05,11

Магнитные и магнитокалорические свойства мультиферроиков $LuFe_{2-x}Mn_xO_{4+\delta}$

© А.Г. Гамзатов¹, А.М. Алиев¹, М.Н. Маркелова², Н.А. Бурунова², А.Р. Кауль², А.С. Семисалова², Н.С. Перов²

¹ Институт физики им. Х.И. Амирханова ДагНЦ РАН, Махачкала, Россия ² Московский государственный университет им. М.В. Ломоносова, Москва, Россия E-mail: gamzatov_adler@mail.ru

(Поступила в Редакцию 30 ноября 2015 г.)

Представлены результаты исследования магнитных и магнитокалорических свойств системы LuFe_{2-x}Mn_xO_{4+ δ} (x = 0, 0.05 и 0.12). Частичное замещение железа марганцем приводит к заметному уменьшению намагниченности и магнитокалорического эффекта. Показано, что в образцах LuFe_{2-x}Mn_xO_{4+ δ} магнитокалорический эффект определяется несколькими механизмами.

Работа выполнена при финансовой поддержке РФФИ (гранты № 14-02-01177, 13-03-0124915) с использованием оборудования Аналитического центра коллективного пользования ДагНЦ.

1. Введение

В последние годы ведется поиск материалов, обладающих большими значениями магнитоэлектрического и магнитодиэлектрического эффектов, в связи с возможностью их практического применения в СВЧ- и сенсорной технике, в устройствах магнитной записи и т.д. [1]. Одним из ярких представителей таких материалов является феррит лютеция LuFe₂O_{4+δ}, совмещающий в себе магнитное и электронное упорядочение (сегнетоэлектрик с $T_{CO} \sim 350$ K, ферримагнетик с $T_N \sim 240$ K). При этом сегнетоэлектрический переход сопровождается зарядовым упорядочением, поэтому температуру сегнетоэлектрического перехода обозначают T_{CO} [2]. При дальнейшем уменьшении температуры в образце LuFe₂O₄ наблюдается череда магнитных фазовых переходов при 225 и 170 К, которые отделяют кластерные стекольные состояния [3].

Несмотря на то что соединение LuFe₂O_{4+ δ} относится к хорошо изученным, остается много нерешенных вопросов, связанных как с технологической стороной получения образцов (эти соединения в объемной фазе устойчивы в узком интервале высоких температур и низких давлений кислорода) [2,4,5], так и с интерпретацией наблюдаемых аномалий теплофизических параметров [3,5,6]. Исследования последних лет показали, что в мультиферроиках наряду с указанными выше эффектами наблюдается и ряд других эффектов, имеющих прикладные аспекты. В частности, это электрокалорический и магнитокалорический эффекты [3], которые могут быть использованы в технике твердотельного охлаждения.

Ранее в [7] было показано, что в соединениях типа $RFe_2O_{4+\delta}$ возможно частичное замещение катионов железа другими катионами (Mg²⁺, Co²⁺, Cu²⁺, Mn²⁺), приводящее к существенному изменению магнитных свойств. В настоящей работе приводятся результаты исследования структурных, магнитных и калорических свойств образцов LuFe_{2-x}Mn_xO_{4+ δ} (x = 0, 0.05, 0.12) в интервале температур 77–35 К в магнитных полях до 18 kOe.

