05

Термодинамическое моделирование упругих и тепловых свойств моносилицида кобальта

© А.А. Повзнер, А.Н. Филанович, Т.А. Ноговицына

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002 Екатеринбург, Россия e-mail: a.a.povzner@urfu.ru

(Поступило в Редакцию 29 июня 2015 г.)

В рамках самосогласованной термодинамической модели выполнены расчеты температурных зависимостей теплоемкости, коэффициента теплового расширения, модуля всестороннего сжатия, плотности, температуры Дебая и параметра Грюнайзена CoSi в интервале температур от 0 до 1400 К. Результаты расчетов находятся в хорошем согласии с имеющимися экспериментальными данными, а также позволяют предсказать поведение свойств CoSi в интервале температур, не изученном экспериментально. Показано, что моносилицид кобальта характеризуется значительным фононным ангармонизмом, который может быть обусловлен электрон-фононным взаимодействием, что необходимо учитывать при моделировании его термоэлектрических свойств.

Введение

Моносилицид кобальта CoSi является одним из наиболее перспективных материалов для создания термогенераторов. Это обусловлено как сравнительно высоким КПД термогенераторов, создаваемых на основе CoSi, так и подходящими для технологических приложений физико-химических и механических свойств этого соединения [1-3]. Однако при этом многие важные тепловые и упругие свойства CoSi изучены недостаточно. Так, экспериментальные данные по плотности CoSi ограничены значением при комнатной температуре, а экспериментальные данные по теплоемкости, упругим модулям и коэффициенту теплового расширения известны не во всем интервале температур [4-7]. В работе [7] путем совмещения расчетов в рамках теории функционала плотности (DFT) и модели Дебая были рассчитаны различные свойства CoSi как функции температуры и давления. Тем не менее результаты, представленные в [7] не дают количественного согласия с экспериментом. Последнее может быть обусловлено, в частности, тем, что в [7] использовалось квазигармоническое приближение, в рамках которого нельзя должным образом учесть эффекты, связанные с фононным ангармонизмом. В то же время, согласно нейтронографическим данным [8], фононные спектры моносилицидов железа и кобальта характеризуются аномально сильным ангармонизмом.

В настоящей работе развивается самосогласованная термодинамическая модель CoSi, позволяющая учесть влияние на тепловые свойства фононного ангармонизма. В рамках этой модели удается получить количественное согласие с имеющимся экспериментом и выполнить самосогласованное моделирование температурных зависимостей решеточных составляющих теплоемкости, модуля всестороннего сжатия, коэффициента теплового расширения и плотности CoSi для широкого интервала температур.

Описание модели

Самосогласованная термодинамическая модель, являющаяся обобщением модели Дебая, была ранее успешно использована для описания тепловых и упругих свойств моносилицида железа [9] и других материалов (см., например, [10]). Поскольку в настоящей работе рассматривается соединение, необходимо выполнить обобщение рассматриваемой модели. Очевидно, что спектр колебаний решетки СоSi, как и любого соединения, состоящего из атомов различной массы, содержит 3 акустические и 3n - 3 оптические моды, где n - число атомов в элементарной ячейке (в случае CoSi <math>n = 2). В настоящей работе, следуя [7,11], мы описываем решеточные колебания CoSi с помощью трех "эффективных" мод, каждая из которых двукратно вырождена.

Для того чтобы рассчитать термодинамические свойства, необходимо использовать две термодинамические функции: термодинамический потенциал Гиббса (ТДП) Ф, который зависит от температуры T и давления P, и свободную энергию Гельмгольца (СЭ) F, которая зависит от температуры T и молярного объема V. Очевидно, что интегральные представления для ТДП и СЭ имеют одинаковую форму и различаются только набором параметров. ТДП записывается в виде $\Phi = \Phi_0 + \Phi_{\rm ph}$, где $\Phi_0 = \Phi_0(P)$ — "постоянная" часть ТДП, не зависящая от температуры и являющаяся функцией давления, а $\Phi_{\rm ph} = \Phi_{\rm ph}(\theta(P), T)$ — молярная решеточная (фононная) часть ТДП, отражающая вклад акустических колебаний кристаллической решетки твердого тела:

$$\Phi_{\rm ph} = 3nR \left(\frac{3}{8}\theta + T\phi(z)\right),\tag{1}$$

где $z = \theta/T$ — обратная приведенная температура, $\phi(z) = \ln(1 - e^{-z}) - D(z)/3$ (d(z) — стандартная табулированная функция Дебая), а θ — температура Дебая, которая выражается через молярный объем V и модуль всестороннего сжатия В

$$\theta = \frac{\hbar}{k_{\rm B}} (6\pi^2 n N_{\rm A})^{1/2} \sqrt{\frac{3}{n\mu'}} \Xi^{1/2} B^{1/2} v^{1/6}, \qquad (2)$$

