19,10

Теплопроводность кристалла Na₂W₂O₇

© П.А. Попов¹, С.А. Скробов¹, Н.В. Митрошенков¹, В.Н. Шлегель², В.Д. Григорьева²

 ¹ Брянский государственный университет им. акад. И.Г. Петровского, Брянск, Россия
² Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия

E-mail: tfbgubry@mail.ru

(Поступила в Редакцию 16 декабря 2015 г. В окончательной редакции 18 февраля 2016 г.)

В интервале температур 50-573 К экспериментально исследована теплопроводность монокристалла Na₂W₂O₇ вдоль основных кристаллографических направлений. Выявленная низкая теплопроводность коррелирует с большим различием катионов по массе.

Работа выполнена с использованием оборудования Центров коллективного пользования Брянского государственного университета им. акад. И.Г. Петровского и Института неорганической химии им. А.В. Николаева СО РАН в рамках выполнения госзадания № 3.105.2014/К.

1. Введение

Двойной вольфрамат натрия Na₂W₂O₇ (пр. гр. *Стса*, a = 7.22 Å, b = 11.9 Å, c = 14.7 Å, Z = 8) кристаллизуется в виде псевдогексагональных призм (комбинации пинакоида {100} и ромбической призмы {110}), вытянутых вдоль направления [001]) [1–3], соединение плавится конгруэнтно при $T_m = 1011$ К.

Кристалл Na₂W₂O₇ был впервые выращен в 2009 г. методом Бриджмена в China Jiliang University [4]. Был получен кристалл небольшого размера, на элементе $14 \times 7 \times 6$ mm измерены сцинтилляционные свойства. Световыход у Na₂W₂O₇ оказался почти в 2 раза выше, чем в случае кристалла-сцинтиллятора PbWO₄ [4].

Теплопроводность является важной физической характеристикой кристалла, определяющей возможности его применения в качестве оптического материала и, особенно, в качестве лазерного. Кроме того, вследствие существенной зависимости этой величины от особенностей кристаллической структуры ее можно отнести к структурным характеристикам материала. Априорные оценки теплопроводности кристаллической матрицы, обладающей невысокой симметрией структуры, как минимум, ненадежны. Литературных данных о теплопроводности кристалла Na₂W₂O₇ мы не обнаружили. Поэтому экспериментальное определение теплопроводности этого соединения в широком интервале температур представляет практический и научный интерес.

Целью настоящей работы является экспериментальное исследование возможных особенностей поведения температурной зависимости теплопроводности кристалла $Na_2W_2O_7$ и ее анизотропии в широкой температурной области. Объектом исследования служил номинально чистый монокристалл $Na_2W_2O_7$.

2. Эксперимент

В качестве исходных веществ использовались Na₂CO₃ квалификации осч 5-4 (ТУ 6-093-588-78) и высокочистый WO₃, полученный в лаборатории роста кристаллов ИНХ СО РАН. Результаты количественного химического анализа WO₃ на содержание примесей приведены в таблице. Для анализа использовался химико-атомно-эмиссионный спектральный метод с концентрированием примесей отгонкой основы пробы в виде оксохлоридов. Аппаратура — дуга постоянного тока, спектрограф PGS-2. Погрешность определения концентраций характеризуется относительным стандартным отклонением 0.2–0.3.

Перед процессом роста исходные реактивы выдерживались в сушильном шкафу при 473 К в течение суток

Результаты химического анализа WO₃ (в скобках указан предел обнаружения)

Элемент	Содержание **, wt%
Ag, Be	$_{\rm H/o}(1\cdot10^{-7})$
Al	$3 \cdot 10^{-6}$
Ba	н/о (1 · 10 ⁻⁵)
Ca	$2 \cdot 10^{-5}$
Со	н/о $(2 \cdot 10^{-6})$
Cr	$5 \cdot 10^{-6}$
Cu*	н/о $(2 \cdot 10^{-7})$
Mg	$4\cdot 10^{-6}$
Mn	$2 \cdot 10^{-7}$
Ni	н/о $(2 \cdot 10^{-5})$
Р	$3 \cdot 10^{-4}$
Pt	н/о (4 · 10 ⁻⁶)

* Предел обнаружения ограничен контрольным опытом.

