Рентгенографические исследования кристалла $[N(CH_3)_4]_2 ZnCI_4$ в области низких температур

© А.У. Шелег, А.М. Наумовец

Институт физики твердого тела и полупроводников Национальной академии наук Белоруссии, 220072 Минск, Белоруссия

E-mail: sheleg@ifttp.bas-net.by

(Поступила в Редакцию 30 октября 2003 г.)

Рентгенографическим методом в интервале температур 80-293 К измерены параметры элементарной ячейки a, b и c кристалла [N(CH₃)₄]₂ZnCl₄. Получены температурные зависимости коэффициентов теплового расширения α_a, α_b и α_c вдоль основных кристаллографических осей и коэффициента теплового расширения объема элементарной ячейки α_V . Показано, что при температурах фазовых переходов $T_1 = 161$ и $T_2 = 181$ К на кривых a = f(T), b = f(T) и c = f(T) наблюдаются аномалии в виде скачков, а фазовый переход при $T_3 = 276$ К на кривых a = f(T) и b = f(T) проявляется в виде излома. Обнаружена небольшая анизотропия коэффициента теплового расширения в исследованном кристалле. Установлено, что фазовые переходы при $T_1 = 161$ и $T_2 = 181$ К в кристалле [N(CH₃)₄]₂ZnCl₄ относятся к первому роду.

1. Введение

Кристалл тетраметиламмониума тетрахлорцинката $[N(CH_3)_4]_2ZnCl_4$ принадлежит семейству $[N(CH_3)_4]_2XB_4$ (X = Zn, Co, Cu, Mn, Fe, Cd, Ni; B = Cl, Br), характерной особенностью которого является наличие у большинства из этих кристаллов фазовых переходов ($\Phi\Pi$) и проявление сегнетоэлектрических свойств в относительно узком интервале температур [1]. Кроме того, у некоторых из них наблюдается промежуточная несоразмерная фаза при переходе из парафазы в сегнетофазу.

Кристалл $[N(CH_3)_4]_2ZnCl_4$ интересен тем, что у него наблюдается целая последовательность ФП. В [2] показано, что в этом кристалле ФП происходят при температурах 161, 181, 276.3, 279 и 293 К, причем в интервале 276.3–279 К кристалл $[N(CH_3)_4]_2ZnCl_4$ проявляет сегнетоэлектрические свойства (вдоль оси *а* появляется спонтанная поляризация и наблюдается петля гистерезиса). Переход из парафазы в светофазу в этом кристалле происходит через несоразмерную фазу, которая наблюдается в интервале температур 279–293 К с волновым вектором модуляции $q_i = 0.42c^*$ [3].

Кристалл [N(CH₃)₄]₂ZnCl₄ при комнатной температуре принадлежит к орторомбической сингонии (пр. гр. Ртсп) с параметрами элементарной ячейки $a = 8.946 \pm 0.007$ Å, $b = 15.515 \pm 0.012$ Å, c = $= 12.268 \pm 0.007 \text{ Å}$ [4]; a = 8.998 Å, b = 15.541 Å, c = 12.276 Å, Z = 4 [5]. В [6] проведены рентгенографические исследования кристаллической структуры этого кристалла при температурах 303, 333, 363 (нормальная фаза) и 278.5 К (сегнетоэлектрическая фаза). Показано, что в сегнетофазе структура кристалла $[N(CH_3)_4]_2 ZnCl_4$ принадлежит к моноклинной сингонии (пр. гр. P2₁cn). Кристаллическая структура фаз в интервалах температур 276.3-181 К и 181-161 К является моноклинной (пр. гр. Р112₁/п и пр. гр. Р12₁/с1 соответственно), а ниже 161 К — орторомбической (пр. гр. *P*2₁2₁2₁) [3]. Представляло интерес выяснить, как изменяются параметры элементарной ячейки при изменении температуры в области существования этих ФП.

В настоящей работе приведены результаты измерения параметров элементарной ячейки кристалла $[N(CH_3)_4]_2ZnCl_4$ в зависимости от температуры и по ним определены значения коэффициентов теплового расширения в исследованной области температур.

