# 05,11

# Неоднородное парамагнитное состояние в нестехиометрических манганитах лантана La<sub>1-x</sub> Mn<sub>1-y</sub>O<sub>3</sub>

#### © Т.И. Арбузова, С.В. Наумов

Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург, Россия E-mail: naumov@imp.uran.ru

#### (Поступила в Редакцию 28 октября 2015 г.)

Исследованы магнитные свойства системы нестехиометрических составов лантановых манганитов La<sub>1-x</sub> Mn<sub>1-y</sub>O<sub>3</sub> в области температур 80 < T < 650 K. Температура Кюри  $T_C$  немонотонно изменяется при увеличении числа ионов Mn<sup>4+</sup>. В парамагнитной области независимо от симметрии решетки присутствуют изолированные ионы Mn и магнитные поляроны, которые могут сохраняться до  $T \leq 4T_C$ . Температурные зависимости восприимчивости в области  $T_C < T < T_{pol}$  имеют нелинейный вид и могут быть описаны законом Кюри с зависящей от T постоянной Кюри C. Получен образец на границе структурного перехода O'  $\rightarrow$  O, в котором наличие спонтанной намагниченности при  $T \leq 1.6T_C$  связывается с коррелированными поляронами, образованными за счет двойного обмена в цепочках антиферромагнитной фазы *E*-типа.

Работа выполнена в рамках государственного задания ФАНО России (тема "Спин", № 01201463330) при частичной поддержке программы УрО РАН (проект № 15-9-2-4).

# 1. Введение

В перовскитоподобных манганитах структурные, зарядовые и электронные неоднородности играют важную роль в проявлении необычных магнитных и электронных свойств. Стехиометрический состав LaMnO<sub>3</sub> имеет орторомбическую симметрию решетки Рпта и антиферромагнитное (AF) упорядочение А-типа с температурой Нееля T<sub>N</sub> ≈ 140 K. В нестехиометрических составах появление намагниченности обусловлено ферромагнитными (FM) взаимодействиями Mn<sup>3+</sup>-Mn<sup>4+</sup>. Присутствие локальных FM-областей в АF-матрице подтверждено экспериментальными данными [1]. LaMnO<sub>3</sub> является модельным материалом для изучения магнитных взаимодействий в соединениях со смешанной валентностью магнитных ионов. Появление ионов Mn<sup>4+</sup> в нестехиометрических составах связано с вакансиями в катионных подрешетках [2,3]. Химический состав можно представить в виде La<sub>1-x</sub>Mn<sub>1-y</sub>O<sub>3</sub>. При малых концентрациях ионов Mn<sup>4+</sup> (менее 25% от общего числа Мп-ионов) нестехиометрические составы обычно записывают в виде LaMnO<sub>3+δ</sub>. Манганиты имеют широкую область гомогенности, поэтому метод получения и условия термообработки влияют на химический состав, симметрию кристаллической решетки и температуру магнитного упорядочения. Избыток кислорода и понижение температуры дополнительного отжига способствуют изменению кристаллической структуры от орторомбической до ромбоэдрической и появлению ферромагнетизма за счет сверхобмена или двойного обмена Mn<sup>3+</sup>-Mn<sup>4+</sup> [4-7].

Для объяснения физических свойств манганитов во всех моделях рассматривается присутствие электронных и структурных корреляций ограниченных размеров. Даготто [8] предложил новую температурную шкалу для магнитных свойств, согласно которой  $T_C < T^* < T_{pol}$ . Выше температуры  $T_{pol}$  манганиты находятся в однородном парамагнитном состоянии. При понижении T вблизи  $Mn^{4+}$  могут возникнуть некоррелированные (парамагнитные) поляроны с повышенным магнитным моментом. В орторомбических O'-образцах (a < b/2 < c) ниже  $T^*$  могут появиться коррелированные ферромагнитные поляроны [8,9].

В литературе имеется ограниченное число работ, посвященных магнитным свойствам нестехиометрических образцов LaMnO<sub>3+ $\delta$ </sub> в области температур T > 300 K [10,11]. Основное внимание уделяется вза-имосвязи между симметрией решетки и температурой Кюри  $T_C$ . Однако данные по магнитной восприимчивости в области высоких температур могут дать информацию о новой температурной шкале, концентрации магнитных ионов и их магнитном моменте.

