10

Структура и динамика решетки кристаллов редкоземельных ферроборатов: *ab initio* расчет

© В.А. Чернышев¹, А.Е. Никифоров¹, В.П. Петров¹, А.В. Сердцев¹, М.А. Кащенко^{2,3}, С.А. Климин²

 ¹ Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия
 ² Институт спектроскопии РАН, Москва, Троицк, Россия
 ³ Московский физико-технический институт (Государственный университет), Долгопрудный, Россия
 E-mail: vchern@inbox.ru

(Поступила в Редакцию 5 февраля 2016 г.)

В рамках теории функционала плотности проведен *ab initio* расчет кристаллической структуры и фононного спектра кристаллов $RFe_3(BO_3)_4$ (R = Pr, Nd, Sm). Определены координаты ионов в элементарной ячейке, постоянные решетки, частоты и типы фундаментальных колебаний, а также интенсивности линий в спектрах комбинационного рассеяния и инфракрасного отражения. Рассчитаны упругие постоянные кристаллов. Для низкочастотной A_2 -моды в PrFe₃(BO₃)₄ определена "затравочная" частота колебания, сильно взаимодействующего с электронным возбуждением на ионе празеодима. Результаты расчета удовлетворительно согласуются с экспериментальными данными.

Работа выполнена при поддержке Министерства образования и науки РФ (проект № 3.571.2014/К), Правительства РФ (контракт № 02.А03.21.0006, постановление № 211) и Российского научного фонда (проект № 14-12-01033, КМА, КСА).

1. Введение

Материалы, используемые в лазерной технике, представляют собой сложные соединения с ионно-ковалентной химической связью, содержащие подрешетку либо примесные центры редкоземельных (РЗ) ионов. Первопринципные расчеты являются наиболее последовательным подходом для анализа связи "химический состав-структура-свойства" в этих соединениях. Однако реализация первопринципных подходов требует больших вычислительных (и человеческих) ресурсов. Поэтому требуется гибкий подход с использованием упрощений в схеме ab initio расчетов. В данной работе предлагается систематическое исследование структуры и динамики сложных соединений с подрешеткой РЗ-ионов с использованием псевдопотенциалов для описания внутренних оболочек редкоземельного иона. Расчеты проводятся в рамках теории функционала плотности с применением гибридных функционалов (B3LYP, РВЕ0), учитывающих как локальный, так и нелокальный (в формализме Хартри-Фока) обмен. Такие функционалы дают хороший результат для сложных систем с ионно-ковалентной связью [1].

В предыдущих работах было показано, что применение такого подхода — использование псевдопотенциала для описания внутренних оболочек РЗ-иона и расчет с использованием гибридных DFT-функционалов — дает хорошие результаты при описании структуры и динамики соединений с редкоземельной подрешеткой — R_2 Ti₂O₇(R =Gd-Lu) [2] и CsNaRF₆ (R =Y, Yb) [3].

В данной работе такой подход применяется к РЗ-ферроборатам $RFe_3(BO_3)_4$ (R = Pr, Nd, Sm), структура которых характеризуется пространственной группой R32 (ферробораты с R = Eu - Er, Y претерпевают структурный фазовый переход R32-P3121 при понижении температуры [4,5]). Магнитные и магнитоэлектрические свойства РЗ-ферроборатов интенсивно исследуются в различных лабораториях в течение последних десяти лет [4,6-11]. Исследование механизмов взаимодействия электрической и магнитной подсистем [8,12], а также спин-фононного и электрон-фононного взаимодействий [13-15] в ферроборатах приводит к необходимости изучения их фононных спектров. Спектры инфракрасного (ИК) отражения ферроборатов $RFe_3(BO_3)_4$ $(R = \Pr, Nd, Sm)$ и комбинационного рассеяния света (KPC) NdFe₃ $(BO_3)_4$, зарегистрированные при комнатной температуре, опубликованы в работах [16] и [17], соответственно. В спектре отражения ферробората празеодима была обнаружена связанная электрон-фононная мода [15], обусловленная сильным взаимодействием низкочастотных электронных возбуждений ионов Pr³⁺ с колебаниями решетки [18]. В связи со сказанным представляется актуальным провести первопринципный расчет решеточных колебаний.

В работе последовательно рассчитываются кристаллическая структура (в пространственной группе *R*32), затем фононный спектр с учетом LO–TO-расщепления. Степень участия иона в той или иной колебательной моде оценивается путем расчета с изотопическим замещением, а также из анализа векторов смещений. Для NdFe₃(BO₃)₄ проведено сравнение рассчитанных ИК- и КРС-спектров с измеренными. Поскольку рассчитанные спектры относятся к нулевой температуре, а имеющиеся в литературе экспериментальные данные — к комнатной, в работе было выполнено экспериментальное исследование низкотемпературных спектров КРС ферробората неодима.