где \hbar , N_A , k_B — постоянные Планка, Авогадро и Больцмана соответственно; $\Xi(\sigma)$ — функция, зависящая от коэффициента Пуассона σ ; μ' — молярная масса, которая отвечает за массу колеблющихся атомов. Поскольку здесь рассматриваются "эффективные" дебаевские моды, в качестве значения μ' , следуя [11], мы используем среднюю молярную массу, $\mu' = (\mu_{\rm Co} + \mu_{\rm Si})/2 = 0.04351$ kg/mol.

Из выражения для температуры Дебая θ следует, что она зависит от молярного объема V(T) и модуля всестороннего сжатия (MBC) B(T), для которых, согласно термодинамическим определениям, получаем выражения

$$V(T) = \left(\frac{\partial \Phi}{\partial P}\right)_T = V_0 - \frac{3nR\theta\gamma_\theta}{B}\left(\frac{3}{8} + \frac{D(z)}{z}\right), \quad (3)$$

$$B(T) = V\left(\frac{\partial^2 F}{\partial V^2}\right)_T = B_0 + \frac{3nR}{V}$$
$$\times \left\{\frac{3}{8}\gamma_\theta^*\theta - T\left[\gamma_\theta^*C_{VR}(\theta/T) - \gamma_\theta^*D(\theta/T)\right]\right\}, \quad (4)$$

где V_0 и B_0 — объем и модуль всестороннего сжатия при T = 0 К.

Видно, что обе характеристики зависят от температуры T, вследствие чего сама температура Дебая θ является функцией температуры. Поскольку B и Vзависят от θ , изменение значения температуры Дебая θ приводит к изменению значений B и V, а также других вычисляемых упругих и тепловых характеристик. В свою очередь, моделирование значений рассматриваемых величин приводит к перенормировке массива значений температур Дебая θ . Последнее позволяет построить итерационную процедуру для самосогласованного расчета температурных зависимостей $\theta(T)$, V(T) и B(T), а также других тепловых свойств с учетом эффектов решеточного ангармонизма.

Так, для решеточной составляющей теплоемкости получаем выражение

$$C_{\rm ph}(T) = -T\frac{\partial^2 \Phi}{\partial T^2} = 3nR \left\{ C_{VR}(z) \left[1 - \frac{1}{z} \left(\frac{\partial \theta}{\partial T} \right)_p \right]^2 - T \left[\frac{3}{8} + \frac{D(z)}{z} \right] \left(\frac{\partial^2 \theta}{\partial T^2} \right)_p \right\},$$
(5)

где $C_{VR}(z)$ — стандартная дебаевская теплоемкость, нормированная на 3R.

Для молярного объемного коэффициента $\beta(T)$ теплового расширения (ОКТР) можно получить выражение

$$\beta(T) = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right) = -\frac{3nR\theta\gamma_{\theta}}{VB} \left\{ C_{VR}(z) \left[1 - \frac{T}{\theta} \left(\frac{\partial \theta}{\partial T} \right)_{P} \right] \right.$$
$$\times \frac{1}{\theta} + \left[\frac{3}{8} + \frac{D(z)}{z} \right] \\\times \left[\frac{1}{\theta} \left(\frac{\partial \theta}{\partial T} \right)_{P} + \frac{1}{\gamma_{\theta}} \left(\frac{\partial \gamma_{\theta}}{\partial T} \right)_{P} - \frac{1}{B} \left(\frac{\partial B}{\partial T} \right)_{P} \right] \right\}.$$
(6)