2. Образцы

Синтез керамических образцов $LuFe_{2-x}Mn_xO_{4+\delta}$ (x = 0, 0.05, 0.12) проводился методом химической гомогенизации из раствора, для чего обеззоленные бумажные фильтры пропитывались смесью растворов нитратов с необходимым соотношением катионов, высушивались и сжигались, остатки углерода удалялись отжигом при 600°C в течение 2h на воздухе. Полученный порошок прессовался в таблетки, которые на первом этапе восстанавливали в запаянных кварцевых ампулах в присутствии геттера Fe/FeO (1000°C, 30 h), а затем окисляли в присутствии смеси FeO/Fe₃O₄ (1000°C, 30 h). Такой двухстадийный синтез позволяет получать однофазные керамические образцы. Наличие геттера FeO/Fe₃O₄ необходимо для создания низкого парциального давления кислорода в системе, так как LuFe₂O_{4+δ} термодинамически устойчив лишь в узком интервале парциальных давлений кислорода $p_{\rm O_2}~(-\lg p_{\rm O_2} \sim 8-12$ при 1200°С) [8]. Состав синтезированных образцов подтвержден аналитическими методами элементного анализа и методом массспектрометрии с индуктивно-связанной плазмой на приборе Perkin-Elmer ELAN DRC II. По данным рентгенофазового анализа (съемка на дифрактометре Rigaku SmartLab, Cu K_{α} -излучение) (рис. 1) полученные образцы являются однофазными, принадлежат к пространственной группе $R\bar{3}m$, а увеличение содержания марганца главным образом сказывается на параметре с элементарной ячейки, который увеличивается с ростом концентрации Mn (см. таблицу).

Рис. 1. Рентгенограммы серии LuFe_{2-x}Mn_xO_{4+ δ} с различным содержанием марганца.

Puc. 2. *a*) Температурная зависимость намагниченности LuFe_{2-x} Mn_xO_{4+ δ}. *b*) Зависимость dM/dT от температуры.

Для LuFe₂O_{4+ δ}, синтезированного методом церий-метрического титрования, определен индекс $\delta = 0.005(3)$. Для изучения степени окисления марганца в синтезированных соединениях LuFe_{2-x}Mn_xO_{4+ δ} применен метод рентгеновской фотоэлектронной спектроскопии на приборе Kratos Axis Ultra DLD. Наблюдаемая энергия связи (641.3 eV) и форма спектра с характерным сателлитом, которая близка к форме спектра Mn2*p*-электронов в оксиде марганца MnO, указывают на то, что на поверхности исследуемого образца марганец находится в степени окисления +2.

3. Результаты и обсуждение

На рис. 2, *a*, *b* приведены данные магнитных измерений в поле 10 kOe на вибрационном магнитометре LakeShore 7407. Из рис. 2, *a* видно, что замещение

Параметры элементарной ячейки для образцов серии $LuFe_{2-x}Mn_xO_{4+\delta}$

x	<i>a</i> , Å	<i>c</i> , Å	$V, Å^3$
0	3.4371(2)	25.266(2)	258.49(3)
0.05	3.4368(2)	25.307(2)	258.87(3)
0.12	3.4367(2)	25.335(2)	259.15(3)

Fe — Мп приводит к резкому подавлению намагниченности, а для x = 0.12 меняется поведение намагниченности с температурой. Температура фазового перехода ферримагнетик-парамагнетик смещается в сторону низких температур с ростом концентрации Mn ($T_N = 247$, 245 и 231 К для *x* = 0, 0.05 и 0.12 соответственно). Температура перехода в магнитно-стекольное состояние с ростом концентрации Мп сначала незначительно растет от $T_{\rm MG} = 196$ К для x = 0 до $T_{\rm MG} = 201$ К для x = 0.05, а при x = 0.12 магнитно-стекольное состояние не наблюдается. Подавление намагниченности при замещении марганцем обнаружено и в системе YbFe_{2-x}Mn_xO₄ [7,9]. Замена железа марганцем приводит к ослаблению магнитного взаимодействия между содержащими ионы Fe³⁺ и Fe²⁺ фрустрированными ферримагнитными слоями изза уменьшения переноса заряда. Уменьшение переноса электронов с ростом концентрации Мп подтверждается резким увеличением сопротивления [7], что, как правило, приводит к подавлению обменного взаимодействия, в результате чего снижается и температура ферримагнитного перехода [10].

На рис. 3 приведена температурная зависимость удельной теплоемкости исследованных образцов. Для наглядности данные для образцов с x = 0.05 и 0.12 сдвинуты вниз относительно данных для образца LuFe₂O_{4+ δ} на 20 и 30 J/mol·K соответственно. Как видно из рис. 3, температурная зависимость теплоемкости для исследованных образцов подчиняется дебаевским представлениям о теплоемкости твердых тел, за исключением

Рис. 3. Температурная зависимость теплоемкости $LuFe_{2-x}Mn_xO_{4+\delta}$.