2. Методическая часть

2.1. Методика расчетов. Расчеты проводились в рамках теории функционала плотности [19], с использованием обменно-корреляционного функционала B3LYP [20–22],

$$E_{xc}^{\text{B3LYP}} = (1-a)E_x^{\text{LSDA}} + aE_x^{\text{HF}} + bE_x^{\text{B88}}$$
$$+ (1-c)E_c^{\text{VWN}} + cE_c^{\text{LYP}}, \qquad (1)$$

содержащего локальные и нелокальные вклады. В выражении (1) E_x^{LSDA} — обменная энергия, рассчитанная в приближении локальной спиновой плотности, $E_r^{\rm HF}$ нелокальный вклад в обменную энергию в формализме Хартри-Фока, E_x^{B88} — вклад в обменную энергию, рассчитанный с учетом градиента электронной плотности, введенный Бекке [23]. *E*^{VWN} — корреляционная энергия однородного электронного газа, рассчитанная по формуле Воско-Уилка-Ньюсэ [24], Ес – корреляционный функционал Ли-Янга-Парра, учитывающий градиент электронной плотности. Весовые коэффициенты вкладов — а, b и c были подогнаны Бекке по энергетическим характеристикам большого ряда соединений [25]. Использование в течение ряда лет функционала ВЗЦҮР для расчета энергии электронов (зонной структуры), структуры и динамики кристаллической решетки показало хорошие результаты для систем с ионно-ковалентной связью [26-28].

Расчеты проводились в программе CRYSTAL14 [22], предназначенной для моделирования периодических структур в приближении МО ЛКАО.

Для описания внутренних оболочек редкоземельного иона, по 4f включительно, был использован нерелятивистский псевдопотенциал ECPnMHF ("Effective Core Pseudo-potential, Multielectron fit, Hartree Fock"), описывающий влияние *n* внутренних электронов на внешние оболочки. Соответственно для Pr, Nd и Sm были использованы псевдопотенциалы ECP48MHF, ECP49MHF и ECP51MHF [29]. Внешние 5s- и 5p-оболочки P3-иона описывались посредством валентного базисного набора [30].

Для Fe, B и O использовались полноэлектронные базисные наборы [31-33]. При замене оболочек P3-иона, вплоть до 4f, на псевдопотенциал, магнитные взаимодействия между P3-ионами и между P3-ионами и ионами железа не учитываются. Такое приближение при расчете структуры и динамики кристаллической решетки P3-ферроборатов представляется оправданным.

В работе [34] было показано, что температуры Нееля кристаллов GdFe₃(BO₃)₄ и YFe₃(BO₃)₄ фактически совпадают, поэтому можно полагать, что изменение энергии решетки при упорядочении магнитной подсистемы в основном определяется ионами железа. В расчетах задавалось высокоспиновое (S = 5/2) состояние ионов Fe³⁺ (заметим, что сходимость пробных расчетов при других спиновых состояниях железа была существенно хуже), что говорит в пользу слабого кристаллического поля. Магнитная подрешетка редкоземельных ферроборатов (в пространственной группе *R*32) имеет период по оси *z* вдвое больший, чем кристаллическая [35].

Для экономии компьютерных ресурсов кристаллическую ячейку по оси z не удваивали, поэтому антиферромагнитное упорядочение в подрешетке ионов Fe³⁺ не воспроизводилось. При моделировании магнитные моменты ионов железа были сонаправлены (по оси z); таким образом, моделировалось ферромагнитное состояние. Такой подход при моделировании структуры и динамики кристаллической решетки RFe₃(BO₃)₄ представляется возможным, поскольку вклад в энергию решетки, обусловленный антиферромагнитными обменными взаимодействиями между ионами Fe³⁺, относительно небольшой по сравнению со средней энергией фононов (температура Нееля, например, у PrFe₃(BO₃)₄ — 32 К [6]). Для проверки такого подхода в работе были проведены два пробных расчета для ферробората празеодима с удвоенной по оси z ячейкой, в одном из которых моделировалось антиферромагнитное, а в другом — ферромагнитное состояние. Расчеты показали, что тип магнитного упорядочения фактически не влияет на величину постоянных кристаллической решетки (различие в постоянных решетки в пределах 0.01 Å). При моделировании кристаллической структуры вычислялись постоянные решетки и координаты ионов в ячейке. Затем для полученной структуры рассчитывался фононный спектр, а также упругие модули.

При расчете упругих постоянных в программе CRYSTAL вычисляются вторые производные энергии ячейки по деформациям [22,36]

$$C_{ij} = \frac{1}{V} \left[\frac{\partial^2 E}{\partial \varepsilon_i \partial \varepsilon_j} \right]_0.$$
(2)

Первые производные вычисляются аналитически, вторые — численно: на кристаллическую ячейку накладывается деформация ε_i , кристаллическая структура при этом релаксирует. Частоты фононного спектра были рассчитаны в Г точке. В программе CRYSTAL фононный спектр рассчитывается в гармоническом приближении, при этом вычисляется динамическая матрица [37]. Первые производные по смещениям ионов находятся аналитически [37], вторые — численно. Смещения ионов при расчете вторых производных задавались равными 0.003 Å. Поскольку при моделировании кристаллической решетки используются периодические граничные условия, то для учета дальнодействующего

Таблица 1. Постоянные решетки $RFe_3(BO_3)_4$ (R = Pr, Nd, Sm), Å. В скобках приведены экспериментальные значения: Pr — [41], Nd — [43], Sm — [42]

	Pr	Nd	Sm
a = b	9.697(9.593)	9.688(9.578)	9.670(9.566)
c	7.747(7.621)	7.733(7.605)	7.706(7.589)

кулоновского взаимодействия при расчете LO-мод в динамическую матрицу добавляется неаналитический вклад [38], который зависит от тензора высокочастотной диэлектрической проницаемости ε_{∞} . Высокочастотная диэлектрическая проницаемость рассчитывалась в программе CRYSTAL предварительно (опция CPKS, расчет в рамках теории возмущений [39]). Расчет интенсивности ИК- и KPC-спектров в программе CRYSTAL [22] проводится с использованием зарядов Борна [40].

