07,14

Исследование сверхпрочных полимерных волокон калориметрическим методом

© В.М. Егоров, Ю.М. Бойко, В.А. Марихин, Л.П. Мясникова, Е.И. Радованова

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: victor egorov1@inbox.ru

(Поступила в Редакцию 27 января 2016 г.)

Методом дифференциальной сканирующей калориметрии проведены исследования реакторных порошков, ксерогелей, а также ориентированных до различных степеней вытяжки волокон сверхвысокомолекулярного полиэтилена. Показано, что более высокая прочность лабораторных волокон по сравнению с прочностью промышленных достигается за счет использования многоступенчатой зонной высокотемпературной вытяжки, приводящей к изменению термодинамических параметров надмолекулярной структуры полимера.

Получение высокопрочных и высокомодульных полимеров является крайне актуальной задачей в связи с непрерывно возрастающими требованиями к механическим свойствам материалов, используемых в различных конструкционных изделиях. При решении этой задачи высокопрочные и высокомодульные полимерные волокна на основе полиэтилена (PE) имеют преимущество перед другими материалами по ряду эксплуатационных свойств, прежде всего из-за своей низкой удельной плотности, высокой химической стойкости, биологической инертности. Кроме того, они могут быть использованы в качестве наполнителей в композиционных материалах.

В конце 80-х годов XX века фирмами DSM в Голландии и Honeywell в США был освоен в коммерческом масштабе выпуск волокон из сверхвысокомолекулярного РЕ с молекулярной массой более 10⁶ g/mol по принципиально новому методу, получившему название гель-технологии [1]. Этот метод позволил радикально улучшить комплекс физико-механических характеристик волокон из РЕ и увеличить значения разрывной прочности σ_p волокон в несколько раз (до 3 GPa). Следует отметить, что несмотря на то, что эти фирмы использовали в гель-процессе разные растворители (декалин — DSM и минеральное масло — Honeywell), анонсируемые ими механические характеристики были одни и те же. При этом за истекший период никакого прогресса в улучшении физико-механических свойств производимых волокон не наблюдалось. Дальнейшее существенное повышение физико-механических характеристик волокон, получаемых по методу гель-технологии, возможно, по-видимому, только на основании глубокого анализа процессов, происходящих на каждой стадии получения волокна. Кроме того, представлялось важным выяснить, какую роль играет выбор растворителя, поскольку молекулы декалина и минерального масла имеют разную геометрическую форму, что, повидимому, должно сказаться на протекании процесса ориентационной вытяжки. В ФТИ им. А.Ф. Иоффе РАН

(Санкт-Петербург) в лабораторных условиях при осуществлении процесса ориентационной вытяжки на основе разработанных структурно-кинетических принципов упрочнения для сверхориентированных нитей из гелей РЕ достигнуты средние значения разрывной прочности 4.7 GPa (около 6% образцов имели значения прочности до 6.0 GPa) [2]. В связи с этим значительный интерес представляют данные о теплофизических свойствах этих ультраориентированных нитей РЕ, реализуемых на каждом этапе многоступенчатого гель-технологического процесса.

В настоящей работе исследовались теплофизические характеристики различных образцов:

I — исходного насцентного порошка PE со средневязкостной молекулярной массой $M_w = 3 \cdot 10^6$;

II — пленок ксерогелей (IIa — ксерогель на основе 1% раствора в минеральном масле и IIb — ксерогель на основе 1.5% раствора в декалине);

III — пленочных нитей с разной степенью вытяжки (IIIa и IIIb), полученных путем многоступенчатого зонного ориентационного упрочнения на локальных нагревателях [3] из ксерогелей IIa и IIb соответственно;

IV — волокон с разной степенью вытяжки, полученных по методу гель-технологии из реакторного порошка РЕ с такой же молекулярной массой на экспериментальной промышленной установке в ФГУП ВНИИСВ (Тверь). В качестве растворителя использовалось вазелиновое масло.

Перечисленные выше образцы исследовались на калориметре DSC-2 Perkin—Elmer при варьировании скоростей нагревания V от 0.3 до 5 К/тіп. Температурная шкала калибровалась по точкам плавления льда (273.1 К) и индия (429.7 К), шкала теплового потока — по теплоемкости сапфира, а величину теплового эффекта, определяемого по площади на кривой DSC,— по энтальпии плавления индия ($\Delta H_f = 6.80$ cal/g).

