06;09

1

Технология получения и оптическое поглощение пленок полупроводниковых растворов Culn_{0.95}Ga_{0.05}Se₂

© М.А. Алиев¹, С.Н. Каллаев¹, Т.М. Гаджиев¹, Р.М. Гаджиева¹, А.М. Исмаилов², Б.А. Билалов³

¹ Институт физики им. Х.И. Амирханова Дагестанского научного центра РАН, Махачкала

² Дагестанский государственный университет, Махачкала

³ Дагестанский государственный технический университет, Махачкала E-mail: aliev_marat@mail.ru

Поступило в Редакцию 4 января 2016 г.

Разработана технология получения тонких пленок CuIn $_{0.95}$ Ga $_{0.05}$ Se $_2$ методом двухстадийной селенизации в потоке газа-носителя (азот) реакционной компоненты (селен). Посредством электронной микроскопии и рентгеноструктурного анализа изучена морфология, структура пленок CuIn $_{0.95}$ Ga $_{0.05}$ Se $_2$. Исследованы спектральные характеристики коэффициента поглощения.

Мелкодисперсные материалы, в том числе и тонкие пленки, интенсивно изучаются как основа эффективной аппаратуры микроэлектроники [1]. Соединения CuIn_xGa_{1-x}Se₂ (CIGS) признаны наиболее перспективными материалами для использования в качестве оптически активного слоя в тонкопленочных солнечных элементах нового поколения [2]. CIGS являются прямозонными полупроводниками с шириной запрещенной зоны, меняющейся в зависимости от состава от 1.04 до 1.68 eV [3]. К настоящему времени эффективность преобразования тонкопленочных солнечных элементов на основе CIGS превышает 21.7%, а КПД модулей

1

с размерами $30 \times 30 \text{ cm}^2$ с поглощающим слоем соединения CIGS составляет 11.6% [4–5]. Однако вопросы, связанные с развитием технологии в аспекте получения пленок на больших площадях с воспроизводимыми физико-химическими параметрами, остаются открытыми. Это связано в первую очередь с резко различающимися давлениями паров как исходных химических элементов, так и бинарных селенидов металлов, образующихся в процессе синтеза тонких пленок [6]. С целью решения данной проблемы был разработан метод получения тонких пленок [7,8].

Целью настоящей работы является разработка технологии получения тонких пленок CuIn_{0.95}Ga_{0.05}Se₂ методом управляемой селенизации, изучение морфологии, химического состава и рентгеноструктурный анализ.

Для осаждения предварительных интерметаллических прекурсоров пленок CuIn_{0.95}Ga_{0.05} использовали метод магнетронного распыления на постоянном токе. Безмасляная система откачки на основе криогенного насоса позволяла достигать остаточного вакуума в камере до $0.5 \cdot 10^{-7}$ mm Hg. Нагрев подложки осуществлялся резистивным нагревателем. В качестве мишени использовали проводящий диск диаметром 40 mm и толщиной 4 mm. Изготовление мишени осуществляли сплавлением исходных элементов, помещенных в графитовый контейнер в вакуумной печи СШВЭ-1.3-1/16 при давлении в пределах 10 Ра и температуре $T = 1100^{\circ}$ С в течение 30 min.

Тонкие пленки CuIn_{0.95}Ga_{0.05}Se₂ получали управляемой селенизацией медно-индиево-галлиевых слоев двухэтапным методом, в экспериментальной двухзонной термодиффузионной установке с участием газаносителя (азот) реакционной компоненты (селен). На рис. 1 представлен технологический режим получения тонкой пленки CuIn_{0.95}Ga_{0.05}Se₂. На рис. 2 представлены фотографии CuIn_{0.95}Ga_{0.05} мишени, тонкой пленки и микрофотография поверхности пленки CuIn_{0.95}Ga_{0.05}Se₂. Морфологию поверхности и химический состав поликристаллических пленок определяли с помощью микроскопа-микроанализатора LEO-1450. Итоговое увеличение в плоскости образца составляло ×7000. Толщина полученных пленок равна 1 µm. Поверхность пленок была зеркально-гладкой. Полученные пленки обнаруживали достаточно хорошую адгезию по отношению к поверхности использованных подложек из стекла. Химический анализ тонких пленок показал, что: 1) состав пленок является квазистехиометрическим, 2) распределение компонент по поверхности пленок неравномерно (±3%).

Рис. 1. Технологический режим получения тонкой пленки $CuIn_{0.95}Ga_{0.05}Se_2$. 1 — график изменения давления реакционной смеси $Se + N_2$ по времени, 2, 3 — график изменения температуры зоны селенизации и зоны испарения селена соответственно по времени.

Исследования структурных свойств тонких пленок CuIn_{0.95}Ga_{0.05} были проведены на рентгеновском дифрактометре ДРОН-2.0, методом рентгеновского фазового анализа на излучении Cu K_{α} ($\lambda = 1.54178$ Å) с использованием никелевого фильтра в диапазоне углов $2\theta = 10-90^{\circ}$. Идентификация фаз проводилась сравнением экспериментально полученных межплоскостных расстояний с данными картотеки JCPDS и расчетными методами. На рентгенограммах присутствует характерная для халькопирита серия дифракционных линий (112), (013), (121), (220/024), (116/132), (008/040), (136/332), (228/224), а линия (112) имеет высокую интенсивность, что свидетельствует о преимущественной ориентации (текстуре) в направлении (112).

