФТТ 57, 2011 (2015).
- [5] A.J. Bhattacharyya, J. Maier. Adv. Mater. 16, 811 (2004).
- [6] C. Pfaffenhuber, M. Göbel, J. Popovic, J. Maier. Phys. Chem. Chem. Phys. 15, 18318 (2013).
- [7] М.М. Гафуров, К.Ш. Рабаданов, М.Б. Атаев, А.М. Амиров. ЖПС 80, 781 (2013).
- [8] S.N. Reddy, A.S. Chary, K. Saibabu, T. Chiranjivi. Solid State Ionics 34, 73 (1989).
- [9] P.S. Anantha, K. Hariharan. J. Phys. Chem. Solids 64, 1131 (2003).
- [10] N.F. Uvarov, E.F. Hairetdinov, I.V. Skobelev. Solid State Ionics 86–88, 577 (1996).
- [11] N.F. Uvarov, P. Vanek, Yu.I. Yuzyuk. Solid State Ionics 90, 201 (1996).
- [12] Н. Парсонидж, Л. Стевли. Беспорядок в кристаллах. Ч. 1 / Под ред. Г.Н. Жижина. Мир, М. (1982). 434 с.
- [13] В.А. Рабинович, З.Я. Хавин. Краткий химический справочник / Под ред. А.А. Потехина, А.И. Ефимова. Химия, Л. (1991). 432 с.