Для интегрирования в обратном пространстве применялась схема Монхорста—Пака с сеткой $8 \times 8 \times 8k$ -точек зоны Бриллюэна. Процедура расчета двухэлектронных интегралов (кулоновское и обменное взаимодействие) подробно описана в работе [37]. В результате расчета самосогласованного поля энергия определялась с точностью 10^{-10} Хартри.

2.2. Измерение низкотемпературных спектров КРС. Для измерения спектров КРС-была изготовлена ориентированная оптическим методом пластина, вырезанная таким образом, что оптическая ось монокристалла NdFe₃(BO₃)₄ находилась в плоскости пластины. Спектры КРС были измерены в геометрии сбора света под углом 180° , что позволяло измерить спектры в поляризационных геометриях zz (моды симметрии A_1) и zx (*E*-моды). Для получения низких температур был использован гелиевый проточный криостат.

3. Результаты и обсуждение

Структура $RFe_3(BO_3)_4$ (в пространственной группе R32) приведена на рис. 1. В данной работе используется декартова система координат, ось *z* направлена по оси C_3 , ось *x* — по оси C_2 . Кристаллическая структура содержит спиральные цепи октаэдров FeO₆, закрученные вокруг тригональной оси, а также прямые цепи призм RO_6 , нанизанные на тригональную ось [5,8]. Кроме того, в структуре можно выделить два типа треугольников BO₃. Один тип — равносторонние треугольники BO₃ — нанизаны на тригональную ось между призмами RO_6 , второй тип — равнобедренные треугольники находятся вне тригональной оси и связывают цепочки разного рода — RO_6 и FeO₆.

Результаты расчета кристаллической структуры приведены в табл. 1–3. Рассчитанные координаты ионов хорошо согласуются с экспериментальными данными по дифракции нейтронов для $PrFe_3(BO_3)_4$ [41] и SmFe_3(BO_3)_4 [42], а также с рентгеноструктурными данными для NdFe_3(BO_3)_4 [43]. Расчет предсказывает, что равнобедренный треугольник BO₃, связывающий искаженный октаэдр, в котором находится ион Fe³⁺, и группу RO₆, близок к равностороннему (табл. 3). Результаты расчета упругих модулей приве-

Таблица 2. Координаты ионов в ячейке *R*Fe₃(BO₃)₄, в долях постоянных решетки. В скобках приведены экспериментальные значения: Pr — [41], Nd — [43], Sm — [42]

		Pr		Nd				Sm		
(3a) <i>R</i>	0	0	0	0	0	0	0	0	0	
(9d) Fe	0.5511 (0.5510)	0	0	0.5509 (0.5511)	0	0	0.5507	0	0	
(3b) B1	0	0	0.5	0	0	0.5	0	0	0.5	
(9e) B2	0.4451 (0.4455)	0	0.5	0.4454 (0.4456)	0	0.5	0.4460	0	0.5	
(9e) O ₁	0.8569 (0.8546)	0	0.5	0.8568 (0.8557)	0	0.5	0.8568	0	0.5	
(9e) O ₂	0.5880 (0.5896)	0	0.5	0.5883 (0.5903)	0	0.5	0.5890	0	0.5	
(18f) O ₃	0.4500 (0.4515)	0.1425 (0.1447)	0.5211 (0.5194)	0.4500 (0.4540)	0.1429(0.1458)	0.5203 (0.5164)	0.4512	0.1437	0.5188	

Таблица 3. Длины связей, А. В скобках приведены экспериментальные значения: Pr — [41], Nd — [43], Sm — [42]

	Pr	Nd	Sm
$RE-O_3 \times 6$ (призма)	2.466 (2.410)	2.455 (2.403)	2.434 (2.384)
B1-O ₁ × 3 (равносторонний треугольник)	1.388 (1.395)	1.387 (1.382)	1.385
В2–О ₂ (равнобедренный треугольник)	1.385 (1.382)	1.384 (1.39)	1.382
B2-O ₃ × 2 (равнобедренный треугольник)	1.371 (1.369)	1.372 (1.374)	1.373
$Fe-O_1 \times 2$	2.063 (2.023)	2.061 (2.026)	2.076 (2.028)
$Fe-O_2 imes 2$ "октаэдр"	2.089 (2.052)	2.085 (2.044)	2.055 (2.035)
$Fe-O_3 \times 2$	1.973 (1.956)	1.975 (1.950)	1.979 (1.952)
Fe-Fe	3.231 (3.186)	3.228 (3.178)	3.220 (3.181)

Рис. 1. Кристаллическая структура *R*Fe₃(BO₃)₄ (пространственная группа *R*32). В1 — равносторонний, В2 — равнобедренный треугольники. Fe — октаэдры FeO₆. Темные кружки — РЗ-ионы.

дены в табл. 4. Экспериментальные данные по упругим постоянным для $PrFe_3(BO_3)_4$ в литературе отсутствуют. Можно отметить хорошее согласие с экспериментом для $NdFe_3(BO_3)_4$ [44]. При измерениях недиагонального элемента C_{14} было определено только абсолютное значение [44]. Согласно расчетам, величина C_{11} значительно больше других упругих постоянных, что согласуется с экспериментальными данными и говорит в пользу "каркасного" характера цепочек Fe—Fe в ферроборатах [41].