аномалий, связанных с фазовыми переходами: высокотемпературная аномалия при $T_{CO} \approx 325$ К соответствует сегнетоэлектрическому переходу, а низкотемпературная аномалия при $T_N = 243$ К отвечает фазовому переходу ферримагнетик-парамагнетик. Рост концентрации марганца приводит к сглаживанию аномалий, обусловленных фазовым переходом ферримагнетик-парамагнетик на зависимости $C_P(T)$. Для состава с x = 0.12 высокотемпературная аномалия, связанная с сегнетоэлектрическим переходом, подавляется полностью.

Прямые измерения адиабатического изменения температуры ΔT_{ad} при изменении внешнего магнитного поля проводились модуляционным методом [11]. К образцу прикладывалось переменное магнитное поле, которое благодаря магнитокалорическому эффекту (МКЭ) индуцирует периодическое изменение температуры образца. Это изменение температуры регистрировалось синхронным детектором посредством дифференциальной термопары, один спай которой приклеен к исследуемому образцу. Частота переменного магнитного поля в данном эксперименте составляла 0.3 Hz. Переменное магнитное поле амплитудой до 2kOe генерировалось с помощью электромагнита и блока питания с внешним управлением. Управляющее переменное напряжение на блок питания подавалось с выхода синхронного усилителя (Lock-in) SR 830. Переменное магнитное поле 18 kOe создавалось источником постоянного магнитного поля регулируемой напряженности производства фирмы АМТ&CLLC. Данная методика позволяет регистрировать изменение температуры с точностью не хуже 10^{-3} К.

На рис. 4, *a*, *b* представлены температурные зависимости МКЭ исследованных образцов. Из рис. 4 видно, что величина МКЭ для образцов LuFe_{2-x}Mn_xO_{4+δ} относительно невысокая: $\Delta T = 0.211$ K в поле 18 kOe для образца с x = 0. Магнитокалорические свойства состава LuFe₂O₄ исследованы в [3] по данным намагниченности. Результаты работы [3] также показывают небольшие величины МКЭ: $\Delta S = 1.3$ J/kg·K в магнитном поле 60 kOe; в пересчете на $\Delta T = (T/C_H)\Delta S$ получаем $\Delta t \approx 0.74$ K. Экстраполяция данных по МКЭ, приведенных на рис. 4, *a* для образца LuFe₂O_{4+δ}, в область сильных магнитных полей с помощью выражения $\Delta T = bH^{0.87}$ показывает, что в магнитном поле 60 kOe

Особый интерес представляет влияние на МКЭ частичного замещения железа марганцем в системе LuFe_{2-x}Mn_xO_{4+ δ}. Из рис. 4, *а* видно, что по мере роста концентрации Мп температура максимума МКЭ смещается в сторону низких температур (для x = 0 $T_{\rm max} = 245$ K, а для x = 0.12 $T_{\rm max} = 230$ K). Добавление марганца даже в незначительном количестве (5%) приводит к тому, что максимальная величина МКЭ уменьшается более чем в 4 раза. Дальнейшее увеличение концентрации Мп (до 12%) незначительно уменьшает величину МКЭ. Такое поведение хорошо согласуется с данными магнитных измерений (рис. 2), где прослеживается значительное уменьшение намагниченности с

Рис. 4. Зависимости МКЭ от температуры для образцов $LuFe_{2-x}Mn_xO_{4+\delta}$ в магнитном поле 18 kOe (*a*) и для $LuFe_2O_{4+\delta}$ в слабых магнитных полях (*b*).

ростом концентрации марганца. Как было отмечено выше, катионы Mn в системе LuFe_{2-x}Mn_xO_{4+ δ} находятся в состоянии Mn²⁺, что способствует усилению антиферромагнитного (AФM) вклада в основное ферримагнитное состояние образца LuFe₂O₄ [12], которое возникает благодаря фрустрированному AФM-упорядочению ионов Fe³⁺ и Fe²⁺, занимающих позиции в соседних слоях с гексагональной упаковкой. Как известно, МКЭ вблизи AФM- и ферромагнитного (ФМ) переходов имеют противоположные знаки, а конкуренция этих вкладов в узком температурном интервале приводит к уменьшению суммарного МКЭ.