2. Методика измерений

Рентгенографические исследования параметров элементарной ячейки проводились на рентгеновском дифрактометре ДРОН-3 в интервале температур 80-293 K, с использованием монохроматического CuK_aи МоК_а-излучения. Объектами исследования служили монокристаллические образцы в виде пластинок $4 \times 4 \times 3$ mm, поверхности которых являлись плоскостями роста, параллельными кристаллографическим плоскостям (010), (001), (110). Температурные зависимости параметров элементарной ячейки были определены из измерений брэгговских углов 20-рефлексов 080, 004, 440. Следует отметить, что интенсивности брэгговских рефлексов с большими углами отражения для этого кристалла были очень слабыми. Поэтому для определения параметров элементарной ячейки пришлось использовать рефлексы со сравнительно небольшими углами 20. Для определения параметров b и c использованы образцы в виде пластинок, поверхностями которых были плоскости роста (010) и (001). Значения параметра а были определены из температурных зависимостей $d_{010} = f(T)$ и $d_{110} = f(T)$, причем, поскольку при моноклинных искажениях в фазах P112₁/n и P12₁/c1 максимальные значения изменения углов не превышают $\Delta \gamma \leq 0.6^{\circ}$ и $\Delta \beta \leq 0.06^{\circ}$ соответственно [7], что дает погрешность при вычислении параметра $a \Delta a \sim 10^{-4} \text{ Å}$, при расчете параметра элементарной ячейки а моноклинными искажениями мы пренебрегали. Регистрация дифракционных спектров проводилась по схеме $\theta - 2\theta$. Профили интенсивности рефлексов регистрировались методом шагового сканирования с шагом 0.01° при постоянном временном интервале набора импульсов $T_0 = 20s$. Углы 2θ определяли по центру тяжести рефлексов.

Образец помещался в гелиевый рентгеновский криостат. Заданная температура устанавливалась и поддерживалась автоматически при помощи регулятора температуры ВРТ-2. Контроль над температурой образца осуществлялся при помощи хромель-медь-0.15% Fe термопары, один спай которой крепился на образце, а другой термостатировался в тающем льде. Такая система позволяла задавать и поддерживать температуру образца с точностью 0.1 К в измеряемой области температур. Образец перед каждой съемкой выдерживался в течение 10–12 минут при заданной температуре.

Параметры элеметарной ячейки кристалла $[N(CH_3)_4]_2$ ZnCl₄ при комнатной температуре, определенные нами, были: $a = 8.993 \pm 0.009$ Å, $b = 15.533 \pm 0.008$ Å, $c = 12.273 \pm 0.008$ Å, что достаточно хорошо согласуется с имеющимися в литературе данными.

По экспериментальным данным температурных зависимостей параметров и объема элементарной ячейки были определены соответствующие коэффициенты теплового расширения (КТР) $\alpha_a = f(T), \ \alpha_b = f(T),$ $\alpha_c = f(T)$ вдоль основных кристаллографических осей, а также коэффициент теплового расширения объема элементарной ячейки $\alpha_V = f(T)$ в интервале температур 80-293 К. Кривые c = f(T), V = f(T) были аппроксимированы тремя наиболее подходящими степенными полиномами третьей степени типа $L = A + \sum (-1)^i B_i T^i$ на участках 80-161, 161-181 и 181-293 К. Для аппроксимации кривых a = f(T) и b = f(T) были использованы четыре степенных полинома третьей степени такого же типа на участках 80-161 К, 161-181 К, 181-276 К и 276-293 К, что связано с наличием аномалии в точке $T_3 \approx 276$ K, которая не наблюдалась на кривых c = f(T)и V = f(T).

Аппроксимационные кривые разбивались на температурные отрезки длиной 0.7–1.5 K, на которых расчет КТР проводился согласно формуле $\alpha_L = \frac{1}{L} \frac{\Delta L}{\Delta T}$, где L параметр элементарной ячейки, соответствующий середине отрезка ΔT , ΔL — изменение параметра на этом отрезке.

3. Результаты исследований и их обсуждение

На рис. 1–4 приведены полученные температурные зависимости параметров и объема элеметарной ячейки, а также температурные зависимости коэффициентов теплового расширения кристалла $[N(CH_3)_4]_2ZnCl_4$ в области температур 80–293 К. Из рисунков видно, что параметры элементарной ячейки *a*, *b*, *c* и объем *V* с ростом температуры плавно увеличиваются.

Рис. 1. Температурная зависимость параметра элементарной ячейки *a*: экспериментальные точки (1), аппроксимация экспериментальных данных (2), зависимость КТР α_a от температуры (3).

Рис. 2. Температурная зависимость параметра элементарной ячейки *b*: экспериментальные точки (1), аппроксимация экспериментальных данных (2), зависимость КТР α_b от температуры (3).

Рис. 3. Температурная зависимость параметра элементарной ячейки c: экспериментальные точки (1), аппроксимация экспериментальных данных (2), зависимость КТР α_c от температуры (3).

Рис. 4. Температурная зависимость объема элементарной ячейки V: экспериментальные точки (1), аппроксимация экспериментальных данных (2), зависимость КТР α_V от температуры (3).