Рассчитаны частоты нормальных оптических колебаний $\Gamma = 7A_1 + 12A_2 + 19E$, а также относительные интенсивности линий КРС и силы осцилляторов ИК-активных мод (табл. 5, 6). Расчет предсказывает, что ИК-активные моды, для которых отсутствуют эксперименталь-

Таблица 4. Упругие постоянные *R*Fe₃(BO₃)₄, GPa. Экспериментальные данные приведены из работы [44]

	Pr		Nd	Sm		
	расчет	расчет	эксперимент	расчет	эксперимент	
C ₁₁	324	324	319	329	324	
C ₁₂	190	192	174	192	194	
C ₁₃	107	107	117	107	_	
C_{14}	-20	-22	29.6	-21	28.6	
C ₃₃	203	206	214	210	214	
C44	57	57	49	61	50.5	
C ₆₆	67	66	73	69	65	

ные данные, имеют фактически нулевую интенсивность. В табл. 6 приведены относительные интенсивности A_1 -мод в КРС (в процентах по отношению к самой интенсивной моде). Как видно из расчетов с изотопическим замещением, участие бора проявляется в высокочастотных модах (более ~ 700 cm⁻¹), при этом ионы железа и РЗ-ионы в них практически не участвуют.

В столбце "Участие ионов в колебаниях" (табл. 5,6) описаны типы колебаний согласно обозначениям, введенным в работах [17,45]. Буквами ν обозначены внутренние колебания групп ВО₃: ν_1 — симметричное валентное ("дышащая мода"), ν_2 — симметричное внеплоскостное деформационное, ν_3 — асимметричное валентное, ν_4 — асимметричное деформационное плоскостное. Верхний индекс в скобках у буквы ν обозначает тип группы ВО₃ ($\nu^{(1)}$ — В1О₃ "равносторонний треугольник", $\nu^{(2)}$ — В2О₃ "равнобедренный треугольник"). Трансляционные, ротационные, либрационные и деформационные колебания обозначены соответственно "Т", "Rot", "L"и "В" ("Bending").

Анализ векторов смещений, полученных из расчета, предсказывает, что в *E*-моде с частотой $576-578 \text{ cm}^{-1}$ (табл. 5) участвуют оба вида треугольников ВО₃. В низкочастотной A_2 -моде можно выделить существенные трансляции РЗ-иона. В низколежащей *E*-моде также участвуют трансляции РЗ-иона.

В работе также были проведены расчеты с изотопическим замещением (для $PrFe_3(BO_3)_4$), в которых в

Таблица	a 5.
r	
теримент 16], ТО	
50.3	1
195.0	1
_	2
258.5	2
299.3	4
364.7	3
384.8	3
678.3	6
738.1	7
767.8	7

