05 Структурно-фазовые превращения и свойства квазибинарных сплавов системы TiNi—TiCu

© Н.Н. Куранова¹, А.В. Пушин^{1,2}, В.Г. Пушин^{1,2}, А.В. Королев¹, Н.И. Коуров¹

¹ Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург ² Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург E-mail: pushin@imp.uran.ru

Поступило в Редакцию 26 июня 2015 г.

Изучено влияние легирования медью в количестве до 25 at.% на структурнофазовые превращения тройных сплавов квазибинарного разреза TiNi-TiCu методами трансмиссионной и сканирующей электронной микроскопии, дифракции электронов и рентгеновских лучей. Построена обобщенная полная диаграмма термоупругих мартенситных превращений $B2 \leftrightarrow B19'$, $B2 \leftrightarrow B19 \leftrightarrow B19'$ и $B2 \leftrightarrow B19$, происходящих при охлаждении по мере увеличения содержания меди в пределах 0–8, 8–15, 15–25 at.% соответственно. Установлены особенности изменения механических свойств, а также микроструктуры B19 и B19' мартенситов в зависимости от легирования сплавов медью.

Целый ряд атомно-упорядоченных сплавов на основе цветных металлов применяется в технике и медицине благодаря присущим им эффектам памяти формы (ЭПФ) и псевдоупругости (ЭПУ) [1–7]. При этом для их создания могут быть использованы самые разные методы синтеза и системы легирования [8–18]. Вместе с тем при всем разнообразии созданных металлических материалов с ЭПФ и ЭПУ даже среди обладающих наилучшим комплексом физико-механических характеристик сплавов никелида титана наиболее изучены лишь их бинарные композиции [1–7]. Однако и их применение в обычном поликристаллических обработок не всегда обеспечивает требуемые практикой физико-механические параметры. Большинство цветных сплавов с ЭПФ обладает пониженной пластичностью и хрупкостью, а также

81

6

низкой циклической прочностью и долговечностью в поликристаллическом состоянии [1-5]. Как известно, легирование медью никелида титана до 25 at.% взамен никеля позволяет сохранить в сплавах твердый раствор на основе В2-сверхструктуры, способный к протеканию в них термоупругих мартенситных превращений (ТМП) [1-7,14]. При этом от концентрации меди и точности исполнения легирования, сохраняющей стехиометрическое квазибинарное замещение медью именно атомов никеля, зависят реализация ТМП и физико-механические свойства сплавов. Важно отметить, что при увеличении содержания меди и отклонения от квазибинарности состава существенно изменяются структурный тип мартенситной фазы, собственно сам кристаллоструктурный механизм ТМП и его температурные интервалы [1-7,14,15]. Превращение становится двухступенчатым, когда появление орторомбического В19-мартенсита начинает предшествовать образованию кристаллов моноклинного B19'-мартенсита (присущего бинарным сплавам Ti-Ni). При этом изменяются параметры ЭПФ и другие конструкционные и функциональные характеристики сплавов [1-7]. Вместе с тем в литературе до сих пор имеются существенные различия и разногласия по ключевым характеристикам ТМП и физико-механических свойств сплавов квазибинарного состава TiNi-TiCu [6,14-18]. В данной работе были комплексно изучены тройные сплавы Ti₅₀Ni_{50-x}Cu_x с прецизионно изменяемым по никелю и меди составом в пределах $0 \le Cu \le 25$ at.%.

Сплавы были получены электродуговой плавкой из высокочистых Ті (чистотой 99.8%), Ni и Cu (99.99%) в атмосфере очищенного гелия. Для гомогенизации отобранные по химическому составу сплавы подвергали многократным переплавам (не менее трех раз) с последующим длительным отжигом в аргоне при 1073 К после горячей осадки прессом. Это обеспечило в сплавах однородное распределение зерен по размеру и химическому составу и исключило эффект ликвации после выплавки. Структуру и мартенситные превращения изучали с помощью методов рентгеновского фазового и структурного анализа (РФСА) и электронной микроскопии, трансмиссионной (ТЭМ) и сканирующей (СЭМ). Рентгенодифрактометрический анализ $\theta/2\theta$ проводили на аппарате ДРОН-3М, используя медное излучение, монохроматизированное графитовым монокристаллом. Электронно-микроскопические исследования выполняли на трансмиссионных электронных микроскопах JEM-200 CX (максимальное ускоряющее напряжение 200 kV) и Tecnai G² 30 (максимальное ускоряющее напряжение 300 kV) и скани-