Измерения теплофизических характеристик на приборах DSC ввиду отсутствия видимых методических погрешностей могут показаться достаточно простыми. В действительности они и являются таковыми, если ограничиться определением только энергетических эффектов, т.е. изменением энтальпии образца ΔH , поскольку такие параметры, как масса образца, скорость сканирования и термический контакт образца с капсулой, на величину ΔH не влияют. Однако при определении истинных температурных характеристих (T_{tr}) тепловых эффектов возникают методические сложности. Эти сложности обусловлены необходимостью учета и устранения так называемого эффекта термосопротивления образца в капсуле, т.е. неоднородного нагрева или охлаждения всего образца до температуры капсулы, которая фиксируется прибором (Texp). Без учета этого эффекта ошибка в определении температурных характеристик по кривой DSC тем выше, чем больше масса исследуемого образца и скорость сканирования. При исследовании насцентных порошков РЕ дополнительный вклад в термосопротивление вносит плохой контакт образца с капсулой, поскольку реакторные порошки состоят из пористых частиц сферической формы и имеют лишь точечный контакт с плоской поверхностью нагревательной ячейки.

Для материалов, в которых в процессе сканирования по температуре отсутствуют структурные превращения, можно учесть эти методические факторы. Показано [4], что ошибка в определении истинных температур по кривым DSC $\Delta T = T_{exp} - T_{tr}$ пропорциональна скорости сканирования V, массе образца m и термическому сопротивлению R по соотношению $\Delta R \sim (m^*R^*V)^{1/2}$. Следовательно, при постоянном R и образцах одинаковой массы ожидается линейная зависимость $\Delta T (V^{1/2})$. При $V \rightarrow 0$ разность $\Delta T \rightarrow 0$ и $T_{exp} \rightarrow T_{tr}$ и экстраполяция линейной зависимости $T_{exp}(V^{1/2})$ к нулевой скорости сканирования дает значение T_{tr} .

Из-за существенного увеличения трудоемкости подобные исследования проводятся крайне редко, и поэтому большинство опубликованных данных, в том числе для насцентных порошков и волокон РЕ, должно быть скорректировано. В настоящей работе калориметрические исследования плавления порошков и волокон проводились при нагревании с варьированием скоростей от 0.3 до 5-10 K/min. Сканирование по температуре при охлаждении из расплава, т.е. фиксации процесса кристаллизации, не проводилось, поскольку плавление "стирает" все особенности исследуемой исходной структуры порошка и волокон.

На рис. 1 представлены кривые DSC, полученные при нагревании серии образцов насцентного порошка PE одинакового веса (6 mg). Видно, что кривые для одного материала, полученные при разной скорости сканирования, сильно различаются, и соответственно различны экспериментальные температурные характеристики пика плавления: T_1 , T_{max} и T_2 . Расчет энтальпии плавления образцов по этим кривым DSC дает постоянное в пределах погрешности 1.5% измерения площади кривой и веса образца значение $\Delta H = 206$ J/g. Определенная по полученному значению энтальпии плавле-

Рис. 1. Кривые DSC, полученные при нагревании с различной скоростью образцов I одинаковой массы (6 mg). *V*, K/min: *I* — 0.31, *2* — 0.62, *3* — 1.25, *4* — 2.5, *5* — 5, *6* — 10.

Рис. 2. Зависимости температурных параметров пика плавления T_1 (1), T_{max} (2) и T_2 (3) образцов I одинаковой массы (6 mg) от скорости нагревания V.

ния степень кристалличности $\chi = (\Delta H / \Delta H^0) \cdot 100\%$ (где $\Delta H^0 = 290 \text{ J/g [5]})$ составила величину $\gamma = 70\%$.

Для определения истинных температурных параметров пика плавления необходимо построить зависимости $T_1(V^{1/2})$, $T_{\max}(V^{1/2})$, $T_2(V^{1/2})$ и в случае их линейности проэкстраполировать к нулевой скорости нагревания. Такие зависимости приведены на рис. 2. Видно, что экспериментальные точки для зависимостей $T_1(V^{1/2})$, $T_{\max}(V^{1/2})$ и $T_2(V^{1/2})$ ложатся на прямые 1-3, а экстраполяция их к нулевой скорости нагревания дает истинные температуры T_1 , T_{\max} и T_2 , значения которых приведены в таблице. Отметим, что наклон прямых при этом определяется массой образца и величиной R, которые в нашем опыте оставались постоянными.