Физика
твердого
тела,
2016,
том
58
вып.
ω

		2			27.1			9		
		Pr			Nd			Sm		
пеприводимое						1		1		Участие ионов в колебаниях
представление	ТО	Эксперимент	LO	ТО	Эксперимент	LO	ТО	Эксперимент	LO	
		[16], TO			[16], 10			[16], 10		
A_2	33.3 (16.6)	50.3	48.9	36.4 (13.7)	51.0 (4.75)	51.6	41.7 (10.3)	52.1	55.1	$T_{z}(R)$
(ИК)	153.2 (4.3)	166.1	174.5	154.4 (3.9)	166.3 (1.79)	173.9	156.8 (3.2)	164.6	172.8	$Rot(O2-Fe-O_1)$
	191.5 (0.3)	195.0	195.7	192.5 (0.37)	195.1 (0.77)	197.1	194.0 (0.28)	197.8	198.1	Tz(R), B(O2–Fe–O ₃)
	205.2 (0.02)	—	205.4	203.6 (0.01)	_	203.8	201.2 (0.4)	—	202.3	$T_{z}(R), T_{z}(B1), Rot(B1O_{3})$
	257.5 (2.8)	258.5	282.8	257.0 (2.8)	257.4 (2.84)	280.7	257.1 (2.8)	256.0	277.9	$T_z(B1), Rot(B1O_3)$
	305.1 (1.1)	299.3	433.4	301.5 (1.2)	298.5 (1.52)	432.9	295.7 (1.35)	292.1	433.3	$T_z(R), T_z(B1), Rot(B1O_3), Rot(B2O_3)$
	336.0 (0.81)	364.7	322.6	336.1 (0.76)	368.0 (1.02)	322.3	337.7 (0.72)	370.3	322.3	$T_z(R), T_z(B1), Rot(B1O_3)$
	370.0 (0.23)	384.8	363.4	371.9 (0.24)	391.6 (0.12)	364.3	375.2 (0.25)	398.0	366.4	$T_z(R), T_z(B1), Rot(B1O_3), Rot(B2O_3)$
	618.4 (0.00)	678.3	619.4	619.3 (0.00)	_	619.4	619.9 (0.00)	670.9	619.9	$ u_4^{(2)} $
	693.8 (0.64)	738.1	797.7	692.1 (0.64)	685.7 (0.60)	797.2	689.7 (0.67)	735.3	796.5	$\nu_2^{(2)}$
	754.4 (0.09)	767.8	738.5	753.2 (0.09)	738.1 (0.13)	737.6	751.1 (0.09)	765.1	735.9	$\nu_{2}^{(1)}$
	1265.1 (0.03)	1220.6	1271.6	1264.1 (0.03)	1218.6 (0.2)	1270.3	1262.7 (0.03)	1222.8	1268.3	$\nu_{3}^{(2)}$
Ε	86.7 (2.4)	85.6	94.5	86.4 (2.5)	85.1	94.3	85.1 (2.5)	85.1	93.1	$T_x, T_y(R)$
(ИК, КРС)	159.5 (0.01)	_	159.6	159.9 (0.01)	_	160.0	160.5 (0.01)	-	160.6	$B(O_1-Fe-O_1, O_1-Fe-O_2)$
	191.6 (0.32)	192.0	193.2	192.5 (0.27)	192.1	194.1	194.7 (0.46)	194.7	196.4	$T_x, T_y(B1), L(B2O_3)$
	238.9 (0.12)	230.4	239.4	238.0 (0.13)	230.7	238.7	237.2 (0.13)	229.7	238.0	T_x , $T_y(R)$, L(B1O ₃), L(B2O ₃)
	264.3 (1.1)	261.6	267.8	264.9 (0.92)	259.8	267.6	268.0 (0.74)	265.2	269.8	$L(B1O_3), L(B2O_3), T_x, T_y(B1)$
	272.9 (0.86)	272.6	281.4	273.2 (1)	272.4	282.6	274.7 (1.29)	279.2	285.3	$L(B1O_3), L(B2O_3), T_x, T_y(B1)$
	314.8 (2.3)	313.9	335.3	314.9 (2.3)	312.1	335.6	315.4 (2.17)	313.7	335.9	$T_x, T_y(R), T_x, T_y(B1), L(B1O_3), L(B2O_3)$
	348.5 (0.65)	386.8	357.4	348.9 (0.61)	372.2	357.6	348.0 (0.5)	382.3	355.4	$T_x, T_y(R), T_x, T_y(B1), L(B1O_3)$
	360.8 (0.02)	_	361.1	361.4 (0.01)	_	361.6	363.2 (0.16)	-	365.1	$T_x, T_y(R), T_x, T_y(B1), L(B2O_3)$
	373.8 (1.43)	393.5	476.3	374.4 (1.44)	389.6	476.2	376.2 (1.39)	409.0	476.1	$T_x, T_y(R), T_x, T_y(B1), L(B1O_3), L(B2O_3)$
	428.5 (0.02)	438.1	427.7	428.6 (0.01)	439.7	428.1	430.1 (0.00)	438.5	430.0	$T_x, T_y(R), T_x, T_y(B1), L(B1O_3), L(B2O_3)$
	576.1 (0.01)	576.8	577.2	576.7 (0.01)	576.0	577.7	578.4 (0.01)	576.5	579.4	$\nu_4^{(1,2)}$
	619.4 (0.00)	—	618.4	619.3 (0.00)	_	619.3	622.0 (0.00)	_	622.0	$ u_4^{(1)} $
	662.5 (0.05)	666.3	666.5	663.0 (0.05)	668.2	667.1	664.8 (0.05)	669.5	669.1	$ u_4^{(2)} $
	753.8 (0.02)	732.8	755.3	752.3 (0.02)	732.0	753.7	750.3 (0.02)	732.8	751.8	$\nu_{2}^{(2)}$
	968.8 (0.01)	965.2	969.4	968.7 (0.01)	968.2	969.1	968.9 (0.00)	979.5	969.2	$\nu_{1}^{(2)}$
	1159.6 (0.57)	1180.7	1178.7	1164.7 (0.6)	1184.4	1183.8	1173.4 (0.65)	1197.3	1192.4	$\nu_3^{(1)}$
	1196.2 (0.31)	1209.8	1237.9	1199.0 (0.29)	1215.1	1239.6	1203.5 (0.24)	1232.8	1242.5	$v_{3}^{(2)}$
	1289.2 (0.34)	1293.2	1397.8	1287.9 (0.34)	1284.8	1398.0	1285.9 (0.33)	1295.6	1398.7	$\nu_3^{(2)}$

Turr	Dr.	Nd	Sm	Экспе	римент	Участие ионов
1 /111	11	Nu	5111	300 K [17]	3 K*	в колебаниях
A_1	181 (40)	181 (40)	182 (38)	180 (28)	179.4 (18)	$L(B2O_3)$
(KPC)	291 (2)	293 (3)	297 (4)	298 (27)	298 (18)	$L(B2O_3), B(O_3-Fe-O_1)$
	462 (100)	463 (100)	464 (100)	473 (100)	478 (100)	$L(B2O_3)$
	643 (5)	644 (6)	646 (9)	636 (20)	637 (14)	$\nu_4^{(2)}$
	941 (26)	944 (25)	949 (21)	950 (13)	948.4 (9)	$\nu_1^{(1)}$
	990 (28)	989 (28)	989 (26)	990	_	$\nu_1^{(2)}$
	1204 (14)	1208 (13)	1213 (9)	1220 (32)	1221 (23)	$\nu_3^{(2)}$

Таблица 6. Частоты (сm⁻¹) и относительные интенсивности (в скобках, с учетом факторов заселенности) для КРС-активных фононных мод симметрии A_1 . Эксперимент: данные для NdFe₃(BO₃)₄

Примечание. * — настоящая работа

Таблица 7. Высокочастотная диэлектрическая проницаемость. В скобках приведены экспериментальные данные [16]