Рис. 1. Фрагменты типичных рентгенограмм сплавов $Ti_{50}Ni_{50-x}Cu_x$ ($x \le 25$ at.%) в состоянии мартенсита B19' (*a*, при 100 K) и B19 (*b*).

рующем электронном микроскопе Quanta 200 (ускоряющее напряжение до 30 kV), оснащенном системой Pegasus. Были также выполнены необходимые температурные измерения электросопротивления и магнитной восприимчивости в широком интервале температур и механические испытания на растяжение при комнатной температуре. Электронномикроскопические и магнитные исследования проводили в ЦКП ИФМ УрО РАН.

РФСА сплавов в исходном состоянии показал, что при комнатной температуре все они находятся в мартенситном состоянии. Фрагменты типичных рентгенограмм ряда сплавов, снятых при разных температурах, приведены на рис. 1. По рентгенодифрактометрическим данным были установлены фазовый состав и температурно-концентрационные

x	e/a	M'_s, K	M'_f, K	A'_s, K	A'_f, K	M_s, K	M_f, K	A_s, K	A_f, K
0	7.00					343	318	353	373
5	7.05					289	275	285	300
10	7.10	315	304	314	324	280	198	208	286
15	7.15	328	316	324	338	234	160	169	234
17	7.17	330	312	321	335				
20	7.2	318	306	310	330				
25	7.25	326	302	307	332				

Критические температуры ТМП сплавов Ti $_{50}{\rm Ni}_{50-x}{\rm Cu}_x$ ($x\leq 25$ at.%), определенные по кривым электросопротивления

изменения параметров B2-аустенита (при 370 K), моноклинной решетки B19'-мартенсита для сплавов с содержанием меди до 15 at.%, мартенсита с орторомбической решеткой B19 для сплавов от 15 до 25 at.% Сu. Полученные линейные зависимости от содержания меди позволяют сделать вывод о том, что изученные квазибинарные сплавы Ti-Ni-Cu являются твердыми растворами замещения, в которых одна из подрешеток B2-сверхструктуры статистически заполнена атомами меди и никеля, а другая — атомами титана.

Как правило, в сплавах никелида титана для измерений критических температур начала (M_s, A_s) и конца (M_f, A_f) прямого $(M_s,$ M_f) и обратного (A_s, A_f) ТМП используют три метода температурных измерений — электросопротивление $\rho(T)$, магнитную восприимчивость $\chi(T)$ и дифференциальную сканирующую калориметрию (ДСК) [1–7,15,16,18]. Нами были выполнены измерения $\rho(T)$ и $\chi(T)$ в термоциклах "охлаждение-нагрев-охлаждение" для всех изучаемых сплавов. Критические температуры ТМП были определены по $\rho(T)$ и $\chi(T)$ методом двух касательных, использовались для построения диаграммы ТМП (рис. 2, *a*) и приведены в таблице. Анализ показал, что при умеренном легировании вплоть до (7-8) at.% Си все температуры единственного ТМП *В*2 ↔ *В*19' несколько снижаются. Из полученных данных для сплавов, легированных медью в пределах 8-15 at.%, следует, что происходило два ТМП $B2 \leftrightarrow B19$ и $B19 \leftrightarrow B19'$ (второе при несколько меньших температурах), причем температурный гистерезис последнего существенно увеличился. Для сплавов, легированных медью

Рис. 2. Диаграмма мартенситных превращений (*a*) и механические свойства (*b*) при комнатной температуре (кривая $1 - \sigma_B$, кривая $2 - \sigma_M$, кривая $3 - \delta$, кривая $4 - \varepsilon_{rev}$) сплавов $\text{Ti}_{50}\text{Ni}_{50-x}\text{Cu}_x$ ($x \le 25 \text{ at.}\%$). Кружками обозначены температуры прямого превращения, треугольниками — обратного превращения, сплошной линией соединены температуры начала превращения, а пунктирной линией — конца превращения.

