Нестационарная нутация "одетых" спиновых состояний E'_1 -центров в кристаллическом кварце

© Г.Г. Федорук

Institute of Physics, University of Szczecin, 70-451 Szczecin, Poland Институт прикладных физических проблем, 220064 Минск, Белоруссия

E-mail: fedaruk@wmf.univ.szczecin.pl

(Поступила в Редакцию 23 декабря 2003 г.)

Нестационарная нутация "одетых" СВЧ полем спиновых состояний двухуровневой системы (E'_1 -центры в кристаллическом кварце) наблюдалась в импульсном ЭПР непосредственно во время действия дополнительного импульса линейно поляризованного радиочастотного поля амплитуды $2B_2$, приложенного вдоль статического магнитного поля. Показано, что при совпадении частоты радиочастотного поля с частотой нутации "голой" спиновой системы сигнал этой нутации модулирован нутацией "одетых" состояний с частотой $\omega_2 = \gamma B_2$, где γ — гиромагнитное отношение электрона. При этом время затухания нутации "одетых" состояний заметно (не менее, чем в 4 раза) больше времени затухания нутации "голых" состояний E'_1 -центров, обусловленного спин-спиновой релаксацией, и коррелирует с временем спин-решеточной релаксации во вращающейся системе координат.

Собственные состояния квантовой системы, помещенной в сильное электромагнитное поле с частотой, близкой к частоте квантовых переходов системы, существенно отличаются от собственных состояний этой системы при отсутствии внешнего электромагнитного поля. Состояния такой "одетой" электромагнитным полем квантовой системы часто называют "одетыми" состояниями в отличие от состояний невозмущенной, "голой" системы. Свойства "одетой" квантовой системы обусловлены как свойствами "голой" квантовой системы, так и параметрами внешнего электромагнитного поля. Чаще всего свойства "одетых" квантовых систем исследовались стационарными методами в оптическом резонансе [1]. Резонанс ядерных спиновых состояний, одетых резонансным радиочастотным полем, наблюдался в стационарном ЯМР и был назван вращательным насыщением (rotary saturation) [2].

В последнее время использование импульсных методов позволило исследовать динамику квантовых переходов между "одетыми" состояниями и наблюдать для таких состояний нестационарные нутации в оптическом резонансе [3,4] и в ЭПР [5]. Поскольку взаимодействие "одетых" состояний спиновой системы с электромагнитным полем зависит от матричного дипольного момента перехода, а их взаимодействие с окружением происходит в условиях, заметно отличающихся от аналогичного взаимодействия "голой" системы, изучение динамики "одетых" состояний перспективно для расширения возможностей когерентной спектроскопии сложных многоуровневых систем [5].

В настоящей работе исследована нестационарная нутация "одетых" спиновых состояний в ЭПР E'_1 -центров в кристаллическом кварце. Как и в [5], данный эффект формировался с помощью дополнительного импульса линейно поляризованного радиочастотного магнитного поля, параллельного постоянному магнитному полю. Однако нами нестационарная нутация "одетых" состояний наблюдалась непосредственно во время действия возбуждающего радиочастотного импульса, приводящего к модуляции нестационарной нутации "голой" спиновой системы, в то время как в [5] она регистрировалась после окончания возбуждающего импульса косвенно с использованием сигнала спинового эха "голой" системы.

1. Основы теории

Рассмотрим электронную спиновую систему со спином S = 1/2 в статическом магнитном поле **B**₀, направленном вдоль оси *z* лабораторной системы координат, и в линейно поляризованном электромагнитном поле 2**B**₁ cos(ωt), направленном вдоль оси *x*. В этом случае гамильтониан (в единицах частоты) имеет вид