На рис. 4, *b* приведены данные температурной зависимости МКЭ для LuFe₂O_{4+ δ} в слабых магнитных полях (0.5 и 1 kOe). Здесь следует обратить внимание на небольшую аномалию при 220 К, где температурная зависимость МКЭ претерпевает излом. Более наглядно эта аномалия прослеживается в сильном магнитном поле 18 kOe (рис. 4, *a*). Эти аномалии также хорошо коррелируют с данными температурной зависимости намагниченности (рис. 2). Аналогичные аномалии на зависимости $\Delta S(T)$ для монокристалла LuFe₂O₄ при температурах T = 245, 170 и 50 K были обнаружены в

работе [3]. При этом на температурной зависимости теплоемкости аномалий в данной температурной области не наблюдается (рис. 3).

Возможно, такие аномалии на зависимости МКЭ от температуры имеют место и для других образцов (x = 0.05 и 0.12). Во всяком случае из данных по dM/dT, приведенных на рис. 2, b, следует, что аналогичные аномалии должны прослеживаться и на температурной зависимости МКЭ для образца с x = 0.05. Однако обнаружить их не удалось в силу очень малой величины МКЭ в этом образце.

На рис. 5 приведена зависимость максимальной величины МКЭ от концентрации Мп. На вставке представлена полевая зависимость МКЭ вблизи T_N для образца LuFe₂O_{4+ δ}. В работе [13] показано, что для магнитных материалов $\Delta S \sim H^n$, где n = 1 при $T \ll T_C$, n = 2 при $T \gg T_C$ и n = 0.75 вблизи T_C . Зависимость $\Delta T = f(H)$ для образца LuFe₂O_{4+ δ} также описывается выражением $\Delta T = bH^n$ (где b — параметр, не зависящий от температуры и магнитного поля). В слабых магнитных полях (до 2 kOe) $\Delta T \sim H^{1.14}$, а в более сильных магнитных полях (до 18 kOe) $\Delta T \sim H^{0.87}$.

Резюмируя приведенные в работе результаты, можно отметить, что такие малые значения МКЭ, как правило, являются характерными для ферримагнитного фазового перехода [14,15]. Как известно, температурная зависимость МКЭ в ферримагнетиках определяется выражением [16]

$$\Delta T = \frac{T}{C_{P,H}} \left(\frac{\partial \mathbf{M}_1}{\partial T} d\mathbf{H} + \frac{\partial \mathbf{M}_2}{\partial T} d\mathbf{H} \right),$$

где M_1 — намагниченность первой подрешетки, M_2 — намагниченность второй антипараллельной подрешетки, dH — приращение магнитного поля, $C_{P,H}$ — теплоемкость. Для образца LuFe₂O_{4+ δ} это подрешетки Fe³⁺ и Fe²⁺, которые определяют положительные и отрицательные обменные взаимодействия в системе LuFe₂O_{4+ δ}.

Рис. 5. Зависимость ΔT_{max} от концентрации Mn (x) при 18 kOe. На вставке приведена полевая зависимость максимума МКЭ для LuFe₂O_{4+ δ}.

Частичное замещение железа марганцем приводит к заметному уменьшению МКЭ в составах LuFe_{2-x}Mn_xO_{4+ δ}. Учитывая тот факт, что Mn в системе $LuFe_{2-x}Mn_xO_{4+\delta}$ находится в состоянии Mn²⁺, можно утверждать, что это усиливает отрицательный обменный вклад, который приводит к резкому уменьшению намагниченности и МКЭ. При этом следует отметить, что уменьшение намагниченности и МКЭ при частичном замещении железа марганцем происходит непропорционально. Это свидетельствует о том, что температурная зависимость МКЭ определяется несколькими вкладами. Поскольку $\Delta T \sim dM/dT$, используя данные рис. 2, *b*, мы можем косвенно оценить вклад намагниченности в величину МКЭ. Как видно из рис. 2, b, величина dM/dT уменьшается для образца с x = 0.05 в 2.4 раза, тогда как МКЭ для этого же состава уменьшается в 4.5 раза. Это указывает на то, что суммарный МКЭ определяется несколькими механизмами: МКЭ за счет парапроцесса и, возможно, МКЭ за счет теплового расширения. В [17] было обнаружено, что в области магнитных фазовых переходов калорический эффект может возникать вследствие теплового расширения (эластокалорический эффект) и достигать гигантских значений в результате изменения магнитного состояния магнитоупорядоченных веществ под действием механических напряжений. Наличие отрицательного теплового расширения вдоль оси с для LuFe₂O₄ по данным рентгенодифракционного анализа параметров элементарной ячейки в зависимости от температуры показано в работе [18]. Частичное замещение железа марганцем главным образом сказывается на параметре с элементарной ячейки, который увеличивается с ростом концентрации Mn (см. таблицу).