от 17 до 25 аt.%, зависимости критических температур вновь характеризуют единственный $B2 \leftrightarrow B19$ ТМП с наиболее узким температурным гистерезисом. Отметим, что критические температуры ТМП $B2 \leftrightarrow B19$ с увеличением концентрации меди несколько возрастают, тогда как для второго ТМП $B19 \leftrightarrow B19'$ они резко снижаются и в сплавах, начиная от Ti₅₀Ni₃₃Cu₁₇, ТМП $B19 \leftrightarrow B19'$, уже не фиксируются. Фазовый состав сплавов был, как уже отмечалось, определен методом РФСА.

Результаты механических испытаний на растяжение образцов изученных нами поликристаллических сплавов при комнатной температуре приведены на рис. 2, *b*. Сопоставляя полученные данные для сплавов в зависимости от легирования медью и кристаллоструктурного типа мартенситной фазы, можно сделать вывод, что все их механические свойства по мере легирования медью несколько снижаются, в том числе предел прочности σ_B , предел фазовой текучести σ_M , относительное удлинение δ и величина псевдоупругой деформации на площадке фазовой текучести ε_{rev} . Вместе с тем величина относительного удлинения сохраняется на хорошем уровне (> 20%). Видно также, что ресурс обратимой псевдоупругой деформации ε_{rev} несколько ниже, что

Рис. 3. Электронно-микроскопические изображения микроструктуры сплавов $Ti_{50}Ni_{25}Cu_{25}$ при комнатной температуре (*a*) и $Ti_{50}Ni_{40}Cu_{10}$ при 120 K (*b*).

следовало ожидать для сплавов с $B2 \leftrightarrow B19$ ТМП по сравнению со сплавами с $B2 \leftrightarrow B19'$ ТМП.

Теперь кратко рассмотрим результаты электронно-микроскопического изучения микроструктуры исследуемых квазибинарных сплавов. Типичной особенностью их мартенситной структуры является преимущественно пакетно-пирамидальная морфология мартенситных кристаллов (рис. 3). Она наиболее выражена в сплаве Ti₅₀Ni₂₅Cu₂₅ с В19-мартенситом (рис. 3, a). Так, в тройном стыке на рис. 3, а их габитусные плоскости огранки близки семейству плоскостей {111}_{B19}, а в пакетах параллельных кристаллов также имеются пластины микродвойников I типа по $(111)_{B19'}$ с плоскостью сдвига $K_1 = (111)$ и вектором сдвига $\eta_2 = [121]$ в соответствии с [14]. При комнатной температуре, и особенно при охлаждении in situ, дополнительно образуются тонкие вторичные двойники и по системе типа $\{011\}\langle 01\bar{1}\rangle_{B19}$. При уменьшении содержания меди в сплавах морфология В19-мартенсита постепенно трансформируется в преимущественно пакетную (рис. 3, b). В данном примере при комнатной температуре сплав Ti₅₀Ni₄₀Cu₁₀ имел структуру В19-мартенсита. А при охлаждении этот сплав испытал второе $B19 \leftrightarrow B19'$ ТМП, что проявлялось в появлении внутри моноклинных В19'-кристаллов тонких вторичных составных нанодвойников типа (001)_{В19'} (рис. 3, b). При этом сохранились в целом пакетная

морфология мартенсита и его кристаллоструктурные характеристики: границы первичных двойников I типа $(111)_{B19}$ трансформировались в границы двойников I типа $(111)_{B19'}$, а ориентационные соотношения по данным анализа микроэлектронограмм были близки между собой: $(100)_{B19} \parallel (100)_{B19'}$, $[010]_{B19} \parallel [010]_{B19'}$, $[001]_{B19} \parallel [001]_{B19'}$. Наконец, микроструктура B19'-мартенсита в целом типична и для B19'-мартенсита в бинарных и умеренно легированных медью сплавах, в которых ТМП происходит по схеме $B2 \leftrightarrow B19'$. Их ориентационные соотношения, как и для ТМП $B2 \leftrightarrow B19$, близки бейновским: $(100)_{B2} \parallel (100)_{B19'(B19)}, [011]_{B2} \parallel [010]_{B19'(B19)}, [01]_{B2} \parallel [001]_{B19'(B19)}$.