$$H_1 = \omega_0 S_z + 2\omega_1 \cos(\omega t) S_x, \tag{1}$$

где $\omega_0 = \gamma B_0$ — частота Лармора (резонансная частота спиновых переходов), $\gamma = g\beta_e/\hbar$ — гиромагнитное отношение электрона, д — д-фактор электрона, β_e — магнетон Бора, $\omega_1 = \gamma B_1$. Линейно поляризованное электромагнитное поле может быть разложено на две циркулярно поляризованные компоненты амплитуды B_1 , вращающиеся в плоскости xy вокруг оси z в противоположных направлениях с частотами ± ω . В приближении вращающейся волны в условиях магнитного резонанса ($\omega \approx \omega_0$) только одна компонента линейно поляризованного электромагнитного поля, вращающаяся в направлении ларморовой прецессии спинов, эффективно вызывает резонансные переходы спинов. Частота второй компоненты электромагнитного поля существенно отличается от резонансной и ее влиянием при $B_1 \ll B_0$ можно пренебречь с высокой степенью точности. В приближении вращающейся волны в системе координат, вращающейся вокруг оси z с частотой ω , гамильтониан принимает вид

$$\tilde{H}_1 = (\omega_0 - \omega)S_z + \omega_1 S_x.$$
⁽²⁾

В случае воздействия дополнительного линейно поляризованного электромагнитного поля $2B_2 \cos(\omega_{rf}t)$, приложенного вдоль оси *z*, гамильтониан во вращающейся системе координат [5]

$$\tilde{H}_2 = (\omega_0 - \omega)S_z + \omega_1 S_x + 2\omega_2 \cos(\omega_{rf} t)S_z, \quad (3)$$

где $\omega_2 = \gamma B_2$.

Из (3) видно, что при резонансном воздействии первого электромагнитного поля ($\omega = \omega_0$) гамильтониан \tilde{H}_2 имеет такую же форму, как H_1 , за исключением изменения осей координат. В результате дополнительное электромагнитное поле действует на состояния спиновой системы, "одетой" первым электромагнитным полем, подобно тому, как это первое поле действует на состояния "голой" системы, помещенной в статическое магнитное поле.

Как известно, простейшим эффектом, возникающим в результате импульсного включения резонансного взаимодействия электромагнитного поля с "голой" квантовой системой и непосредственно отражающим динамику квантовых переходов, является нестационарная нутация [6]. В случае магнитного резонанса сигнал нестационарной нутации вдоль оси у (сигнал поглощения) спиновой системы, находившейся до возбуждения в состоянии термического равновесия, при условиях $\omega_1 \gg 1/T_2 \gg 1/T_1$ описывается соотношением [7]

$$S_y \propto rac{\omega_1}{\sqrt{\omega_1^2 + \delta^2}} \sin\left(\sqrt{\omega_1^2 + \delta^2 t}
ight) \times \exp\left[-rac{t}{T_2}\left(1 - rac{1}{2}rac{\omega_1^2}{\omega_1^2 + \delta^2}
ight)
ight],$$
 (4)

где $\delta = \omega_0 - \omega$ — отстройка от резонанса, T_1 и T_2 соответственно времена спин-решеточной и спин-спиновой релаксации. Как видно из (4), в случае точного резонанса нестационарная нутация "голой" спиновой системы происходит с частотой $\omega_1 = \gamma B_1$. Из (3) следует, что при $\delta = 0$ и выполнении условия нутационного резонанса (частота дополнительного поля B_2 равна частоте нутации "голой" системы, т. е. $\omega_{rf} = \omega_1$) нутация "одетой" спиновой системы должна происходить с частотой $\omega_2 = \gamma B_2$.

Несмотря на сходство гамильтонианов \tilde{H}_2 и H_1 физические условия переходов между состояниями "одетой" и "голой" спиновой системы различны, в частности из-за существенного различия величин статического и переменного магнитных полей (обычно $B_1 \ll B_0$). Это обусловливает различие взаимодействий спиновой системы с окружением, приводя к изменению релаксационных процессов. С другой стороны, в случае переходов между состояниями "одетой" системы достаточно просто может реализовываться ситуация $B_2 \sim B_1$. В этом

случае приближение вращающейся волны не достаточно и должно быть учтено влияние второй циркулярно поляризованной компоненты поля B_2 . Как известно, противоположно вращающаяся компонента электромагнитного поля в случае переходов между состояниями "голой" спиновой системы приводит к сдвигу резонансной частоты однофотонных переходов относительно частоты ω_0 (сдвиг Блоха–Зигерта), а также к многофотонным переходам на частотах $\omega_0/(2n + 1)$ [8]. Следует ожидать подобного проявления противоположно вращающейся компоненты в случае переходов между состояниями "одетой" спиновой системы, приводящих к возникновению нутации.