Интерес к изучению свойств нестехиометрических составов LaMnO<sub>3+ $\delta$ </sub> связан также с тем, что наряду с непроводящей AF-фазой *A*-типа может присутствовать новая AF-фаза *E*-типа, аналогичная *CE*-фазе в легированных La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub> [12]. *E*-фаза состоит из зигзагообразных цепочек  $t_{2g}$ -спинов, упорядоченных ферромагнитно вдоль цепочек и антипараллельно в перпендикулярном направлении. Непроводящее состояние LaMnO<sub>3+ $\delta$ </sub> при всех температурах вызвано тем, что  $e_g$ -электроны двигаются вдоль зигзаг-цепочек, не перескакивая на соседние FM-цепочки.

Целью настоящей работы является выяснение температурной области сохранения неоднородного парамагнитного состояния в системе  $La_{1-x}Mn_{1-y}O_3$ , а также получение орторомбического образца, который выше  $T_C$  обладает спонтанным магнитным моментом.

| Номер   | Температура закалки,                                       | Параметры решетки |              |                | Объем элементарной             | $h/\sqrt{2}$ Å THE DEMETRI    |                       |
|---------|------------------------------------------------------------|-------------------|--------------|----------------|--------------------------------|-------------------------------|-----------------------|
| образца | атмосфера, время выдержки                                  | <i>a</i> , Å      | <i>b</i> , Å | <i>c</i> , Å   | ячейки V, Å <sup>3</sup> /f.u. | $b/\sqrt{2}$ , A, Thi penetki |                       |
| 1       | 1000°C, 0.02O <sub>2</sub> , 50 h                          | 5.532             | 7.707        | 5.692          | 60.66                          | 5.450, $b/\sqrt{2} < a$       | a < c, 0'             |
| 2       | 1000°C, Ar, 43 h                                           | 5.531             | 7.714        | 5.671          | 60.49                          | 5.455, $b/\sqrt{2} < a$       | a < c, 0'             |
| 3       | 1100°C, 0.21O <sub>2</sub> , 50 h                          | 5.539             | 7.756        | 5.581          | 59.94                          | 5.485, $b/\sqrt{2} < a$       | a < c, 0'             |
| 4       | 1000°C, 0.21O <sub>2</sub> , 10 h                          | 5.517             | 7.806        | 5.537          | 59.61                          | 5.520, $a \le b/\sqrt{2}$     | $\overline{2} < c, 0$ |
| 5       | 900°C, 0.21O <sub>2</sub> , 10 h                           | 5.515             | 7.799        | 5.532          | 59.49                          | 5.516, $a \le b/\sqrt{2}$     | $\overline{2} < c, 0$ |
| 6       | 850°C, 0.21O <sub>2</sub> , 10 h                           | 5.506             | 7.786        | 5.536          | 59.33                          | 5.506, $a \approx b/\sqrt{2}$ | $\overline{2} < c, 0$ |
| 7       | 830°C, 0.21O <sub>2</sub> , 10 h                           | 5.475             | 7.787        | 5.533          | 58.97                          | 5.507, $a < b/\sqrt{2}$       | $\overline{2} < c, 0$ |
| 8       | 810°C, 1 atm O <sub>2</sub> , 12 h                         | 5.501             | 7.770        | 5.533          | 59.12                          | 5.494,                        |                       |
|         |                                                            | a, Å              |              | $\alpha$ , deg |                                | $b/\sqrt{2} < a < c$          | O + R                 |
|         |                                                            | 5.472             |              | 60.73          | 58.90                          |                               |                       |
| 9       | 760°C, 0.21O <sub>2</sub> , 10 h                           | 5.476             |              | 60.72          | 58.89                          | R                             |                       |
| 10      | 650°C, 1 atm O <sub>2</sub> , 100 h                        | 5.469             |              | 60.67          | 58.69                          | R                             |                       |
| 11      | $La_{0.95}MnO_{3+\delta}$ 760°C, 0.21O <sub>2</sub> , 10 h | 5.476             |              | 60.67          | 58.94                          | R                             |                       |

Таблица 1. Условия термообработки и параметры элементарной ячейки LaMnO<sub>3+6</sub>