Номер образца	λ	<i>T</i> ₁ , K	T _{max} , K	<i>T</i> ₂ , K	ΔT , K	ν	L, nm	ΔH , J/g	χ, %
Ι	_	411.6	412.6	413.6	2.0	175	21	206	70
IIa	_	405.6	407.5	408.4	2.8	120	15	219	75
IIb	_	407.0	408.2	408.9	1.9	180	22	218	75
IIIa	9	412.3	412.7	413.0	0.7	500	62	202	69
IIIa	45	415.0	415.2	415.3	0.3	1170	145	205	70
IIIa	95	415.55	415.55	415.45	0.1	3500	435	256	87
IIIa	170	415.25	415.20	415.17	0.08	4400	540	262	90
IIIb	13	412.9	413.2	413.5	0.6	580	72	220	76
IIIb	45	413.9	414.1	414.3	0.4	870	108	220	76
IIIb	100	415.05	415.1	415.15	0.1	3500	435	255	87
IV	32	416.1	416.5	416.9	0.8	442	55	220	76
IV	41	415.8	416.5	417	1.2	295	36	228	78
IV	82	415.9	416.3	417	1.1	320	40	224	77
IV	84	416.2	416.5	417	0.8	440	55	254	87

Термодинамические параметры пика плавления исследованных образцов

Данные DSC использовались для оценки еще одной характеристики надмолекулярной структуры полимеров — параметра внутрицепной кооперативности плавления (ν) , физический смысл которого состоит в том, что он определяет минимальную последовательность из ν повторяющихся звеньев в цепи, переходящих как целое из кристаллита в свернутое состояние статистического клубка в расплаве [6,7]. Оценка ν производилась по формуле

$$\nu = 2\mathcal{R}(T_{\rm max})^2 / \Delta T \Delta H^0$$
,

где \mathscr{R} — газовая постоянная. Безразмерный параметр v выражается числом CH₂-групп в транс-участке цепи PE, одновременно участвующих в акте плавления. Если умножить v на длину единичной связи C–C (размер проекции C–C-связи основной цепи на ось макромолекулы h = 0.124 nm), то этот параметр L = vh можно со-поставлять с параметрами надмолекулярной структуры, в том числе с размерами ламелярных образований [8]. Для образцов реакторного порошка величина L, определенная по полученным значениям параметра кооперативности v, равна 21 nm и сопоставима с толщиной ламелярных кристаллов.

Подобные серии кривых DSC были получены для образцов ксерогеля, приготовленных с помощью минерального масла (IIa) и декалина (IIb). Для определения истинных температурных параметров пика плавления по этим кривым также были построены зависимости $T_1(V^{1/2})$, $T_{\max}(V^{1/2})$, $T_2(V^{1/2})$, а экстраполяция их к нулевой скорости нагревания позволила определить истинные температуры T_1 , T_{\max} и T_2 . Значения истинных температуры T_1 , T_{\max} и T_2 . Значения истинных температур T_1 , T_{\max} , T_2 , энтальпия плавления ΔH , степень кристалличности χ , толщина ламелярных кристаллов, определенная по полученным значениям параметра кооперативности ν , для образцов ксерогелей IIa и IIb представлены в таблице.

Сравнение приведенных в таблице данных для насцентного порошка и ксерогелей демонстрирует кажущееся противоречие: температура плавления насцентного порошка выше, а степень кристалличности ниже, чем у ксерогелей. Объясняется это кажущееся противоречие различием надмолекулярной структуры. В реакторном порошке существенную долю объема могут занимать фибриллярные образования, в то время как в ксерогелях преобладают ламелярные образования. При наличии фибриллярных структур плавление ламелей затруднено из-за относительно большого количества проходных молекул, которые связывают между собой ламели и препятствуют их переходу в неупорядоченное состояние при плавлении. В модельных экспериментах [9] на предельно ориентированных волокнах РЕ показано, что такое препятствие приводит к повышению температуры плавления. Различие же в степени кристалличности объясняется разными условиями формирования надмолекулярной структуры. При синтезе порошка в реакторе условия формирования структуры более неравновесные, чем при изготовлении ксерогеля. Из сравнительной оценки теплофизических параметров ксерогелей из декалина и минерального масла следует, что первые более совершенны. Несмотря на то что они имеют одну и ту же степень кристалличности (75%), у ксерогеля из декалина температура плавления выше, параметр кооперативности плавления больше, а ширина пика плавления меньше, чем у ксерогеля из минерального масла.