Однако, в области фазовых переходов при $T_1 \approx 161$ и $T_2 \approx 181 \,\mathrm{K}$ на кривых a = f(T), b = f(T), c = f(T)и V = f(T) наблюдаются аномалии в виде скачков. Интересно отметить, что величина скачка при $T_1 = 161 \, \text{K}$ на температурных зависимостях параметров элементарной ячейки a, b, c и объема V небольшая и составляет ≈ 0.011 Å, ≈ 0.004 Å, ≈ 0.005 Å и ≈ 3.6 Å³ соответственно. Изменения параметров а, b и с в области $\Phi\Pi$ при $T_2 \approx 181 \,\mathrm{K}$ достаточно большие и составляют $\Delta a \approx 0.081, \Delta b \approx 0.041$ Å и $\Delta c \approx 0.04$ Å. Однако если параметры b и c скачком уменьшаются на величину $\Delta b \approx 0.041$ Å и $\Delta c \approx 0.04$ Å при $T_2 = 181$ K, то параметр *а* увеличивается на $\Delta a \approx 0.081$ Å. В результате объем элементарной ячейки при этом ФП изменяется незначительно $\Delta V \approx 5.3 \text{ Å}^3$, и кристаллы при таких больших линейных изменениях не разрушаются.

В области ФП при $T_3 \approx 276$ К на кривых a = f(T)и b = f(T) наблюдаются четкие аномалии в виде изломов. Что касается ФП при $T_4 = 279$ К, то, поскольку ФП при T_3 и T_4 находятся очень близко друг к другу, разделить их практически невозможно. Следует отметить, что в области температур 80-161 К происходят небольшие изменения параметров элементарной ячейки a, b и cс ростом температуры. В то же время после фазового перехода при $T_2 = 181$ К с ростом температуры происходит более резкое изменение всех трех параметров элементарной ячейки, т. е. КТР по абсолютной величине в области температур 181-276 К больше, чем в области 80-161 К (рис. 1-3).

Как видно из рис. 1–4, в области температур между ФП $T_1 = 161$ и $T_2 = 181$ К на кривых $\alpha_b = f(T)$ и $\alpha_c = f(T)$ проявляется небольшой максимум, а КТР α_a с ростом температуры уменьшается. В точках ФП при $T_1 = 161$ и $T_2 = 181$ К на кривых $\alpha_b = f(T)$ и $\alpha_c = f(T)$ наблюдаются резкие минимумы, на кривой $\alpha_a = f(T)$ при $T_1 = 161$ К — минимум, а при $T_2 = 181$ К — максимум. В области ФП при $T_3 = 276$ К вдоль оси a

наблюдается скачок КТР вниз, а вдоль оси b — вверх. Коэффициент объемного расширения α_V в области фазовых переходов при $T_1 = 161$ и $T_2 = 181$ К с ростом температуры изменяется аналогично КТР α_a .

Из приведенных данных (рис. 1-3) видно, что в кристалле [N(CH₃)₄]₂ZnCl₄ наблюдается небольшая анизотропия теплового расширения. Причем в разных температурных интервалах соотношения между значениями КТР α_a , α_b и α_c различны. В интервале температур 80–161 К $\alpha_a \approx \alpha_b \approx \alpha_c$, в то время как в области температур 181-276 К, где кристаллическая структура является моноклинной, проявляется анизотропия теплового расширения $\alpha_a > \alpha_b > \alpha_c$. Для температурного интервала между ФП (161-181 К) соотношение между КТР можно записать как $\alpha_a \approx \alpha_b < \alpha_c$. Следует отметить, что в интервалах температур 80-161 К и 181-276 К изменения значений КТР вдоль трех основных кристаллографических осей с ростом температуры небольшие. При температурах выше $T_3 = 276 \,\mathrm{K}$ изменения α_a и α_b более значительны, причем α_b растет, а α_a уменьшается.

Из полученных данных следует, что переходы при $T_1 = 161$ и $T_2 = 181$ К являются ФП первого рода.

Список литературы

- [1] K. Gesi. J. Phys. Soc. Jap. 51, 1, 203 (1984).
- [2] Sh. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige, M. Matsuo. J. Phys. Soc. Jap. 44, 2, 687 (1978).
- [3] H. Mashiyama, S. Tanisaki. Phys. Lett. 76A, 3, 347 (1984).
- [4] B. Morosin, E.C. Lingafelter. Acta Cryst. 12, 8, 611 (1959).
- [5] J.R. Wiesner, R.C. Srivastava, C.H.L. Kennard, M. Di Vaira, E.C. Lingafelter. Acta Cryst. 23, 4, 565 (1967).
- [6] K. Hasebe, H. Mashiyama, N. Koshiyi, S. Tanisaki. J. Phys. Soc. Jap. 56, 10, 3543 (1987).
- [7] K. Deguchi, H. Motegi, E. Nakamura. Japan. J. Appl. Phys. 24, Suppl. 2, 761 (1985).