2. Методика эксперимента

Импульсная последовательность, использованная для наблюдения нестационарных нутаций "голых" и "одетых" спиновых состояний в ЭПР, представлена на рис. 1.

Нутации "голых" спиновых состояний формировались непрерывным СВЧ излучением (*a*) и импульсом продольного магнитного поля (*b*) [9,10]. Первоначально спиновая система находилась в нерезонансном статическом магнитном поле $B = B_0 - \Delta B$ и перпендикулярном ему СВЧ поле B_1 ($\gamma B_1 > 1/T_2, 1/T_1$) в течение времени, достаточного для установления ее стационарного состояния. При этом поглощение СВЧ излучения отсутствовало. Затем магнитное поле импульсно изменялось до резонансного значения B_0 . Время установления резонансных условий выбиралось меньшим T_2 , и скорость изменения магнитного поля $|dB/dt| > \gamma B_1^2$. Импульс магнитного поля (*b*) включался в момент времени t = 0. За счет эффекта Зеемана в результате скачка магнитного

Рис. 1. Схема формирования нестационарных нутаций "голых" и "одетых" спиновых состояний в ЭПР поперечным непрерывным СВЧ излучением (a), импульсом магнитного поля (b) и импульсом линейно поляризованного радиочастотного поля (c), приложенными вдоль статического магнитного поля.

поля $\Delta B = |B - B_0|$ частота ω'_0 квантового перехода спиновой системы в момент времени t = 0 изменялась до значения ω_0 и становилась равной частоте СВЧ поля ω (*a*). Поэтому на время действия импульса устанавливалось резонансное взаимодействие СВЧ поля со спиновой системой, приводящее к возникновению нестационарной нутации.

Нутация "одетых" спиновых состояний формировалась с помощью импульса линейно поляризованного радиочастотного поля с амплитудой $2B_2$, приложенного вдоль поля В₀ одновременно с импульсом магнитного поля ΔB (c). Как уже отмечалось, дополнительное переменное магнитное поле с амплитудой циркулярно поляризованной компоненты B_2 и частотой ω_{rf} , приложенное вдоль поля В₀, действует на "одетые" спиновые состояния подобно тому, как СВЧ поле на "голую" систему. В результате для "одетых" спиновых состояний при $\omega_{rf} = \omega_1$ наблюдается резонанс, а при импульсном возбуждении этих состояний в условиях такого резонанса возникает нестационарная нутация с частотой $\omega_2 = \gamma B_2$. Технически оба импульса магнитного поля создавались пропусканием тока через один и тот же модуляционный элемент. Измерение тока обеспечивало возможность калибровки амплитуды В2 создаваемого в месте расположения образца радиочастотного поля по известной амплитуде импульса магнитного поля ΔB . Величина ΔB определялась по частоте биений (равной $\Delta B/\gamma$) в сигнале свободной индукции, наблюдавшемся после окончания импульса магнитного поля [11].

Рассмотренная методика формирования нутационных сигналов была реализована на модернизированном варианте импульсного спектрометра ЭПР, работающего в 3-ст диапазоне ($\omega/2\pi = 10.1 \text{ GHz}$) и описанного в [11]. Максимальное значение B_1 в месте расположения образца в прямоугольном резонаторе типа H_{102} составляло около 0.054 mT и для двухуровневых систем со спином S = 1/2 обеспечивало формирование нутационных сигналов с частотой до $\omega_1/2\pi = 1.5 \text{ MHz}$. Для улучшения отношения сигнал/шум использовалось многоканальное цифровое суммирование сигналов. Привязка фазы радиочастотного поля к началу импульса магнитного поля, а значит, и к нутации "голой" спиновой системы отсутствовала.