Исследование методом DSC термодинамических характеристик образцов волокон и пленочных нитей сопряжено с рядом дополнительных методических сложностей. В частности, использование "массивных" образцов весом 1-5 mg (длина одного волокна составляет величину $\sim 1 \text{ m}$) приводит при укладке образца в капсулу к резкому возрастанию термосопротивления R и увеличению ошибки ΔT . Даже при использовании в качестве образцов небольших отрезков волокна ($\sim 5 \text{ mm}$) наблюдается разброс от образца к образцу температурных параметров пика плавления (рис. 3), что при одинаковой

Рис. 3. Зависимость T_{max} пика плавления от скорости нагревания образцов IV ($\lambda = 82$) массой ~ 0.05 mg в теплопроводящей среде (сплав Вуда) и без теплопроводящей среды (обозначены крестиками).

Рис. 4. Кривые DSC образцов IIa (1) и IIIb (2–5), полученные при нагревании (V = 5 K/min). Вытяжка $\lambda = 9$ (2) 43 (3), 95 (4), 170 (5).

массе образцов указывает на переменность *R*. Значительно уменьшить и стабилизировать термосопротивление позволяет использование дополнительной теплопроводящей среды между образцом и капсулой. С этой целью использовались сплавы Вуда с регулируемой температурой плавления, которая была ниже температуры плавления волокна. Помещая отрезок волокна размером $\sim 5 \text{ mm}$ в фольгу из сплава Вуда, мы при нагревании последовательно плавим фольгу (образец оказывается внутри металлической жидкости с высокой теплопроводностью) и волокно. Как видно из рис. 3, температура плавления волокна в этом случае оказывается минимальной при всех использованных скоростях нагревания, а экспериментальные точки для зависимости $T_{\text{max}}(V^{1/2})$

симость. В дальнейшем при исследовании волокон мы использовали эту методику.

На рис. 4 приведены для примера кривые DSC одного из исследованных объектов, из которых виден характер изменения термодинамических параметров пика плавления по мере вытяжки. Так, температуры T1, Tmax и Т₂ повышаются, а форма пика изменяется: амплитуда растет и на первом этапе ($\lambda < 50$) появляется низкотемпературное крыло, связанное с размораживанием подвижности в проходных распрямленных частях молекул, связывающих кристаллиты между собой. При больших степенях вытяжки плечо исчезает, что обусловлено переходом этих частей молекул из аморфного состояния в кристаллическое. Количественные характеристики изменения термодинамических параметров пика плавления были выяснены в серии опытов по определению экспериментальных зависимостей $T_1(V^{1/2})$, $T_{\max}(V^{1/2}), T_2(V^{1/2})$ и их экстраполяции к нулевой скорости нагревания. Данные по истинным температурным параметрам пика плавления, температурный интервал плавления и энтальпии плавления приведены в таблице. Там же представлены расчетные значения параметра внутрицепной кооперативности плавления v и толщины кристаллов (L).

Из данных, приведенных в таблице, видно, что наиболее консервативным параметром является температура плавления T_{max}, которая по мере увеличения степени вытяжки возрастает в пределах 1-2.5 К. Более чувствительными к изменению λ являются энтальпия плавления ΔН и степень кристалличности χ, возрастающие при больших степенях вытяжки на 10-30%. Следует отметить, что при сравнительно небольших степенях вытяжки начиная с "шейки" ($\lambda = 9 - 10$) до $\lambda = 45$ эти параметры в сравнении с данными по ксерогелям падают. Наиболее радикальные изменения происходят с температурным интервалом плавления ΔT_f и связанными с ним параметрами v и L. Из данных, приведенных в таблице, видно, что значения параметра внутрицепной кооперативности плавления v и параметра L по мере увеличения степени вытяжки возрастают в десятки раз. При $\lambda = 170$ в волокне, полученном из пленки ксерогеля, размер областей кооперативности при переходе из кристаллического в жидкое состояние достигает $\sim 0.5 \,\mu m.$