	Pr	Nd	Sm
$\varepsilon_{xx} = \varepsilon_{yy}$	4.1(4.1) 3.7(3.8)	4.1 3.7	4.1 3.6
$\mathcal{E}_{\infty z z}$	5.7 (5.8)	5.7	5.0

Таблица 8. Уровни энергии иона Pr^{3+} (мультиплет ${}^{3}H_{4}$) [9]

Тип	Энергия, cm $^{-1}$
Γ_2	0
Γ_1	48.5
Γ_3	192
Γ_3	275
Γ_3	500
Γ_1	560

матрице Гессе масса того или иного иона заменялась на массу соответствующего изотопа. Это дополнительно позволило выявить участие иона в колебательной моде. Как показывают такие расчеты, основное участие в низколежащих A_2 - и *E*-модах принимает P3ион. В A_2 -моде с частотой 153–156 сm⁻¹ колеблется, в основном, ион железа. Изменения частот колебаний в ряду Pr–Nd–Sm (табл. 5,6) незначительны. Это может быть объяснено следующим. В низкочастотных модах, где присутствуют трансляции P3-иона, в значительной степени также участвуют и другие ионы (Fe, B, O). Высокочастотные интенсивные моды обусловлены колебаниями групп BO₃, характеризующимися ковалентной связью и слабо связанными с P3-ионом. Таким образом, подтверждаются выводы, сделанные в работе [16].

Результаты расчета высокочастотной диэлектрической проницаемости ε_{∞} хорошо согласуются с экспериментом (табл. 7), что оправдывает пренебрежение вкладом 4f оболочек, которые были заменены в наших расчетах псевдопотенциалом, в электрическую поляризацию. Результаты расчета LO-мод приведены в табл. 5.

Можно отметить некоторое отличие рассчитанной частоты низколежащей A_2 -моды в $\Pr Fe_3(BO_3)_4$ от измеренной [16], что может быть объяснено электрон-фононным взаимодействием. В работе [15] рассматривалось взаимодействие электронных возбуждений празеодима с этой модой в рамках модели, предложенной в [18]. Расчет предсказывает фононную "затравочную" частоту моды при T = 0 К. Зависимость "затравочной" частоты моды от температуры, полученная в работе [15] из анализа экспериментальных данных ("линейное смягчение"), при T = 0 К дает $\omega_{TO} = 39.5$ и $\omega_{LO} = 52.1 \text{ cm}^{-1}$, что хорошо согласуется с вычисленными частотами 33.3 и 48.9 cm⁻¹ соответственно. Электронные возбуждения празеодима, частоты которых лежат в этом диапазоне, принадлежат мультиплету ${}^{3}H_{4}$ (табл. 8, приведены данные из работы [9]). Согласно правилам отбора (см., например, табл. S1 в [46]), возбуждение с частотой $48.5 \, \text{cm}^{-1}$, имеющее симметрию Γ_2 , может взаимодействовать с A_2 -колебанием, $\omega_{\rm TO} = 33.3 \, {\rm cm}^{-1}$. Электронные возбуждения симметрии Г₃ с частотами 192 и 275 cm⁻¹ могут взаимодействовать с *Е*-колебаниями $\omega_{\rm TO} = 191.6$ и $\omega_{\rm TO} = 272.9\,{\rm cm}^{-1}$ соответственно. Эти взаимодействия могли бы привести к различию между рассчитанными ("затравочными") значениями частот соответствующих фононных мод и экспериментальными. Однако такое различие наблюдается только для А2-моды, отвечающей трансляции РЗ-ионов относительно неподвижных остальных ионов в кристалле. Согласно расчетам, расстояние "РЗ-ион-лиганд" при колебаниях в этой моде изменяется в пределах 0.01 Å. Е-колебания с частотами $\omega_{\rm TO} = 191.6$ и $\omega_{\rm TO} = 272.9\,{\rm cm}^{-1}$ приводят к значительно меньшей модуляции расстояний между ионами празеодима и соседними ионами кислорода. Взаимодействие с этими модами оказывается несущественным. Отметим, что колебания в низколежащей Е-моде $(\sim 86\,\mathrm{cm}^{-1})$ сопровождаются изменениями расстояний "РЗ-ион-лиганд" в тех же пределах (0.01 Å), что и в моде А2, и можно ожидать проявлений взаимодействия этой моды с электронными Г₃-возбуждениями РЗ-иона. В PrFe₃(BO₃)₄ частота нижайшего электронного воз-

Рис. 2. Спектры КРС кристалла NdFe₃(BO₃)₄ в поляризации *zz* (A_1 -моды), (a) симулированный по результатам *ab initio* расчета и (b) экспериментальные при температурах 300 К (серая линия) и 3 К (черная линия). Звездочками помечены "лишние" спектральные линии (из другой поляризации, либо возникающие вследствие Ферми-резонанса [17]).

Рис. 3. Спектры ИК-отражения кристалла $NdFe_3(BO_3)_4$ для A_2 -мод: (*a*) симулированный по результатам *ab initio* расчета и (*b*) экспериментальный при температуре 300 К в поляризации E||c|(толстая серая линия); черная кривая — моделирование спектра методом дисперсионного анализа [16].