Узость линии ЭПР и большие времена релаксации сделали E'_1 -центры в кристаллическом кварце удобным объектом для нутационных исследований [5,10,11]. Основное состояние E'_1 -центров является крамерсовым дублетом, имеющим спин S = 1/2 и слабую анизотропию фактора спектроскопического расщепления ($\Delta g = 9.10^{-4}$). При направлении магнитного поля, параллельном оптической оси кристалла, спектр ЭПР данных центров в 3-ст диапазоне состоит из одиночной линии с шириной $\Delta B_{pp} = 0.016$ mT и g = 2.0008. Времена релаксации E'_1 -центров сравнительно длинные даже при комнатной температуре ($T_1 \approx 0.2$ ms [12,13], T_2 определяется диполь-дипольным взаимодействием [12] и при концентрации центров 10¹⁷ ст⁻³ составляет около 12 μ s). E'_1 -центры создавались облучением монокристалла кварца ($1.5 \times 1.5 \times 2 \,\mathrm{mm}$) реакторными нейтронами интегральным потоком около $10^{18} \,\mathrm{cm}^{-3}$. Концентрация E'_1 -центров оценена сравнением их стационарных спектров со спектрами эталона и составляла около (3 ± 0.8) $10^{17} \,\mathrm{cm}^{-3}$.

3. Результаты и обсуждение

Эксперименты выполнены при комнатной температуре и резонансном значении статического магнитного поля во время действия импульса, что соответствовало максимальному абсорбционному сигналу нутаций "голой" спиновой системы с частотой $\omega_1 = \gamma B_1$. Статическое магнитное поле было параллельным оптической оси кристалла. При этом длительность t_1 импульсов магнитного поля составляла $10\,\mu$ s, $\Delta B = 0.12$ mT, а период повторения импульсов — 1.25 ms.

На рис. 2 представлены нутационные сигналы E'_1 -центров в кристаллическом кварце, зарегистрированные при различных амплитудах резонансного ($\omega_{rf} = \omega_1$) радиочастотного поля B_2 . Как видно из осциллограммы a, в соответствии с соотношением (4) при резонансном ($\omega = \omega_0$) возбуждении полем B_1 и при отсутствии воздействия поля B_2 наблюдается нутация "голой" спиновой системы с частотой $\omega_1 = \omega_1/2\pi i 1.34$ MHz. В то же время резонансное воздействие радиочастотного поля B_2 приводило к модуляции сигнала нутации "голой"

Рис. 2. Нутационные сигналы ЭПР E'_1 -центров в кристаллическом кварце, зарегистрированные при различных амплитудах резонансного ($\omega_{rf} = \omega_1 = 2\pi 1.34$ MHz) радиочастотного поля B_2 : $a = 0, b = 2.8 \,\mu$ T, $c = 5.6 \,\mu$ T, $d = 11.2 \,\mu$ T.

спиновой системы (осциллограммы b-d на рис. 2). Причем частота этой модуляции увеличивается пропорционально амплитуде B_2 , как это ожидается согласно (3) для нестационарной нутации "одетых" спиновых состояний.

Нутационные сигналы ЭПР E'_1 -центров, зарегистрированные в условиях нутационного резонанса ($\omega_{rf} = \omega_1$) при одной и той же амплитуде радиочастотного поля для различных значений СВЧ поля B_1 и соответственно различных частот ω_{rf} радиочастотного поля, приведены на рис. 3. Приведенные сигналы показывают, что при изменении частоты нутационного резонанса частота модуляции (частота нутации "одетых" спиновых состояний) остается неизменной.