# 2. Образцы

В работе представлены температурные зависимости восприимчивости  $\chi(T)$  в области температур 80 < T < 650 К для серии однофазных образцов LaMnO<sub>3+δ</sub>. Образцы получены методом твердофазных реакций из оксидов La<sub>2</sub>O<sub>3</sub> и Mn<sub>3</sub>O<sub>4</sub>. Предварительные отжиги с промежуточными перетираниями проводились при температурах 1100-1300°С. Последующие отжиги осуществлялись при разных температурах и атмосферах (табл. 1). Структурные исследования проводились на рентгеновском дифрактометре ДРОН-2 при комнатной температуре. Образцы № 1-7 имеют орторомбическую структуру в пространственной группе Pnma, а образцы № 9-11 — ромбоэдрическую структуру  $R\bar{3}c$ . Образец № 8 является двухфазным, состоящим приблизительно из 60% ортофазы и 40% ромбоэдрической фазы. При понижении температуры термообработки объем элементарной ячейки монотонно уменьшается, что указывает на увеличение  $\delta$  и, следовательно, числа ионов Mn<sup>4+</sup>. В ряде работ [2,3,5] получены зависимости изменения объема элементарной ячейки LaMnO3+6 от содержания кислорода, с помощью которых мы оценивали концентрацию ионов Mn<sup>4+</sup> в наших образцах. Отметим, что образец № 10 с минимальным объемом элементарной ячейки  $V = 58.69 \text{ Å}^3$ /f.u. имеет  $\sim 32\%$  ионов Mn<sup>4+</sup>, что соответствует предельному значению  $\delta = 0.165$  для однофазных LaMnO<sub>3+ $\delta$ </sub>.

# 3. Магнитные свойства

Магнитная восприимчивость  $\chi(T)$  измерялась на магнитных весах с чувствительностью  $10^{-8}$  cm<sup>3</sup>/g в полях

 $H \le 10$  кОе. Вес образцов составлял 3–8 mg. На рис. 1 представлены температурные зависимости приведенной восприимчивости  $\chi_{dc}(T)$  в магнитном поле H = 60 Ое для исследованных поликристаллов LaMnO<sub>3+ $\delta$ </sub>. В однородных ферромагнетиках при переходе из магнитоупорядоченной области в парамагнитное состояние намагниченность  $M = \chi(H)H$  должна резко уменьшаться. Из рисунка видно, что все образцы имеют ферромагнитную составляющую момента. Исследованные образцы можно условно разбить на три группы. Первая группа образцов (№ 1–3) с соотношением параметров решетки  $b/\sqrt{2} < a < c$  имеет размытый магнитный переход с двумя максимумами  $d\chi/dT$ . Это может быть связано с неоднородным распределением FM/AF-областей. Вторая группа (№ 4–7), которая находится между гра-



**Рис. 1.** Температурные зависимости приведенной восприимчивости в поле H = 60 kOe для образцов LaMnO<sub>3+ $\delta$ </sub>. Числа около кривых соответствуют номерам образцов в табл. 1 и 2.

ницами структурных переходов  $O' \rightarrow O \rightarrow R$ , и третья группа (№ 9-11) с *R*-симметрией решетки имеют резкий переход вблизи ферромагнитной температуры Кюри. Значения Т<sub>С</sub> определялись по максимуму производной восприимчивости  $d\chi/dT = f(T)$ . Самую высокую температуру Кюри имел образец № 11, который был синтезирован с недостатком лантана ( $\sim 5 \, \text{at.\%}$ ). Отметим, что в нестехиометрических La<sub>1-x</sub>Mn<sub>1-y</sub>O<sub>3</sub> высокую Т<sub>С</sub> до 250 К имеют образцы с соотношением  $(1 - x/1 - y) \le 0.86$  [13,14]. Наблюдаемое изменение ферромагнитной температуры Кюри связано с конкуренцией влияния La- и Мп-вакансий. Увеличение числа пар Mn<sup>3+</sup>-Mn<sup>4+</sup> за счет La-вакансий приводит к усилению FM-взаимодействий и повышению T<sub>C</sub> [13]. В ромбоэдрических образцах число вакансий в Mn-подрешетке может превышать число вакансий в La-подрешетке в 2-4 раза. Из-за уменьшения общего числа магнитных ионов в этих образцах наблюдается понижение значений  $T_C$  [15–18].

В магнитоупорядоченных соединениях парамагнитная восприимчивость должна следовать закону Кюри– Вейсса

$$\chi = N\mu_{\rm eff}^2 \mu_{\rm B}^2 / 3k_{\rm B}(T - \Theta). \tag{1}$$

Здесь N — число Авогадро,  $\mu_{\text{eff}}^2 = g^2 S(S+1), g$  — фактор Ланде,  $\mu_{\text{B}}$  — магнетон Бора,  $k_{\text{B}}$  — постоянная Больцмана,  $\Theta$  — парамагнитная температура Кюри.