буждения симметрии Γ_3 лежит выше частоты *E*-фонона (192 cm⁻¹), а в NdFe₃(BO₃)₄ — ниже (65 cm⁻¹). Взаимное расталкивание этих взаимодействующих возбуждений (электронного Γ_3 и фононного *E*) приводит к существенно различному характеру температурного поведения *E*-моды в ферроборатах празеодима и неодима [14]. Кроме того, в NdFe₃(BO₃)₄ наблюдалась перекачка интенсивности из фононной *E*-моды в электронную [14].

На рис. 2, 3 приведены вычисленные спектры КРС и ИК-отражения для NdFe₃(BO₃)₄ в сравнении с результатами измерений. При моделировании спектров КРС ширины линий были взяты из эксперимента, а интегральные интенсивности — из расчета. Моделирование спектров ИК-отражения проводилось с использованием дисперсионной модели, оперирующей с рассчитанными значениями частот и сил осцилляторов и измеренными значениями постоянных затухания осцилляторов.

Наблюдается удовлетворительное согласие рассчитанных спектров с экспериментальными. Сравнение вычисленных и измеренных частот колебаний показывает, что для наибольшей части фононных мод наблюдаются отличия не более пяти процентов. В то же время есть несколько мод, для которых это отличие больше, что может быть связано как с трудностями конструирования псевдопотенциалов, особенно для РЗ-элементов, так и с тем, что в расчетах не учитывался ангармонизм колебаний, а в ферроборатах он может играть существенную роль [47]. Для интенсивностей согласие гораздо хуже. Причиной этого может быть ограниченная величина валентного базисного набора для РЗ-иона, обусловленная компромиссом между имеющимися компьютерными ресурсами и качеством расчетов.

Сравнение спектров КРС, измеренных при комнатной (300 K) и гелиевой (3 K) температурах, показывает, что сдвиги частот невелики (менее 1%). Это позволяет считать правомерным сравнение частот, рассчитанных для нулевой температуры и измеренных при 300 К. Что касается интенсивностей, то они заметно отличаются при изменении температуры от 300 до 3 K даже при учете фактора заселенности $(1 - \exp(-hv/kT))^{-1}$ [48] (см. табл. 7), что также может быть связано с ангармонизмом колебаний.

4. Заключение

В работе рассчитана пространственная структура кристаллов мультиферроиков $RFe_3(BO_3)_4$ (R = Pr, Nd, Sm). Определены координаты ионов в ячейке, расстояния Fe–O, B–O, R–O. Рассчитаны упругие постоянные, получено хорошее согласие с имеющимися экспериментальными данными. Ковалентная связь в треугольниках B–O, связывающих винтовые цепочки октаэдров, приводит к сильной анизотропии упругих свойств P3-ферроборатов.

Рассчитан фононный спектр с учетом LO–TO-расщепления, определены частоты и типы фононных мод. Результаты расчета удовлетворительно согласуются с экспериментальными данными. Показано, что в A_2 - и E-модах, взаимодействующих с электронными возбуждениями ионов празеодима в PrFe₃(BO₃)₄ [15] и неодима в NdFe₃(BO₃)₄ [14] соответственно, трансляции P3-иона существенно изменяют межионные расстояния, что объясняет формирование связанных электронфононных возбуждений.

Авторы благодарят М.Н. Попову за полезные замечания.

Список литературы

- I.I. Leonidov, V.P. Petrov, V.A. Chernyshev, A.E. Nikiforov, E.G. Vovkotrub, A.P. Tyutyunnik, V.G.Zubkov. J. Phys. Chem. C 118, 8090 (2014).
- [2] В.А. Чернышев, В.П. Петров, А.Е. Никифоров. ФТТ 57, 982 (2015).

