03;15

О чувствительности ядерно-резонансных магнитометров с текущей жидкостью

© В.В. Давыдов, В.И. Дудкин, А.А. Петров, Н.С. Мязин

Санкт-Петербургский политехнический университет Петра Великого E-mail: Davydov_vadim66@mail.ru

Поступило в Редакцию 10 февраля 2016 г.

Рассматривается новая методика определения чувствительности ядерно-магнитных (ЯМР) магнитометров на текущей жидкости. Новая методика основана на математической обработке экспериментальных данных, связанных с измерением крутизны склона линии нутации в точке перехода инвертируемого сигнала ЯМР через ноль. Предложенная методика позволяет определять чувствительность ЯМР-магнитометров на текущей жидкости для резонансных частот измерения магнитного поля в диапазоне от 0.5 Hz до 840 MHz.

Повышенный интерес к ядерно-магнитным (ЯМР) магнитометрам на текущей жидкости, которые сейчас находят множество различных применений как в фундаментальных, так и в прикладных исследованиях [1–5], поднял проблему разработки методики определения чувствительности этих приборов. Большой интерес к ЯМР-магнитометрам обусловлен тем, что они позволяют проводить измерение параметров (индукции и неоднородности) магнитного поля с необходимой точностью в сложнейших технических условиях (например, наличие большого количества электромагнитных помех или повышенной радиации), в которых использование других типов магнитометров неэффективно [2–8].

Ядерный магнитный резонанс является большим разделом квантовой электроники, поэтому ЯМР-магнитометры относятся к квантовым магнитометрам, для которых чувствительность необходимо указывать в единицах измерения $T/Hz^{1/2}$. В мире существуют различные определения чувствительности σ для квантовых магнитометров с оптической накачкой (КМОН), но большинство ученых придерживаются следующего: σ — это минимальное изменение значения магнитного поля, которое можно измерить в полосе регистрации сигнала 1 Hz [1,9,10]. В КМОН для оценки чувствительности используется косвенный метод, основанный на отношении крутизны резонанса к шуму [9,10]. Минимальная

64

вариация магнитного поля, которая может быть зарегистрирована с помощью КМОН в полосе частот 1 Hz, представляется как

$$\delta B_{\min} = (1/\gamma) N/(dS/df)|_{f=f_0},\tag{1}$$

65

где f_0 — частота магнитного резонанса, $(dS/df)|_{f=f_0}$ — крутизна резонанса в центре резонансной линии, N — среднеквадратичный уровень шума, измеренный в той же полосе частот.

Этот метод подразумевает, что шум КМОН всецело определяется дробовыми шумами света [9,10]. Тогда (1) можно представить как

$$\delta B_{\min} = (1/\gamma) k N / (S/G), \qquad (2)$$

где k — форм-фактор резонанса, G — ширина линии резонанса, S — величина сигнала. Величины S, k, N, G или $(dS/df)|_{f=f_0}$ можно измерить в эксперименте и вычислить чувствительность как δB_{\min} [9].

Конструкция ЯМР-магнитометра на текущей жидкости принципиально отличается от КМОН тем, что магнитное поле измеряется в одной точке — в зоне размещения катушки нутации, а сигнал ЯМР регистрируется в другой точке [2–8,11,12]. Рабочей характеристикой в ЯМР-магнитометрах является линия нутации [2,3,5,6,11,12], крутизна склона S_h которой определяет чувствительность магнитометра. Величина S_n линии нутации зависит от многих принципиально неустранимых факторов. Например, от влияния времен релаксации, а также от конструктивных особенностей данного прибора (геометрических размеров катушки нутации, диаметров трубопроводов и т.д.) [3–5,6,11]. Огромное влияние на величину S_n ЯМР-магнитометра (в отличие от других типов квантовых магнитометров, например "калиевого") оказывает неоднородность измеряемого магнитного поля, которая уширяет линию нутации [2,5–7]. Особенно этот фактор сказывается при измерении сильных и сверхсильных магнитных полей с высокой неоднородностью.

Следует также отметить, что для различных случаев применения ЯМР-магнитометров в них часто используют специально изготовленные жидкие среды при различной температуре T, которые значительно отличаются друг от друга по константам релаксации T_1 и T_2 . Кроме того, условие получения полной инверсии намагниченности — максимум отношения сигнал/шум (SNR) — накладывает дополнительные ограничения по расходу жидкости, так как катушка нутации обладает конечными размерами [3–8,11,12]. А для получения самого явления

нутации необходимо выполнение следующего условия [5]:

$$H_1 \leqslant 0.2H_0,\tag{3}$$

где H_0 — измеряемое магнитное поле, H_1 — поле, создаваемое в катушке нутации (радиочастотное поле).