Для составов, содержащих разновалентные ионы марганца, эффективный магнитный момент определяется выражением

$$\mu_{\rm eff}^2 = (1-x)g^2 S_1(S_1+1) + xg^2 S_2(S_2+1), \qquad (2)$$

концентрация ионов Mn<sup>4+</sup>, гле x фактор g = 1.98 [19,20],  $S_1 = 2$  (Mn<sup>3+</sup>),  $S_2 = 3/2$  (Mn<sup>4+</sup>). Магнитные измерения показали, что во всех образцах LaMnO<sub>3+ $\delta$ </sub> температурные зависимости обратной восприимчивости имеют нелинейный вогнутый к оси Т вид. Температурные зависимости обратной восприимчивости для ряда образцов представлены на рис. 2. Эффективный магнитный момент значительно превышает расчетное значение  $\mu_{\rm eff}$  и уменьшается при повышении температуры. Это указывает на корреляции магнитных моментов выше Т<sub>С</sub>. Отличительной чертой первой группы образцов является наблюдаемый вблизи 550 К широкий структурный переход  $O' \to O$ , который приводит к увеличению значений  $\chi$  и  $\Theta$ . Аналогичное поведение  $\chi^{-1}(T)$  в LaMnO<sub>3+ $\delta$ </sub> с малым избытком кислорода наблюдалось в работах [10,11,19,21]. Для образцов LaMnO<sub>3+ $\delta$ </sub>, содержащих более 15 at.% ионов Mn<sup>4+</sup>, данные по парамагнитной восприимчивости в литературе отсутствуют.

Большие значения  $\mu_{\rm eff}$  нельзя объяснить эффектом диспропорционирования  $2{\rm Mn}^{3+} \rightarrow {\rm Mn}^{2+} + {\rm Mn}^{4+}$ , который дает максимальное увеличение  $\Delta\mu_{\rm eff} = 0.11\,\mu_{\rm B}$ . Например, в образце № 10  $\mu_{\rm eff} = 5.62\,\mu_{\rm B}$  в области  $T > 2T_C$  ( $T = 310-420\,{\rm K}$ ), что значительно выше расчетного значения  $\mu_{\rm eff} = 4.59\,\mu_{\rm B}$ . Наблюдаемые значения  $\mu_{\rm eff}$  могут



**Рис. 2.** Температурные зависимости обратной восприимчивости для трех групп образцов LaMnO<sub>3+ $\delta$ </sub> с разными симметриями решетки.

быть связаны с присутствием магнитных поляронов с повышенным магнитным моментом. Для объяснения магнитных свойств манганитов выше  $T_C$  предложены разные механизмы образования спиновых поляронов. В модели Варма [22] спиновые поляроны в манганитах образуются из-за термических электрон-электронных флуктуаций. Электронные прыжки осуществляются только между ближайшими разновалентными соседями. При этом спины ближайших ионов  $Mn^{3+}$  выстраиваются параллельно моменту ионов  $Mn^{4+}$ . Парамагнитная восприимчивость следует закону Кюри

$$\chi \propto (T - T_C)^{-1}.$$
 (3)

В этой модели при концентрации *x* ионов Mn<sup>4+</sup> эффективный магнитный момент неоднородной системы