Таким образом, в работе показано, что легирование медью прецизионных квазибинарных сплавов TiNi-TiCu (50 at.% Ti) оказывает сравнительно слабое влияние на критические температуры ТМП в сплавах, сохраняя температурный гистерезис первого ТМП $B2 \leftrightarrow B19'$ или $B2 \leftrightarrow B19$ выше комнатной температуры. Коррелирует с температурной зависимостью температур данных ТМП поведение физико-механических свойств и эффектов памяти формы: механические свойства сплавов по мере легирования практически сохраняются на одном уровне и важно, что их относительное удлинение превышает 20%.

Работа выполнена при поддержке проекта Российского научного фонда (проект № 15-12-10014).

Список литературы

- [1] Лихачев В.А., Кузьмин С.Л., Каменцева З.П. Эффект памяти формы. Л.: ЛГУ, 1987. 218 с.
- [2] Ооцука К., Симидзу К., Судзуки Ю. и др. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 с.
- [3] Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана: Структура и свойства. М.: Наука, 1992. 160 с.
- [4] Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
- [5] Otsuka K., Wayman C.M. Shape memory materials. Cambridge University Press, 1998. 284 p.
- [6] Пушин В.Г., Прокошкин С.Д., Валиев Р.З. и др. Сплавы никелида титана с памятью формы. Ч. 1. Структура, фазовые превращения и свойства. Екатеринбург: УрО РАН, 2006. 440 с.
- [7] Pushin V.G. // PhMM. 2000. V. 90. Suppl. 1. P. 568-595.

- [8] Шишковский И.В., Ядроитцев И.А., Смуров И.Ю. // Письма в ЖТФ. 2013.
 Т. 39. В. 24. С. 15–21.
- [9] Николаев В.И., Якушев П.Н., Малыгин Г.А., Аверкин А.И., Чикиряка А.В., Пульнев С.А. // Письма в ЖТФ. 2014. Т. 40. В. 3. С. 57–63.
- [10] Ясенчук Ю.Ф., Артюхова Н.В., Новиков В.А., Гюнтер В.Э. // Письма в ЖТФ. 2014. Т. 40. В. 16. С. 60–67.
- [11] Ясенчук Ю.Ф., Артюхова Н.В., Гюнтер В.Э., Ji-Soon Kim // Письма в ЖТФ. 2015. Т. 41. В. 18. С. 42–49.
- [12] Чумляков Ю.И., Киреева И.В., Поклонов В.В., Победенная З.В., Кагатап I. // Письма в ЖТФ. 2014. Т. 40. В. 17. С. 47–53.
- [13] Киреева И.В., Чумляков Ю.И., Платонова Ю.Н. // Письма в ЖТФ. 2015. Т. 41. В. 6. С. 58-66.
- [14] Saburi T., Watarabe Y., Nenno S. // ISIJ Intern. 1989. V. 29. N 5. P. 405-411.
- [15] Nam T.H., Saburi T., Shimizu K. // Mater. Trans. JIM. 1990. V. 31. N 11. P. 959–967.
- [16] Nam T.H., Saburi T., Nakata Y., Shimizu K. // Mater. Trans. JIM. 1990. V. 31. N 12. P. 1050–1056.
- [17] Moberly W.Y., Proft J.L., Duerig T.W., Sinclair R. // Mater. Sci. Forum. 1990.
 V. 56–58. P. 605–610.
- [18] Tang W., Sandstrom R., Wei Z.G., Miyzaki S. // Met. Mat. Trans. A. 1990. V. 31. P. 2423–2430.