Спектры оптического пропускания были исследованы с помощью сканирующего двухлучевого спектрофотометра UV 3600 (Shimadzu

Рис. 2. Фотография мишени (a) и тонкой пленки (b) CuIn_{0.95}Ga_{0.05} и микрофотография поверхности пленки CuIn_{0.95}Ga_{0.05}Se₂ (c).

Corp.). На рис. 3 приведена спектральная зависимость коэффициента поглощения пленок CuIn_{0.95}Ga_{0.05}Se₂ при комнатной температуре.

Спектральная зависимость коэффициента поглощения пленок CuIn_{0.95}Ga_{0.05}Se₂ обнаруживает коротковолновую границу hv < 0.8 eV, что отвечает значению ширины запрещенной зоны. С увеличением энергии фотонов при hv > 0.8 eV коэффициент поглощения резко возрастает по экспоненциальному закону. Экспоненциальный рост завершается вблизи $hv \approx 1.0 \text{ eV}$. Максимум спектральной зависимости коэффициента поглощения пленок CuIn_{0.95}Ga_{0.05}Se₂ наблюдается при $hv \ge 1.25 \text{ eV}$.

Характер зависимости края поглощения типичен для большинства полупроводников [9]. Коэффициент оптического поглощения α рассчитывался по формуле, учитывающей многократное внутреннее отражение в плоскопараллельном образце. Коэффициент отражения принимался R = 0.25 во всем спектральном диапазоне, что является характерным для пленок полупроводников с халькопиритной структурой [10]. Вычисленный коэффициент поглощения составлял величину $\alpha \approx 10^4$ сm⁻¹ в области излучения $1.25 \le h\nu \le 1.5$ eV. Крутизна длинноволнового края $\delta \approx 25$ eV⁻¹.

Ширина запрещенной зоны исследуемых пленок ΔE_g определялась экстраполяцией прямолинейного участка зависимости $(\alpha h \nu)^2$ от энергии фотона $(h\nu)$ до пересечения с осью абсцисс (рис. 3, вставка).

Рис. 3. Спектральная зависимость коэффициента поглощения пленок CuIn_{0.95}Ga_{0.05}Se₂ при комнатной температуре. На вставке — определение ширины запрещенной зоны пленок CuIn_{0.95}Ga_{0.05}Se₂ при комнатной температуре.

Согласно рассчитанным значениям, $\Delta E_g \approx 1.125 \, {\rm eV}$ при комнатной температуре. Высокие значения крутизны длинноволнового края отвечают прямым межзонным переходам в CuInGaSe₂. Ширина запрещенной зоны и экспоненциальный рост коэффициента поглощения согласуются со значением энергии прямых межзонных переходов в диселениде меди, индия и галлия.

Таким образом, разработана технология получения тонких пленок CuIn_{0.95}Ga_{0.05}Se₂ методом двухстадийной селенизации в потоке газаносителя (азот) реакционной компоненты (селен). На стеклянных подложках получены кристаллические пленки толщиной $\approx 1 \, \mu$ m, с концентрацией атомов галлия 5 at.%. На рентгенограммах наблюдаются

пики, характерные для структуры халькопирита как основной фазы материала. Исследования спектральных зависимостей коэффициента поглощения указывают на возможность получения данной технологией рабочего тела высокоэффективных пленочных преобразователей солнечной энергии.

Список литературы

- [1] Асеев А.Л. Нанотехнологии в полупроводниковой электронике. Новосибирск: СО РАН, 2007. 368 с.
- [2] Djelal L., Bouguelia A., Trali M. // Mater. Chem. Phys. 2008. V. 109. N 1. P. 99.
- [3] Рудь Ю.В., Гременок В.Ф., Теруков Е.И., Байрамов Б.Х., Song Y.W. // ФТП. 2012. Т. 46. В. 2. С. 231.
- [4] Philip J., Dimitrios H., Roland W., Oliver K., Andreas B., Theresa M. F., Michael P. // Phys. Status Solidi. RRL 9. 2015. V. 1. P. 28–31.
- [5] Пиванов М.С., Зарецкая Е.П., Гременюк В.Ф., Залесский В.Б., Романов П.И. и др. // Доклады БГУИР. 2007. № 3 (19). С. 62.
- [6] Calixto M.E., Sebastian P.J. // J. Mater. Sci. 1998. V. 33. P. 339-345.
- [7] Билалов Б.А., Гаджиев Т.М., Сафаралиев Г.К. Патент № 2354006 РФ, МПК H01L31/18 // БИ. 2009. № 12.
- [8] Гаджиев Т.М., Гаджиева Р.М., Арсланов Р.К., Куруцов М.Г., Зубаилов И.Г. Патент № 116614 РФ, МПК F27B5/04 // БИ. 2012. № 15.
- [9] Pankove J.I. Optical processes in Semiconductors. New Jersey: Prentice-Hall, 1971. 422 p.
- [10] Coutts T.J., Meakin J.D. // Current Topics in Photovoltais. N.Y.: Acad. Press. Inc., 1985. 307 p.