4. Заключенние

Таким образом, результаты исследований показывают, что частичное замещение железа марганцем в системе LuFe_{2-x}Mn_xO_{4+ δ} приводит к усилению конкуренции AФМ- и ФМ-упорядоченных слоев, что в свою очередь приводит к уменьшению намагниченности и МКЭ. При этом непропорциональное уменьшение намагниченности и МКЭ при частичном замещении железа марганцем в системе LuFe_{2-x}Mn_xO_{4+ δ} показывает, что МКЭ определяется суммой нескольких вкладов.

Исследование рентгеновских фотоэлектронных спектров выполнено К.И. Маслаковым на базе НИЦКП "Нанохимия и химия атмосферы".

Список литературы

- [1] А.П. Пятаков, А.К. Звездин. УФН 182, 593 (2012).
- [2] K.F. Wang, J.-M. Liu, Z.F. Ren. Adv. Phys. 58, 321 (2009).
- [3] M.H. Phan, N.A. Frey, M. Angst, J. de Groot, B.C. Sales, D.G. Mandrus, H. Srikanth. Solid State Commun. 150, 341 (2010).
- [4] N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Nature 436, 1136 (2005).

- [5] M. Hervieu, A. Guesdon, J. Bourgeois, E. Elkaím, M. Poienar, F. Damay, J. Rouquette, A. Maignan, C. Martin. Nature Mater. 13, 74 (2014).
- [6] J. de Groot, T. Mueller, R.A. Rosenberg, D.J. Keavney, Z. Islam, J.-W. Kim, M. Angst. Phys. Rev. Lett. 108, 187601 (2012).
- [7] K. Yoshii, N. Ikeda, T. Michiuchi, Y. Yokota, Y. Okajima, Y. Yoneda, Y. Matsuo, Y. Horibe, S. Mori. J. Solid State Chem. 182, 1611 (2009).
- [8] T. Sekine, T. Katsura. J. Solid State Chem. 17, 49 (1976).
- [9] J. Iida, M. Tanaka, Y. Nakagawa. J. Phys. Soc. Jpn. 59, 4443 (1990).
- [10] K. Yoshii, N. Ikeda, Y. Matsuo, Y. Horibe, S. Mori. Phys. Rev. B 76, 024423 (2007).
- [11] А.М. Алиев, А.Б. Батдалов, В.С. Калитка. Письма в ЖЭТФ 90, 736 (2009).
- [12] S. Cao, J. Li, Z. Wang. Sci. Rep. 2, 330 (2012).
- [13] V. Franco, J.S. Blázquez, A. Conde. Appl. Phys. Lett. 89, 222 512 (2006).
- [14] А.С. Андреенко, К.П. Белов, С.А. Никитин, А.М. Тишин. УФН 158, 553 (1989),
- [15] К.П. Белов. Магнитотепловые явления в редкоземельных магнетиках. Наука, М. (1990). 96 с.
- [16] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- [17] S.A. Nikitin, G. Myalikgulyev, M.P. Annaorazov, A.L. Tyurin, R.W. Myndyev, S.A. Akopyan. Phys. Lett. A 171, 234 (1992).
- [18] S.M. Lawrence. X-ray and neutron scattering of multiferroic $LuFe_2O_4$. Thesis for the degree of doctor of philosophy. Curtin University (2011). 190 p.