** В том случае, если содержание элемента ниже предела обнаружения, используется обозначение н/о (не обнаружен).

Рис. 1. Рентгенофазовый анализ Na₂W₂O₇. *а* — эталонный спектр, *b* — спектр, полученный при анализе.

Рис. 2. Температурная зависимость теплопроводности кристалла $Na_2W_2O_7$ вдоль кристаллографических направлений [100] (1), [010] (2) и [001] (3).

для удаления остатков влаги. Твердофазный синтез соединения $Na_2W_2O_7$ из тщательно перемешанных исходных веществ (Na_2CO_3 и WO_3) проводился в муфельной печи с двумя этапами выдержки при 823 и 923 К в течение 8 и 12 h соответственно. Состав полученного спека контролировался при помощи рентгенофазового анализа (рис. 1).

Выращивание кристаллов $Na_2W_2O_7$ проводилось низкоградиентным методом Чохральского, скорость кристаллизации составляла 1.5–2.5 mm/h. Длина полученных кристаллов составляла до 60 mm при диаметре 30 mm. Процесс выращивания описан в [5].

В интервале температур 50–300 К теплопроводность k(T) измерялась методом стационарного продольного потока. Три образца для измерений представляли собой параллелепипеды с размерами, мало отличающимися от $8 \times 8 \times 20$ mm. Длинные оси параллелепипедов совпа-

Физика твердого тела, 2016, том 58, вып. 8

дали с направлением кристаллографических осей [100], [010] или [001]. Соответствующая аппаратура и методика измерений описаны в [6]. Для обеспечения плоской формы изотермических поверхностей резистивный нагреватель проклеивался по торцевой поверхности образца. Погрешность определения величины теплопроводности в интервале 50–300 К не превышала ±6%.

Для измерений теплопроводности в высокотемпературной области 323-573 К использовалась установка ИТ λ -400 с точностью результатов не хуже $\pm 10\%$. Образцы в этом случае имели форму дисков диаметром 15 mm и толщиной около 5 mm.

На рис. 2 приведены экспериментальные температурные зависимости теплопроводности k(T) кристалла Na₂W₂O₇. Особенность полученных результатов состоит в том, что величина теплопроводности исследованного нелегированного кристалла является сравнительно низкой. При T = 300 K значения теплопроводности составили 3.20 ± 0.19 , 1.49 ± 0.09 и 1.43 ± 0.09 W/(m · K) для кристаллографических направлений [100], [010] и [001] соответственно.

Слабой является и температурная зависимость теплопроводности k(T). Анизотропия теплопроводности этого соединения характерна для кристаллов с более высокой симметрией решетки: кристаллографические направления [010] и [001] в отношении теплопроводности различаются слабо, но существенно уступают по этому параметру направлению [100].

3. Обсуждение результатов

В рамках фононной модели теплопереноса величина теплопроводности определяется теплоемкостью C единицы объема, средней скоростью v распространения фононов (звука) и их средней длиной l свободного пробега: k = Cvl/3 [7]. Мы рассчитали температурную зависимость l(T) для образца с ориентацией [001], использовав калориметрические данные [8,9] и приняв v = 3 km/s.

Полученная зависимость l(T) приведена на рис. 3. Величина l во всем исследованном температурном интервале изменяется немногим более чем на два порядка. При увеличении температуры выше комнатной значение l опускается ниже значений параметров элементарной ячейки кристалла. При T = 573 К величина l оказалась равной удвоенному междоузельному расстоянию в данном соединении: $l = 2l_0 = 4.86$ Å. Поскольку в этой температурной области все еще продолжается снижение l по закону $l \propto T^{-0.3}$, следует ожидать немногим более низкого значения этой величины при повышении температуры до точки плавления (см. экстраполяцию штриховой линией на рис. 3).