- [3] В.А. Чернышев, В.П. Петров, А.Е. Никифоров, Д.О. Закирьянов. ФТТ 57, 1177 (2015).
- [4] Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, A. Alemi. J. Solid State Chem. **172**, 438 (2003).
- [5] S.A. Klimin, D. Fausti, A. Meetsma, L.N. Bezmaternykh, P.H.M. van Loosdrecht, T.T.M. Palstra. Acta Cryst. B 61, 481 (2005).
- [6] А.М. Кадомцева, Ю.В. Попов, Г.П. Воробьев, А.А. Мухин, В.Ю. Иванов, А.М. Кузьменко, Л.Н. Безматерных Письма в ЖЭТФ 87, 45 (2008).
- [7] Г.А. Звягина, К.Р. Жеков, А.А. Звягин, И.В. Билыч, Л.Н. Безматерных, И.А. Гудим. ФНТ 36, 4, 376 (2010).
- [8] Н.В. Костюченко, А.И. Попов, А.К. Звездин. ФТТ 54, 1493 (2012).
- [9] M.N. Popova, T.N. Stanislavchuk, B.Z. Malkin, L.N Bezmaternykh. Phys. Rev. B 80, 195 101 (2009).
- [10] А.П. Пятаков, А.К. Звездин. УФН 182, 6, 593 (2012).
- [11] А.К. Звездин, С.С. Кортов, А.М. Кадомцева, Г.П. Воробьев, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, Е.Н. Попова. Письма в ЖЭТФ 81, 6, 335 (2005).
- [12] А.В. Песчанский, А.В. Еременко, В.И. Фомин, Л.Н. Безматерных, И.А. Гудим. ФНТ 40, 2, 219 (2014).
- [13] K.N. Boldyrev, T.N. Stanislavchuk, S.A. Klimin, M.N. Popova, L.N. Bezmaternykh. Physics Letters A 376, 2562 (2012).
- [14] M.N. Popova, K.N. Boldyrev, S.A. Klimin, T.N. Stanislavchuk, A.A. Sirenko, L.N. Bezmaternykh. J. Magn. Magn. Mater. 383, 250 (2015).
- [15] K.N. Boldyrev, T.N. Stanislavchuk, A.A. Sirenko, L.N. Bezmaternykh, M.N. Popova Phys. Rev. B 90, 121 101 (2014).
- [16] К.Н. Болдырев, Д.А. Ерофеев. Оптика и спектроскопия 116, 948 (2014).
- [17] D. Fausti, A.A. Nugroho, P.H.M. Loosdrecht. S.A. Klimin, M.N. Popova, L.N. Bezmatrnykh. Phys. Rev. B 74, 024 403 (2006).
- [18] А.К. Купчиков, Б.З. Малкин, Д.А. Рзаев, А.И. Рыскин. ФТТ 24, 8, 2373 (1982).
- [19] В.Г. Цирельсон. Квантовая химия. Молекулы, молекулярные системы и твердые тела. Бином, М. (2010). 496 с.
- [20] A.D. Becke. J. Chem. Phys. 98, 5648 (1993)
- [21] P.L. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch. J. Phys. Chem. 98, 45, 11623 (1994).
- [22] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D'Arco, Y. Noel, M. Causa, M. Rerat, B. Kirtman. Int. J. Quantum Chem. 114, 1287 (2014).
- [23] A.D.Becke. Phys. Rev. A 38, 3098 (1988).
- [24] S.Y. Vosko, L. Wilk, M. Nusair. Can. J. Phys. 58, 1200 (1980).
- [25] M.W. Gill, B.G. Johnson, J.A. Pople, M.J. Frisch. Int. J. Quantum Chem. Symp. 26, 319 (1992).
- [26] Р.А. Эварестов, А.В. Бандура. Рос. хим. журн. LI, 5, 149 (2007).
- [27] J. Muscat, A. Wander, N.M. Harrison. Chem. Phys. Lett. 342, 397 (2001).
- [28] Р.А. Эварестов, А.В. Бандура, В.Е. Александров. ФТТ 47, 12, 2157 (2005).
- [29] M. Dolg, H. Stoll, A. Savin, H. Preuss. Theor. Chim. Acta. 75, 173 (1989).
- [30] Energy-consistent Pseudopotentials of the Stuttgart/Cologne Group. Электронный ресурс. Режим доступа: http://www.tc.uni-koeln.de/PP/clickpse.en.html
- [31] M.F. Peintinger, D. Vilela Oliveira, T. Bredow. J. Comput. Chem. 34, 451 (2013).

- [32] M. Catti, G. Valerio, R. Dovesi. Phys. Rev. B 51, 7441 (1995).
- [33] F. Cora. Mol. Phys. **103**, 2483 (2005).
- [34] А.И. Панкратц, Г.А. Петраковский, Л.Н. Безматерных, В.Л. Темеров. ФТТ 50, 1, 77 (2008).
- [35] А.К. Звездин, Г.П. Воробьев, А.М. Кадомцева, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, А.В. Кувардин, Е.А. Попова. Письма в ЖЭТФ 83, 11, 600 (2006).
- [36] P. Labeguerie, F. Pascale, M. Merawa, C. Zicovich-Wilson, N. Makhouki, R. Dovesi. Eur. Phys. J. B 43, 453 (2005).
- [37] F. Pascale, C.M. Zicovich-Wilson, F. Lopez Gejo, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem. 25, 888 (2004).
- [38] P. Umari, A. Pasquarello, A.D. Corso. Phys. Rev. B 63, 094 305 (2001).
- [39] R. Orlando, V. Lacivita, R. Bast, K. Ruud. J. Chem. Phys. 132, 244 106 (2010).
- [40] L. Maschio, B. Kirtman, R. Orlando, M. Rerat. J. Chem. Phys. 137, 204 113 (2012).
- [41] C. Ritter, A.I. Pankrats, A.A. Demidov, D.A. Velikanov, V.L. Temerov, I.A. Gudim. Phys. Rev. B 91, 134416 (2015).
- [42] C. Ritter, A. Pankrats, I. Gudim, A. Vorotynov. J. Phys: Condens. Matter. 91, 386 002 (2012).
- [43] J.A. Campa, C. Cascales, E. Gutierrez-Puebla, M.A. Monge, I. Rasines, C. Ru'z-Valero. Chem. Mater. 9, 237 (1997).
- [44] Т.Н. Гайдамак, И.А. Гудим, Г.А. Звягина, И.В. Билыч, Н.Г. Бурма, К.Р. Жеков, В.Д. Филь. ФНТ 41, 8, 792 (2015).
- [45] В.С. Кружаковская, Е.А. Добрецова, Е.Ю. Боровикова, В.В. Мальцев, Н.И. Леонюк. Журн. структур. химии 52, 4, 721 (2011).
- [46] Supplementary Material. Электронный ресурс. http://link.aps.org/supplemental/10.1103/PhysRevB.90.121101.
- [47] S.A. Klimin, A.B. Kuzmenko, M.A. Kashchenko, M.N. Popova. Phys. Rev. B 93, 054304 (2016).
- [48] М.М. Сущинский. Спектры комбинационного рассеяния молекул и кристаллов. Наука, М. (1969). 576 с.