| Номер<br>образца | <i>V</i> , Å <sup>3</sup> /f.u. | $T_C$ , K | [Mn <sup>4+</sup> ], % |        | $\mu_{\mathrm{eff}},\ \mu_{\mathrm{B}}$ | T <sub>o</sub> K       | $C_{\infty}, \mathrm{cm}^3\cdot\mathrm{K}^3/\mathrm{g}$ | $P_1$ , cm <sup>3</sup> · K <sup>3</sup> /g |
|------------------|---------------------------------|-----------|------------------------|--------|-----------------------------------------|------------------------|---------------------------------------------------------|---------------------------------------------|
|                  |                                 |           |                        | Расчет | Эксп. при $T > T_{pol}$                 | <i>1</i> 0, <b>I</b> C |                                                         |                                             |
| 1                | 60.66                           | 137/111   | 8                      | 4.82   | 4.65 (280 K)                            |                        |                                                         |                                             |
| 2                | 60.49                           | 133/103   | 10                     | 4.81   | 4.86 (460 K)                            | 134                    | 0.018                                                   | -1.6                                        |
| 3                | 59.94                           | 113       | 14.5                   | 4.76   | 4.53 (490 K)                            | 109                    | 0.0116                                                  | 2.07                                        |
| 4                | 59.61                           | 163       | 17.5                   | 4.73   | 4.99 (510 K)                            | 179                    | 0.0106                                                  | 3.41                                        |
| 5                | 59.49                           | 147       | 19.5                   | 4.71   | 4.68 (450 K)                            | 146                    | 0.0095                                                  | 3.34                                        |
| 6                | 59.33                           | 162       | 22                     | 4.69   | 4.61 (530 K)                            | 148                    | 0.007                                                   | 5.60                                        |
| 7                | 58.97                           | 148       | 24                     | 4.67   | 4.86 (640 K)                            | 133                    | 0.0087                                                  | 4.74                                        |
| 8                | 59.12                           | 149       | 26                     | 4.65   | 4.55 (500 K)                            | 150                    | 0.007                                                   | 4.76                                        |
| 9                | 58.89                           | 146       | 28                     | 4.63   | 4.91 (640 K)                            | 115                    | 0.0085                                                  | 4.75                                        |
| 10               | 58.69                           | 162       | 32                     | 4.59   | 4.81 (640 K)                            | 157                    | 0.0089                                                  | 4.22                                        |
| 11               | 58.94                           | 176       | 27                     | 4.64   | 4.40 (450 K)                            | 179                    | 0.0023                                                  | 6.56                                        |

Таблица 2. Магнитные характеристики образцов LaMnO<sub>3+δ</sub>

Примечание. Концентрация  $Mn^{4+}$  определялась исходя из объема элементарной ячейки [2,3], расчетные параметры  $T_0$ ,  $C_{\infty}$ ,  $P_1$  — по формуле (5) для описания температурных зависимостей обратной восприимчивости для образцов La<sub>1-x</sub>Mn<sub>1-y</sub>O<sub>3</sub>.

определяется выражением

$$\mu_{\text{eff}}^2 = \left[ x(S_1 + PS_2)(S_1 + PS_2 + 1) + (1 - x - Px)S_2(S_2 + 1) \right] g^2 \mu_{\text{B}}^2.$$
(4)

Здесь  $0 \le P \le 6$  — число ближайших к  $Mn^{4+}$  поляризованных спинов ионов  $Mn^{3+}$ ,  $S_1 = 3/2$ ,  $S_2 = 2$ ,  $(S_1 + PS_2)$  — спин полярона. При повышении температуры число поляризованных спинов уменьшается, поэтому зависимость  $\chi^{-1}(T)$  должна иметь нелинейный вид. В нестехиометрических составах LaMnO<sub>3+ $\delta$ </sub> магнитную восприимчивость мы описали выражением [23]

$$\chi = \frac{P_1}{T} + \frac{C_\infty}{T - T_0},\tag{5}$$

где член  $P_1/T$  отражает изменение магнитного момента поляронов, а  $C_{\infty}$  — постоянная Кюри при  $T \to \infty$ . Экспериментальные зависимости  $\chi^{-1}(T)$  хорошо описываются формулой (5) со значениями  $T_0$ ,  $P_1$  и  $C_{\infty}$ , полученными путем подгонки. В качестве примера на рис. З представлены экспериментальная и расчетная температурные зависимости обратной восприимчивости для образца № 5. Отметим, что значения T<sub>0</sub> близки к экспериментальным величинам Т<sub>С</sub> (табл. 2). Магнитный момент поляронов P1 при увеличении числа ионов Mn<sup>4+</sup> повышается и достигает насыщения при 23-25% (рис. 4). Эта концентрация близка к порогу перколяции в легированных лантановых манганитах [24]. При больших концентрациях  $\delta$  в LaMnO<sub>3+ $\delta$ </sub> два или более иона Mn<sup>4+</sup> могут оказаться в одном поляроне. Их вклад в P<sub>1</sub> уменьшается из-за антиферромагнитного взаимодействия Mn<sup>4+</sup>-Mn<sup>4+</sup> [25]. Противоположную тенденцию изменения при увеличении  $\delta$  имеет член  $C_{\infty}$ , что указывает на сохранение числа изолированных ионов Mn при  $\delta > 0.12$ .