Перечисленные выше условия работы, а также конструктивные особенности ЯМР-магнитометра не позволяют использовать для оценки его чувствительности соотношения (1) или (2). Поэтому целью статьи является рассмотрение принципов измерения чувствительности σ_{nmr} для ЯМР-магнитометров на текущей жидкости и вывод соотношения для ее определения в единицах измерения $T/Hz^{1/2}$ с учетом всех особенностей измерения индукции магнитного поля этими приборами. В настоящее время таких соотношений нет.

На рис. 1 представлена экспериментальная установка, собранная на основе классических схем ЯМР-магнитометров для исследования σ_{nmr} от различных физических величин. Принцип работы ЯМР-магнитометров и методы измерения параметров магнитного поля рассмотрены в [2–8,11,12]. В экспериментальной установке использовался магнитполяризатор 2 с индукцией $B_p = 0.96$ Т, неоднородность $0.5 \cdot 10^{-2}$ cm⁻¹, расстояние между полюсами $d_n = 0.26$ сm и магнит-анализатор 9 с индукцией $B_a = 0.34$ T, неоднородность $0.5 \cdot 10^{-4}$ cm⁻¹, расстояние между полюсами $d_a = 0.17$ cm. Жидкость протекала по трубопроводу с внутренним диаметром $d_T = 0.3$ cm. Новым элементом в собранной экспериментальной установке является электромагнит 16 с высокостабильным источником питания 17, создающий между полюсными наконечниками 18 магнитное поле с индукцией B_0 от $0.46 \cdot 10^{-4}$ до 0.28 T с неоднородностью до $0.3 \cdot 10^{-4}$ cm⁻¹.

На рис. 2. представлена зависимость амплитуды U_s регистрируемого сигнала ЯМР от частоты f_n генератора нутации (линия нутации) в окрестности частоты прецессии ядер f_0 в поле B_0 . Границы уровня шума U_n на данной зависимости обозначены пунктиром.

В ЯМР-магнитометрах на текущей жидкости для регистрации сигнала ЯМР применяется автодин (индукционный съем информации), в то время как в КМОН используется фотоприемник, хотя в обоих случаях регистрируется сигнал поглощения [3,5,9,10,12]. Поэтому при определении чувствительности ЯМР-магнитометра необходимо, так же как и в КМОН, учитывать чувствительность регистрирующей системы (автодина с подключенной к нему катушкой регистрации,

67

Рис. 1. Структурная схема ЯМР-магнитометра: *1* — помпа; *2* — магнит-поляризатор; *3* — сосуд-поляризатор; *4* — катушка нутации; *5* — объем катушки нутации; *6* — соединительные участки трубопровода; *7* — сосуд-анализатор; *8* — катушки модуляции; *9* — магнит-анализатор; *10* — катушка регистрации сигнала ЯМР; *11* — устройство регистрации сигнала ЯМР; *12* — осциллограф; *13* — генератор нутации; *14* — генератор модуляции; *15* — частотомер; *16* — катушки электромагнита; *17* — источник напряжения; *18* — полюсные наконечники электромагнита; *19* — регулировочные винты.

содержащей текущую жидкость) — крутизну резонансной линии сигнала регистрации в магните-анализаторе 9. Но при измерении ЯМРмагнитометром параметров поля, включая вариации, используется, кроме регистрируемого сигнала ЯМР, линия нутации, формируемая в катушке нутации, расположенной на некотором расстоянии от магнитаанализатора 9 [2–8,11,12]. Крутизна S_n линии нутации влияет на точность измерений ЯМР-магнитометра [2–6]. Поэтому при определии σ_{nmr} необходимо также учитывать S_n линии нутации. На основании проведенных исследований и учитывая, методику оценки чувствительности в КМОН, авторы предлагают для оценки σ_{nmr} следующее соотношение:

$$\sigma_{nmr} = \frac{1}{\gamma} \frac{\Delta f_s}{SNRA_s} \frac{\Delta f_n}{f_a \left(1 + \left(\frac{\Delta f_n}{f_0}\right)^2\right)^{1/2}} \frac{F}{hI(I+1)QN_n} \left(\frac{k^2 T^2}{f_a^5} \frac{BT_1}{T_2}\right)^{1/2}, \quad (4)$$

Рис. 2. Линия нутации регистрируемого сигнала ЯМР.