При наличии нутации "одетых" спиновых состояний в условиях их резонансного ($\omega_{rf} = \omega_1$) возбуждения наблюдаемый сигнал в приближении вращающейся волны был аппроксимирован соотношением

$$v \propto [1 + \cos(\omega_2 t)] \sin(\omega_1 t) \exp\left(-\frac{t}{T_{mp}}\right),$$
 (5)

где $\omega_2 = \gamma B_2$ — частота нутации "одетых" спиновых состояний при $\omega_{rf} = \omega_1$, T_{mp} — время релаксации, характеризующее затухание нутации "одетых" спиновых состояний.

Возможность калибровки B_2 в нашем эксперименте позволяет исследовать зависимость ω_2 от B_2 количественно (рис. 4). Как видно, полученная зависимость

Рис. 3. Нутационные сигналы ЭПР E'_1 -центров, зарегистрированные при фиксированной амплитуде радиочастотного поля $B_2 = 8.0 \,\mu\text{T}$ для различных частот ($\omega_{rf} = \omega_1$) нутационного резонанса: a - 0.52, b - 0.97 и c - 1.34 MHz.

Рис. 4. Зависимость частоты нутации "одетых" спиновых состояний при их резонансном ($\omega_{rf} = \omega_1$) возбуждении от амплитуды радиочастотного поля B_2 .

хорошо соответствует теоретически ожидаемой в реализованных условиях зависимости для частоты нутации "одетых" спиновых состояний $\omega_2 = \gamma B_2$, представленной линией.

При взаимодействии "одетых" спиновых состояний с окружением, приводящем к релаксационным процессам и затуханию нутаций частоты ω_2 , СВЧ поле B_1 играет роль, аналогичную постоянному магнитному полю B_0 в случае релаксации "голых" спиновых состояний, обусловливающей затухание нутаций частоты ω_1 и отражаемой временами релаксации T_1 и T_2 . Поскольку $B_1 \ll B_0$, при резонансе $\omega_{rf} = \omega_1$ может иметь место необычное поведение релаксации "одетых" спиновых состояний. Сравнение скоростей затухания нутаций, приведенных на рис. 2, показывает, что "одетые" спиновые состояния (осциллограммы b-d) заметно слабее взаимодействуют с окружением, чем "голые" (осциллограмма a). Оценка с помощью соотношений (4) и (5) дает $T_2 = 3.6 \pm 0.4 \mu$ s и $T_{mp} = 16 \pm 2 \mu$ s.

С другой стороны, значение T_2 для E'_1 -центров за счет их диполь-дипольного взаимодействия при случайном расположении в решетке равно [12]

$$T_2 = \frac{9\sqrt{3}}{4\pi^2 \gamma^2 \hbar C} = \frac{1}{8.1 \times 10^{-13} C}$$
(6)

и для измеренной для данного образца концентрации $C = 3.10^{17} \text{ cm}^{-3}$ составляет 4.1 μ s. Близость определенного из затухания нутаций значения T_2 к величине, оце-

Рис. 5. Спектры "одетых" СВЧ полем состояний E'_1 -центров при $\omega_2/2\pi = 0.078$ МНz и различных частотах нутации "голых" состояний $\omega_1/2\pi$: 1 - 0.52, 2 - 0.97 и 3 - 1.34 МHz.

ненной из концентрации, указывает на слабое влияние неоднородности B_1 в выполненных исследованиях.

Полученное значение T_{mp} согласуется с оценкой данной величины $T_{mp} > 10 \,\mu$ s в [5] на основе затухания сигнала спинового эха "одетых" состояний и измеренной величиной $T_{1p} = 14 \,\mu$ s, показывающей, что $T_{m\rho} \approx T_{1\rho}$, где $T_{1\rho}$ — время спин-решеточной релаксации во вращающейся системе координат. В то же время, хотя в исследованном в [5] образце время фазовой памяти E'_1 -центров было в 1.8 раза больше, чем в исследованном нами образце, время затухания нутаций "одетых" состояний, измеренное нами, оказалось значительно (в 16 раз) больше, чем в [5]. Это может быть вызвано неоднородностями возбуждающих полей, сильнее проявляющимися в [5] в силу больших величин использованных полей.