Фигурирующие в формулах выше величины γ_f и γ_f^* представляют собой обобщенные параметры Грюнайзена, которые для произвольной термодинамической величины f = f(T, V) при постоянных температуре и давлении определяются соотношениями

$$\gamma_f = \frac{V}{f} \left(\frac{\partial f}{\partial V}\right)_{TP}, \quad \gamma_f^* = \frac{V^2}{f} \left(\frac{\partial^2 f}{\partial V^2}\right)_{TP}.$$
 (7)

Параметрами модели выступают параметры Грюнайзена для начального (при T = 0 K) значения MBC и коэффициента Пуассона γ_{B0} , γ_{B0}^* , γ_{σ} , γ_{σ}^* , а также сам коэффициент Пуассона σ . Для последнего было получено значение $\sigma = 0.264$ из экспериментальных данных [4] по упругим модулям CoSi с использованием выражения

$$\sigma = \frac{1 - 2G/3B}{2 + 2G/3B},$$
(8)

где *G* — модуль сдвига.

Значения остальных параметров были получены из условия наилучшего согласия расчетных и экспериментальных данных: $\gamma_{B0} = -1.64$, $\gamma_{B0} = 0.07$, $\gamma_{\sigma} = 1.85$, $\gamma_{\sigma}^* = -1.81$.

Результаты и обсуждение

На рис. 1 приведены результаты расчета молярной теплоемкости CoSi в сопоставлении с имеющимися экспериментальными данными, а также расчетами, проведенными в [7]. Видно, что решеточная теплоемкость С_{*n*} проходит ниже экспериментальных точек, что указывает на существование дополнительных вкладов в теплоемкость CoSi, которые могут быть связаны как с влиянием электронной подсистемы, так и с особенностями фононного спектра CoSi (который включает в себя оптические моды) или с температурно-индуцированными дефектами. Также из рис. 1 можно видеть, что теплоемкость C_v , рассчитанная в настоящей работе при постоянном объеме (т.е. в гармоническом приближении), находится в хорошем согласии с C_v , полученной в [7], несмотря на то, что для температуры Дебая нами были получены значения, несколько более высокие, чем в [7] (см. рис. 2). При этом с возрастанием температуры наблюдается расхождение C_p и C_v , что связано с проявлением эффектов фононного ангармонизма.

Рис. 1. Температурная зависимость молярной теплоемкости CoSi: I — экспериментальные данные [5], 2 — результат расчета решеточной составляющей в настоящей работе, 3 — результат расчета теплоемкости C_v в настоящей работе при постоянном объеме (т. е. в гармоническом приближении), 4 — результат расчета теплоемкости C_v в работе [7].

Рис. 2. Температура Дебая СоSi: *1* — результат расчета температурной зависимости температуры Дебая в настоящей работе, *2* — результат расчета в работе [7].

На рис. 2 приводится сопоставление температурных зависимостей температуры Дебая, полученных в настоящей работе и в работе [7]. Из расчетов, выполненных в настоящей работе, следует, что CoSi обладает не только более высокими по сравнению с результатами [7] значениями температуры Дебая, но что более важно — более сильной температурной зависимостью. Это приводит к тому, что при 1350 К полученные в настоящей работе результаты "пересекают" значения [7]. Также следует отметить, что значение $\theta = 625$ К, полученное в [4] из данных по упругим модулям CoSi при низких температурах (см. рис. 3), находится в очень хорошем

Журнал технической физики, 2016, том 86, вып. 6

согласии с полученными нами значениями в этом интервале температур.

То же самое можно сказать и о температурной зависимости модуля всестороннего сжатия: как видно из рис. 3, при низких температурах зависимости B(T) в [7] и в настоящей работе выглядят похоже, однако начиная с температур ~ 1000 K, согласно настоящему расчету, MBC CoSi начинает сильнее изменяться с температурой, что связано с усилением ангармонических эффектов при высоких температурах.

На рис. 4 представлены результаты расчета коэффициента теплового расширения CoSi в сопоставлении с имеющимися экспериментальными данными, откуда можно видеть, что решеточная составляющая практически полностью описывает экспериментально наблюдаемую зависимость $\alpha(T)$, однако в области температур поряд-

Рис. 3. Модуль всестороннего сжатия CoSi: *1* — экспериментальные данные [4], *2* — результат расчета фононного вклада в настоящей работе, *3* — результат расчета фононного вклада в работе []7.