Поляроны Варма являются парамагнитными частицами с большим магнитным моментом. Образцы, содержащие такие поляроны, в области  $T > T_C$  должны



**Рис. 3.** Рассчитанная по формуле (5) (сплошная линия) и экспериментальная (точки) зависимости  $\chi^{-1}(T)$  для образца № 5.



**Рис. 4.** Значения расчетных параметров  $P_1$  и  $C_{\infty}$ , входящих в формулу (5), в зависимости от содержания  $Mn^{4+}$  в образцах LaMnO<sub>3+ $\delta$ </sub>.



**Рис. 5.** Полевые зависимости намагниченности при T = 243 К для образцов LaMnO<sub>3+ $\delta$ </sub> с орторомбической симметрией. На вставке — полевые зависимости намагниченности образца № 4 в области  $T > 2T_C$  (значения температуры указаны около кривых).

иметь линейную полевую зависимость намагниченности с нулевой спонтанной намагниченностью. На рис. 5 представлены полевые зависимости намагниченности при *T* = 243 K > *T*<sub>C</sub> для ряда образцов. Из всех составов только образец № 4 имеет спонтанный магнитный момент, что указывает на присутствие ферромагнитно упорядоченных областей. Малое значение спонтанной намагниченности M<sub>S</sub> может быть связано с их небольшим количеством и наномасштабным размером. Полевые зависимости намагниченности этого образца при более высоких температурах ( $T = 295 - 605 \, \text{K}$ ) имели линейный вид с нулевым спонтанным моментом (см. вставку к рис. 5). Можно предположить, что для этого образца температура  $T^* \approx 1.7T_C$ , а  $T_{\text{pol}} \approx 4.1T_C$ . Орторомбический образец № 4 при комнатной температуре находится вблизи раздела фаз  $O \rightarrow O'$ , где начинается область орбитального упорядочения ионов Mn<sup>3+</sup>. Возможно, ферромагнитные области в антиферромагнитной матрице являются коррелированными поляронами Ванга-Фримана, в которых упорядочение спинов вызвано двойным обменом [8,26]. Аналогичные ферромагнитные поляроны выше Т<sub>С</sub> мы наблюдали в проводящем La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> [27]. Коррелированные поляроны могут присутствовать только в орторомбической фазе, а некоррелированные (парамагнитные) поляроны с повышенным магнитным моментом — во всех структурах манганитов [9]. Полевая зависимость восприимчивости, характерная для ферромагнитного состояния, наблюдалась также в орторомбическом образце  $La_{0.9}Sr_{0.1}MnO_3$  в области  $T \le 1.5T_C$ (180 К) [28]. Другой причиной присутствия ферромагнитных поляронов может быть скрытая АГ-фаза Е-типа, в которой зигзаг-цепочки упорядочены ферромагнитно.

### 4. Заключение

Исследованы парамагнитные свойства непрерывного ряда однофазных нестехиометрических манганитов LaMnO<sub>3+ $\delta$ </sub> ( $\delta \le 0.16$ ) в области высоких температур до 650 К. Вакансии в катионных подрешетках приводят к конкуренции антиферромагнитных (Mn<sup>3+</sup>-Mn<sup>3+</sup>) и ферромагнитных (Mn<sup>4+</sup>-Mn<sup>3+</sup>) обменных взаимодействий и неоднородному магнитному состоянию. Показано, что независимо от типа симметрии кристаллической решетки парамагнитная восприимчивость описывается законом Кюри, в котором постоянная Кюри зависит от температуры из-за изменения эффективного магнитного момента поляронов. Магнитные поляроны могут сохраняться вплоть до  $T = 4T_C$ . По экспериментальным зависимостям  $\chi^{-1}(T)$  можно оценить значения  $T_C$  в манганитах.

Проведен поиск состава, для которого справедлива температурная шкала магнитных свойств Даготто [8]. Показано, что в орторомбическом образце LaMnO<sub>3.09</sub> в области  $T \leq 1.6T_C$  кроме парамагнитных поляронов Варма [22] присутствуют ферромагнитные поляроны. Спонтанный магнитный момент при  $T > T_C$  в таких образцах может быть связан с коррелированными поляронами при делокализации  $e_g$ -электронов и присутствием "скрытой" антиферромагнитной фазы *E*-типа в орторомбических манганитах.