Спектр "одетых" состояний может быть получен изменением частоты радиочастотного поля ω_{rf} при фиксированных остальных параметрах возбуждения спиновой системы и измерением при этом изменения амплитуд нутаций, обусловленного различием скоростей затухания "голых" и "одетых" состояний. Как видно из рис. 2, для $t_1 > 5 \mu$ s различия амплитуд нутаций "голой" и "одетой" систем хорошо заметны. Их разница A использована для получения спектров "одетых" состояний, представленных на рис. 5. Воздействующее радиочастотное поле было значительно слабее СВЧ поля, чтобы избежать заметного сдвига Блоха–Зигерта для резонансной линии "одетых" состояний. Как видно, в соответствии с (3) максимум сигнала нутации "одетой" системы имеет место при совпадении частоты радиочастотного поля с ω_1 . Амплитуда радиочастотного поля ($B_2 = 2.8 \,\mu\text{T}$) была также значительно меньше ширины линии ЭПР E_1' -центров (расстояние между экстремумами первой производной $\Delta B_{pp} = 16 \,\mu\text{T}$). В этом случае можно ожидать, что спектр "одетых" состояний будет близок к обычному спектру ЭПР. Действительно, ширина резонансной линии "одетых" состояний на полувысоте $\Delta B_{1/2} = 11 \,\mu\text{T}$.

Таким образом, на примере Е1-центров в кварце продемонстрирована возможность прямой регистрации нутации "одетых" спиновых состояний в ЭПР, реализованная с помощью непрерывного СВЧ излучения и амплитудно модулированных радиочастотным полем импульсов поляризующего магнитного поля. Поскольку данная нутация затухает с временем, близким к времени спин-решеточной релаксации во вращающейся системе координат $T_{1\rho}$, а данное время в твердых телах, как правило, больше времени затухания нутации "голых" спиновых состояний, обусловленного Т2, использование "одетых" спиновых состояний может дать информацию о динамических процессах, которую нельзя получить из измерений T₁ и T₂. С другой стороны, импульсные эксперименты с использованием "одетых" спиновых состояний, в частности двумерные корреляционные эксперименты, позволяют расширить возможности методов нутационной спектроскии ЭПР для изучения многоуровневых систем с перекрывающимися спектрами [5].

Автор выражает благодарность И.З. Рутковскому за помощь в проведении эксперимента.

Список литературы

- C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg. Atom– Photon Interaction: Basic Processes and Application. Wiley, N.Y. (1992).
- [2] A.G. Redfield. Phys. Rev. 98, 1787 (1955).
- [3] C. Wei, N.B. Manson, J.P.D. Martin. Phys. Rev. Lett. 74, 7, 1083 (1995).
- [4] C. Wei, S.A. Holmstrom, A.D. Greentree, N.B. Manson. Journal of Optics B1, 289 (1999).
- [5] G. Jeschke. Chem. Phys. Lett. 301, 5-6, 524 (1999).
- [6] H.C. Torrey. Phys. Rev. 76, 8, 1059 (1949).
- [7] S. Stoll, G. Jeschke, M. Willer, A. Schweiger, J. Magn. Reson. 130, 1, 86 (1998).
- [8] У. Хеберлен, М. Меринг. ЯМР высокого разрешения в твердых телах. Мир, М. (1980). С. 99.
- [9] И.З. Рутковский, Г.Г. Федорук. ЖЭТФ 78, 3, 1237 (1980).
- [10] Г.Г. Федорук. Журнал прикладной спектроскопии 69, 2, 141 (2002).
- [11] В.С. Кузьмин, Г.Г. Федорук. Нестационарные когерентные явления в парамагнитных спиновых системах. БГУ, Минск. (2001). 208 с.
- [12] К.М. Салихов, А.Г. Семенов, Ю.Д. Цветков. Электронное спиновое эхо и его применение. Наука, Новосибирск. (1976). 344 с.
- [13] Л.К. Аминов, И.Н. Куркин, Д.А. Лукоянов, К.П. Чернов. ФТТ **39**, *8*, 1335 (1997).