где Δf_s — приращение частоты радиополя H_1 в окрестности нуля линии нутации ($f_n = f_2$) по уровню удвоенного шума; $A_s = (U_3 + U_4)$ — сумма амплитуд регистрируемого сигнала ЯМР в точках $f_n = f_3$ и $f_n = f_4$; I — спин ядра; N_n — полное число резонирующих ядерных моментов в катушке регистрации с учетом фактора заполнения, f_a — частота регистрации сигнала ЯМР, Q — добротность колебательного контура автодина, F — среднеквадратичное напряжение шума на колебательном контуре автодина, B — полоса регистрации сигнала ЯМР; T — температура жидкости; k — постоянная Больцмана, h — постоянная Планка; T_1 и T_2 — времена продольной и поперечной релаксации жидкой среды.

На рис. 3 представлен фрагмент A рис. 2, на котором изображена часть линии нутации с точкой перехода через ноль $(f_n = f_2)$. Измере-

Рис. 3. Фрагмент А линии нутации регистрируемого сигнала ЯМР.

ние величины Δf_s в соответствии с методами оценки чувствительности для КМОН [9,10] производится по уровню удвоенного шума U_n следующим образом. Катушка нутации размещается в магнитном поле Во между полюсными наконечниками 18 электромагнита 16. Значение индукции В₀ отградуировано как по току от источника питания 17, так и по частоте инвертируемого сигнала ЯМР. В электромагните устанавливается значение В₀ такое, которое потом будет измеряться магнитометром, например $B_0 = 0.602 \,\mathrm{mT}$. Регулировочными винтами 19 устанавливается неоднородность магнитного поля B_0 , чтобы $\Delta f_n = 1$ Hz. Устанавливается частота генератора нутации в точку $(f_n = f_3)$, соответствующую появлению в анализирующем устройстве сигнала ЯМР, по амплитуде равного шуму (рис. 3). Далее изменяем частоту генератора нутации подключенной к катушке нутации в сторону увеличения до появления опять в анализирующем устройстве сигнала ЯМР, по амплитуде равного шуму — точка $f_n = f_4$ (рис. 3). Величина $\Delta f_s = f_4 - f_3$ будет приращением частоты в окрестности нуля по уров-

Значения σ_{nmr} (в единицах T/Hz^{1/2}) многоканального ЯМР-магнитометра со специальной изготовленной жидкой средой с $T_1 = 4.37$ s, $T_2 = 1.63$ s при $T = 15.2^{\circ}$ С соответствующие индукции магнитного поля с различной неоднородностью ΔB_0 , в котором расположена катушка нутации

ΔB_0 , %/cm	B_0 , mT					
	0.062	1.210	2.420	4.411	6.223	8.281
4.0	$(0.3221\pm$	$1.2952\pm$	$(1.1664\pm$	$(7.3066\pm$	$(2.8307\pm$	$(5.0156\pm$
	$0.0027) \times$	$0.0109) \times$	$0.0101) \times$	$0.0657) \times$	$0.0259) \times$	$0.0471) \times$
	10^{-8}	10^{-7}	10^{-6}	10^{-6}	10^{-5}	10^{-5}
6.0	$(0.3998 \pm$	$(1.6028\pm$	$(1.4437\pm$	$(9.0419 \pm$	$(3.5029\pm$	$(6.2068 \pm$
	0.0034)×	0.0141)×	0.0130)×	$0.0824) \times$	0.0323)×	$0.0592) \times$
	10^{-8}	10^{-7}	10^{-6}	10^{-6}	10^{-5}	10^{-5}
8.0	$(0.7107 \pm$	$(2.8496 \pm$	$(2.5660 \pm$	$(16.0745\pm$	$(6.2275\pm$	$(11.0343\pm$
	$0.0063) \times$	0.0259)×	$0.0237) \times$	0.1496×	0.0586)×	$0.1067) \times$
	10^{-8}	10^{-7}	10^{-6}	10^{-6}	10^{-5}	10^{-5}
10.0	$(1.1106\pm$	$(4.4524 \pm$	$(4.0095\pm$	$(25.1165 \pm$	$(9.9191\pm$	$(17.2411 \pm$
	0.0102)×	0.0418)×	$0.0385) \times$	$0.2446) \times$	0.0973)×	$0.01712) \times$
	10^{-8}	10^{-7}	10^{-6}	10^{-6}	10^{-5}	10^{-5}
12.0	$(1.5991\pm$	$(6.4114 \pm$	$(5.7736 \pm$	$(36.1578\pm$	$(14.0121\pm$	$(24.8272\pm$
	$0.0149) \times$	$0.0618) \times$	$0.0569) \times$	0.3609×	0.1499)×	$0.2855) \times$
	10^{-8}	10^{-7}	10^{-6}	10^{-6}	10^{-5}	10^{-5}
14.0	$(2.1765 \pm$	$(8.7266 \pm$	$(8.2297 \pm$	$(49.2283 \pm$	$(19.0719 \pm$	$(33.7926 \pm$
	$0.0214) \times$	$0.0871) \times$	$0.0962) \times$	0.6055)×	$0.2460) \times$	$0.4494) \times$
	10^{-8}	10^{-7}	10^{-6}	10^{-6}	10^{-5}	10^{-5}
15.0	$(2.4989 \pm$	$(10.0179\pm$	$(9.0214 \pm$	$(56.5122 \pm$	$(21.8938\pm$	$(38.7926 \pm$
	$0.0249) \times$	$0.1062) \times$	$0.1127) \times$	0.7459)×	0.3043)×	0.5508)×
	10^{-8}	10^{-7}	10^{-6}	10^{-6}	10^{-5}	10^{-5}