В исследованном монокристалле $Na_2W_2O_7$ отсутствовали значительные количества неконтролируемых примесей, структурные дефекты и центры окраски (последнее свидетельствует об отсутствии существенных количеств ионов вольфрама в возможных состояниях со

Рис. 3. Температурная зависимость средней длины свободного пробега фононов вдоль оси [001] кристалла Na₂W₂O₇.

степенью окисления, меньшей +6). Учитывая эти обстоятельства и характер полученной зависимости l(T), в качестве обоснования сравнительно низкой теплопроводности данного соединения можно предложить следующее.

Присутствие в составе кристалла Na₂W₂O₇ значительно различающихся по массе ионов предполагает высокую степень ангармоничности тепловых колебаний решетки, что коррелирует с невысокими значениями температуры плавления и твердости. Ангармонизм колебаний связан с высокой эффективностью процессов фонон-фононного рассеяния. Кроме того, логично ожидать существенную долю оптических мод колебаний, вклад которых в теплопроводность обычно меньше, чем вклад акустических. Указанные факторы делают низкую теплопроводность кристалла Na₂W₂O₇ и слабость ее температурной зависимости предсказуемыми. Приблизительно такое же соотношение перечисленных характеристик и теплопроводности отмечено в случае кристаллов вольфрамата цинка ZnWO₄ [10] и ортогерманата висмута Bi₄Ge₃O₁₂ [11].

Выявленный вид анизотропии теплопроводности $Na_2W_2O_7$ при отсутствии данных об упругих характеристиках этого кристалла объяснить затруднительно.

Отметим только, что наиболее выгодное в плане теплопроводности кристаллографическое направление [100] в $Na_2W_2O_7$ соответствует параметру элементарной ячейки *a*, значительно уступающему двум другим параметрам (*b* и *c*).

4. Заключение

Таким образом, в результате экспериментального исследования определены температурные зависимости коэффициента теплопроводности монокристалла вольфрамата натрия $Na_2W_2O_7$ в основных кристаллографических направлениях. Практическое использование этого кристалла требует учета низких значений и существенной анизотропии его теплопроводности.

Список литературы

- K. Okada, H. Morikawa, F. Marumo, S. Iwai. Acta Cryst. B 31, 1200 (1975).
- [2] S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur. Phys. Status Solidi A 201, 588 (2004).
- [3] D.J. Jovanović, I.LJ. Validžić, M. Mitrič, J.M. Nedeljkovič. Bull. Mater. Sci. 36, 149 (2013).
- [4] Q. Wei, H. Shi, X. Cheng, L. Qin, G. Ren, K. Shu. J. Cryst. Growth 312, 1883 (2010).
- [5] T.A. Gavrilova, N.V. Ivannikova, V.N. Shlegel, V.D. Grigorieva, S.F. Solodovnikov, T.B. Bekker, V.V. Atuchin. Solid State Phenom. 213, 160 (2014).
- [6] N.N. Sirota, P.A. Popov, I.A. Ivanov. Cryst. Res. Technol. 27, 533 (1992).
- [7] R. Berman. Thermal conduction in solids. Clarendon Press, Oxford (1976). 206 р. [Р. Берман. Теплопроводность твердых тел. Мир, М. (1979). 286 с.].
- [8] W.W. Weller, K.K. Kelley. US Bur. Mines Rep. N 6191 (1961).
- [9] Sh. Liu, Q. Chen, P. Zhang. Thermochim. Acta. 371, 7 (2001).
- [10] П.А. Попов, С.А. Скробов, А.В. Матовников, Н.В. Митрошенков, В.Н. Шлегель, Ю.А. Боровлев. ФТТ 58, 827 (2016).
- [11] П.А. Попов, Н.В. Моисеев, В.Н. Шлегель, Н.В. Иванникова. ФТТ **52**, 1729 (2010).