Если обратиться к рис. 5, то видно, что возрастание L для этих образцов проходит в две стадии. На первой стадии образуется "шейка" и происходит формирование структуры полимера, переходной от ламелярной к фибриллярной. Для последней характерно большое число распрямленных проходных отрезков молекул, связывающих кристаллиты между собой в микрофибриллы. С термодинамической точки зрения состояние этих отрезков молекул "жидкое", поэтому они не вносят дополнительного вклада в энтальпию плавления всего образца. На второй стадии ($\lambda > 50$) указанные отрезки молекул переходят из "жидкого" состояния в кристаллическое, и мы наблюдаем возрастание энтальпии плавления всего

Рис. 5. Зависимость корреляционного параметра L от степени вытяжки образцов IIIb (1), IIIa (2) и IV (3). Разрывные прочности образцов IIIa, b и IV отмечены стрелками.

образца. Следует отметить, что для промышленных образцов вторая стадия практически отсутствует, и параметр *L* для них остается на одном уровне в диапазоне $\lambda = 30-85$. В то же время для волокон, полученных из пленки ксерогеля, параметр *L* на второй стадии возрастает по мере увеличения λ вне зависимости от типа растворителя. Если учесть, что существует прямая связь параметров ν и *L* с прочностными характеристиками полиэтилена [10], то можно ожидать для волокон, полученных из пленки ксерогеля, существенного увеличения прочности на второй стадии ($\lambda > 50$)

Действительно, как показали механические испытания, разрывная прочность σ_p при $\lambda = 90-120$ для образцов IIIa и IIIb достигает значений 4.0-5.8 GPa (средние значения σ_p для образцов, полученных при использовании как декалина, так и минерального масла, одинаковы и составляют 4.7 GPa). В то же время прочность промышленных волокон IV на второй стадии возрастает не так резко и достигает значений 3.7-3.9 GPa. Это обстоятельство указывает на потенциальные возможности увеличения механических свойств промышленных волокон, получаемых по методу гель-технологии, так как механические характеристики пленочных нитей, получаемых при растяжении ксерогелей в лабораторных условиях, оказались существенно выше механических свойств гель-ориентированных волокон, получаемых в промышленном производстве.

Из приведенных данных следует, что решение проблемы заметного повышения механических характеристик конечного промышленного продукта лежит в тщательном подборе температурно-силовых режимов ориентирования на второй стадии ($\lambda > 50$), при которых размеры областей кооперативного плавления L будут симбатно расти с увеличением степени вытяжки. В значительной степени эта проблема решена на пленочных нитях с использованием многоступенчатой зонной высокотемпературной вытяжки.

Авторы выражают благодарность сотрудникам ФГУП ВНИИСВ (Тверь) за предоставление образцов для исследований.

Список литературы

- [1] P. Smith, P.J. Lemstra. J. Mater. Sci. B 15, 505 (1980).
- [2] V.A. Marikhin, L.P. Myasnikova. Progr. Colloid Polym. Sci. 92, 39 (1993).
- [3] V.A. Marikhin, L.P. Myasnikova. Macromol. Chem. Macromol. Symp. B **41**, 209 (1991).
- [4] K. Illers. Europ.Polym. J. B 10, 911 (1974).
- [5] Б. Вундерлих. Физика макромолекул. Плавление кристаллов. Мир, М. (1984). Т. 3. С. 64.
- [6] P. Flory. J. Polym. Sci. B 49, 105 (1961).
- [7] С.Я. Френкель. Энциклопедия полимеров. Советская энциклопедия, М. (1974). Т. 2. С. 100.
- [8] V.A. Berstein, A.V. Savitskii, V.M. Egorov, I.A. Gorshkova, V.P. Demicheva. Polym. Bull. B 12, 165 (1984).
- [9] V.A. Berstein, V.M. Egorov, V.A. Marikhin, L.P. Myasnikova. Int. J. Polym. Mater. B 22, 167 (1993).
- [10] В.А. Берштейн, В.М. Егоров, В.А. Марихин, Л.П. Мясникова. Высокомолекуляр. соединения А **32**, 2380 (1990).