ню удвоенного шума, которое характеризует крутизну склона линии нутации. Для рассматриваемого случая получили $\Delta f_s = 0.23$ Hz. Тогда, согласно (4), при $SNR = 4.1 \sigma_{nmr} = (0.3141 \pm 0.0025) \cdot 10^{-10}$ T/Hz^{1/2}.

В приведенном нами примере значение σ_{nmr} , так же как σ для КМОН в [1,9,10], получено в условиях высокой однородности магнитного поля. В большинстве случаев ЯМР-магнитометры применяются в условиях большого числа помех различного рода для измерений магнитных полей с высокой неоднородностью (не ниже 1%/сm). Линия нутации с $\Delta f_n = 1$ Hz при измерении таких полей не встречается. При использовании ЯМР-магнитометра для измерения слабых магнитных

полей внутри экранов Δf_n достигает значения 1 Hz и ниже [5,6]. Но, как уже было отмечено, в этих случаях ЯМР-магнитометры отличаются между собой только конструкционными особенностями.

Поэтому для каждой конструкции магнитометра с текущей жидкостью σ_{nmr} следует представлять в виде таблицы. В качестве примера в таблице приведены значения σ_{nmr} для многоканального магнитометра, разработанного нами для оценки магнитной обстановки в отсеках военного корабля. Измеренные вариации магнитного поля в отсеках корабля ЯМР-магнитометром при различных степенях неоднородности совпадают в пределах погрешности измерения с результатами регистрации этих вариаций измерителями магнитной индукции DX-160 и ПЗ-81-03.

На основании проведенных экспериментальных исследований можно сделать вывод, что предложенная авторами методика определения σ_{nmr} для ЯМР-магнитометров с текущей жидкостью отражает физические процессы при измерении параметров магнитного поля и учитывает все конструктивные особенности этих приборов.

Список литературы

- [1] Александров Е.Б., Вершовский А.К. // УФН. 2009. Т. 179. № 6. С. 605-637.
- [2] Fukuda R., Hirai A. // J. Phys. Soc. Japan. 2013. V. 81. N 6. P. 1499-1506.
- [3] Singer J.R. // J. Phys. E: Sci. Instr. 2012. V. 45. N 1. P. 104-108.
- [4] Жерновой А.И., Дьяченко С.В. // ЖТФ. 2015. Т. 85. В. 4. С. 118-122.
- [5] Давыдов В.В., Дудкин В.И., Карсеев А.Ю. // ЖТФ. 2015. Т. 85. В. 3. С. 138– 143.
- [6] Davydov V.V., Velichko E.N., Dudkin V.I., Karseev A.Yu. // Measurement Techniques. 2014. V. 57. Iss. 6. P. 684–689.
- [7] Grover T.K., Singer G.S. // J. Appl. Phys. 2012. V. 115. N 5. P. 938-940.
- [8] Habbach R.E., Battocletti J.S., Sances A.J., Bowman R.L., Kydravcev V.K. // Rev. Sci. Instr. 2009. V. 80. N 4. P. 428–434.
- [9] Давыдов В.В., Дудкин В.И., Карсеев А.Ю. // Письма в ЖТФ. 2014. Т. 40. В. 19. С. 96–104.
- [10] Александров Е.Б., Балабас В.М., Вершовский А.К., Пазгаев А.С. // ЖТФ. 2004. Т. 74. В. 6. С. 118–122.
- [11] Звежинский С.С., Парфенцев И.В. // Спецтехника и связь. 2009. № 3. С. 18–28.
- [12] Бородин П.М., Вологдин М.И, Москалев В.В., Морозов А.А. Ядерный магнитный резонанс. Л.: Изд-во Ленингр. ун-та, 1982. 344 с.