### Список литературы

- [1] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [2] J.A.M. van Roosmalen, P. van Vlaanderen, E.H.P. Cordfunke, W.L. IJdo, D.J.W. IJdo. J. Solid State Chem. 114, 516 (1995).
- [3] J.A.M. van Roosmalen, E.H.P. Cordfunke. J. Solid State Chem. 110, 106 (1994).
- [4] J.-S. Zhou, J.B. Goodenough. Phys. Rev. B 60, R15002 (1999).
- [5] B. Dabrowski, R. Dybzinski, Z. Bukowski, O. Chmaissem, J.D. Jorgensen. J. Solid State Chem. 146, 448 (1999).
- [6] Q. Huang, A. Santoro, J.W. Lynn, R.W. Erwin, J.A. Borchers, J.L. Peng, R.L. Greene. Phys. Rev. B 55, 14987 (1997).
- [7] L. Ghivelder, I. Abrego Castillo, M.A. Gusmão, J.A. Alonso, L.F. Cohen. Phys. Rev. B 60, 12184 (1999).
- [8] E. Dagotto. New J. Phys. 7, 67 (2005).
- [9] V. Kiryukhin. New J. Phys. 6, 155 (2004).
- [10] M. Tovar, G. Alejandro, A. Butera, A. Caneiro, M.T. Causa, F. Prado, R.D. Sánchez. Phys. Rev. B 60, 10199 (1999).
- [11] J.A. Souza, J.J. Neumeier, J.A. Souza, J.J. Neumeier, R.K. Bollinger, B. McGuire, C.A.M. dos Santos, H. Terashita. Phys. Rev. B 76, 024 407 (2007).
- [12] T. Hotta, M. Moraghebi, A. Feiguin, A. Moreo, S. Yunoki, E. Dagotto. arXiv:cond-mat/0211049 (2003).
- [13] N.N. Loshkareva, N.I. Solin, Yu.P. Sukhorukov, N.I. Lobachevskaya, E.V. Panfilova. Physica B 293, 390 (2001).
- [14] J. Töpfer, J.-P. Doumerc, J.-C. Grenie. J. Mater. Chem. 6, 1511 (1996).
- [15] R. Laiho, K.G. Lisunov, E. Lähderanta, P.A. Petrenko, J. Salminen, V.N. Stamon, Yu.P. Stepanov, V.S. Zakhvalinskii. J. Phys. Chem. Solids 64, 2313 (2003).

- [16] P.S.I.P.N. de Silva, F.M. Richards, L.F. Cohen, J.A. Alouso, M.J. Martinez-Lope, M.T. Casais, K.A. Thomas, J.L. MacManus-Driscoll. J. Appl. Phys. 83, 394 (1998).
- [17] J.A. Alonso, M.J. Martínez-Lope, M.T. Casais, A. Muñoz. Solid State Commun. 102, 7 (1997).
- [18] В.С. Захвалинский, R. Laiho, К.Г. Лисунов, E. Lahderanta, П.А. Петренко, Ю.П. Степанов, J. Salminen, В.Н. Стамов. ФТТ 48, 2175 (2006).
- [19] M.T. Cause, G. Alejandro, R. Zysler, F. Prado, A. Canriro, M. Tovar. J. Magn. Magn. Mater. **196–197**, 506 (1999).
- [20] A.I. Shames, M. Auslender, E. Rozenberg. J. Phys. D 42, 245 002 (2009).
- [21] F. Prado, R. Zysler, L. Morales, A. Caneiro, M. Tovar, M.T. Causa. J. Magn. Magn. Mater. 196–197, 481 (1999).
- [22] C.M. Varma. Phys. Rev. B 54, 7328 (1996).
- [23] Т.И. Арбузова, С.В. Наумов, Н.Г. Бебенин. Письма в ЖЭТФ **98**, 88 (2013).
- [24] N.G. Bebenin. J. Magn. Magn. Mater. 324, 3593 (2012).
- [25] Э. Метфессель, Д. Маттис. Магнитные полупроводники / Под ред. С.В. Вонсовского. Мир, М. (1972). С. 323.
- [26] X. Wang, A.J. Freeman. J. Magn. Magn. Mater. 171, 103 (1997).
- [27] Т.И. Арбузова, С.В. Наумов. Письма в ЖЭТФ 101, 857 (2015).
- [28] J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, J. Hemberger, R.M. Eremina, V.A. Ivanshin, A.M. Balbashov, G. Jug, A. Loidl, T. Kimura, Y. Tokura. Phys. Rev. Lett. 95, 257 202 (2005).