Рис. 4. Линейный коэффициент теплового расширения CoSi: *1* — экспериментальные данные [6], *2* — результат расчета фононного вклада в настоящей работе.

Рис. 5. Плотность СоSi: *1* — результат расчета в настоящей работе, *2* — по результатам работы [7], *3* — экспериментальные данные [5]. На вставке параметр Грюнайзена CoSi и FeSi: *1* — CoSi, *2* — FeSi.

ка 100-400 К присутствует некоторый дополнительный вклад в КТР, который может быть обусловлен электронфононным взаимодействием.

Как упоминалось выше, экспериментальные данные по плотности CoSi ограничены значением при T = 300 K, поэтому представляет интерес моделирование температурной зависимости этой важной характеристики результаты представлены на рис. 5. Авторами [7] был выполнен расчет температурной зависимости объема элементарной ячейки CoSi, данные которого в настоящей работе в целях сопоставления были переведены в температурную зависимость плотности путем нормировки на экспериментальное значение при $T = 300 \,\mathrm{K}$ (рис. 5). Можно видеть, что, как и в случае других свойств, отсутствие самосогласованного учета фононного ангармонизма приводит к более слабой зависимости плотности от температуры. На вставке рис. 5 показана рассчитанная температурная зависимость параметра Грюнайзена CoSi и моносилицида железа [9], для которого, исходя из определения, можно получить следующее выражение

$$\Gamma(T) = -\frac{\partial \ln \theta}{\partial \ln V} = -\frac{\partial \theta}{\partial \theta} \frac{V}{\partial V}$$
$$= -\frac{\partial \theta}{\partial \theta} \frac{\partial T}{\partial V} \frac{V}{\partial V \partial T} = -\frac{1}{\partial \beta} \frac{\partial \theta}{\partial T}.$$
(9)

Учитывая, что данный параметр является основной характеристикой степени фононного ангармонизма, можно видеть, что ангармонизм решеточных колебаний CoSi сложным образом зависит от температуры и при низких температурах принимает значение выше двух, что свойственно системам с достаточно сильным фононным ангармонизмом.

Заключение

Таким образом, моносилицид кобальта характеризуется значительным ангармонизмом кристаллической решетки, который приводит к дополнительным и заметным вкладам в температурные зависимости его тепловых и упругих свойств. Поскольку эти особенности связаны с электрон-фононным взаимодействием, постольку их учет необходим при количественно корректном моделировании термоэлектрических свойств CoSi, связанным с фононным увлечением.

Результаты были получены в рамках государственного задания министерства образования и науки Российской Федерации, контракт 3.1236.2014/К.

Список литературы

- Fedorov M.I., Zaitsev V.K. // In Thermoelectric Handbook. Macro to Nano / Ed. by D.M. Rowe, CRC. Boca Raton, London, N.Y. Taylor & Francis. 2005. P. 31-1–31-19.
- [2] Skoug E., Zhou C., Pei Y., Morelli D.T. // Appl. Phys. Lett. 2009. Vol. 94. P. 022 115.
- [3] Pan Z.J., Zhang L.T., Wu J.S. // J. Appl. Phys. 2007. Vol. 101.
 P. 033 715.
- [4] Petrova A.E., Krasnorussky V.N., Shikov A.A., et al. // Phys. Rev. B. 2010. Vol. 82. P. 155 124.
- [5] Гельд П.В., Сидоренко Ф.А. Силициды переходных металлов четвертого периода. М.: Металлургия, 1991. 584 с.
- [6] Кренцис Р.П., Андреева Л.П., Гельд П.В. и др. // Известия вузов. Физика. 1972. С. 153.
- [7] Liu Yong, Li Shi-Na, Wang Zhi-Zhou // Physica. B. 2012.
 Vol. 407. P. 4700-4705.
- [8] Delaire O., Marty K., Stone M.B. et al. // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108. N 12. P. 4725–4730.
- [9] Povzner A.A., Filanovich A.N. // Physica. B. 2015. Vol. 456.
 P. 371–374.
- [10] Filanovich A.N., Povzner A.A. // J. Nucl. Mater. 2013. Vol. 437. P. 102–106.
- [11] Lu Xiao-Gang, Selleby M., Sundman Bo // Acta Materialia. 2007. Vol. 55. P. 1215–1226.