Ударная ионизация в неоднородно разогретых кремниевых $p^+ - n - n^+$ - и $n^+ - p - p^+$ -структурах

© А.М. Мусаев

Институт физики им. Х.И. Амирханова Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия

E-mail: akhmed-musaev@yandex.ru

(Получена 6 апреля 2015 г. Принята к печати 21 сентября 2015 г.)

Приведены результаты экспериментального исследования, эффектов изменения тока ударной ионизации в кремниевых диффузионных $p^+ - n - n^+ - u n^+ - p - p^+$ -структурах при неоднородном их разогреве. Показано, что обнаруженные эффекты связаны с трансформацией зонных энергетических уровней, которые обусловлены термоупругими напряжениями структур.

В исследованиях [1-3] показано, что ток ударной ионизации в кремниевых p-n-структурах при их неоднородном разогреве принципиально отличается от случая однородного разогрева. Градиент температуры в зависимости от направления по отношению к току может изменить величину тока ударной ионизации, при этом значительно изменяя напряжение пробоя. Несмотря на явный эффект, физическое понимание явления остается недостаточным. В частности, не учтены все факторы, обусловленные градиентным распределением температуры в структуре, которые могут существенно влиять на напряжение лавинообразования.

В данной работе излагаются результаты экспериментального исследования эффектов изменения тока ударной ионизации в кремниевых диффузионных $p^+ - n - n^+$ и $n^+ - p - p^+$ -структурах, при их неоднородном разогреве. Показано, что обнаруженный эффект связан с нелинейным распределением температуры и последующим формированием стационарной варизонной системы в структурах. Трансформация зонных энергетических уровней обусловлена термоупругими напряжениями в структурах, определяемых нелинейным распределением температуры и изменением коэффициента теплового расширения кремния с температурой. Существенность фактора упругой деформации показывают исследования, проведенные в работе [4] (см. также ссылки в этой работе), где изучено влияние одноосной упругой деформации на изменение обратного тока в кремниевых *p*-*n*-структурах при лавинном пробое. В этой работе обнаружены обратимое увеличение тока ударной ионизации и снижение напряжения лавинного пробоя с ростом давления, что объяснено уменьшением ширины запрещенной зоны, вызванным упругой деформацией структуры.

Исследования проводились на диффузионных p^+-n-n^+- и n^+-p-p^+ -структурах, изготовленных в заводских условиях, на базе *n*-Si с $\rho = 40$ Ом · см с применением в качестве диффузантов: бора, фосфора и алюминия. Структуры p^+-n-n^+ были получены посредством диффузии с одной стороны фосфора, а с другой стороны — бора. Для получения n^+-p-p^+ -структур с одной стороны производилась диффузия фосфора, а с другой — диффузия алюминия и фосфора.

Глубина залегания p-n-перехода структур составляла $\sim 120 - 128$ мкм, толщина структур была ~ 250 мкм, диаметр 1.8 мм. Контакты к структурам изготавливались электролитическим осаждением никеля, на которые химически осаждалось золото. Неоднородный разогрев структуры в диапазоне от $T_r = 300$ К до $T_h = 315$ К, производился посредством механического подсоединения нагревателя к структуре, припаянной к теплоемкому холодильнику. Изменение температуры нагревателя за период проведения измерений составляло не более 2%. Электрические измерения проводились при задержке на 10 мс после подключения нагревателя и при установившемся температурном режиме.

В таблице приведены значения обратного тока структур I_T при воздействии импульсного температурного поля с положительным и отрицательным градиентами, где $T_r = 300$ К и $T_h = 315$ К — температуры холодильника и нагревателя соответственно.

Как видно из таблицы, при одинаковом знаке градиентов температуры структуры $p^+ - n - n^+$ и $n^+ - p - p^+$ имеют противоположные знаки изменения обратных токов.

На рис. 1 показано распределение температуры на структуре через 10 мс, при импульсном воздействии температурного поля в диапазоне от $T_r = 300$ K до $T_h = 315$ K.

Известно, что в плоском образце, находящемся в температурном поле по толщине, с градиентами модуля Юнга и коэффициентами теплового расширения, а также с нелинейным распределением температуры (обусловленный зависимостью коэффициента теплопроводности от температуры) возникают термоупругие деформации с двухосными механическими напряжениями. Данный градиент температуры не вызывает изгиба образца.

Изменение обратного тока структур

Тип	U _{обр.} при	I_T (мкА) при	I_T (мкА) при
структуры	I ₀ = 100 мкА, В	dT/dx > 0, мкА	dT/dx < 0, мкА
p^+-n-n^+	980	92	124
n^+-p-p^+	860	132	95

Рис. 1. Распределение температуры структуры через 10 мс после подключения нагревателя с температурой $T_h = 315$ К. Температура холодильника $T_r = 300$ К.

В более нагретой области образца возникают сжимающие термоупругие напряжения, а в менее нагретой области — растягивающие напряжения, которые имеют статические моменты площади сечения с симметрично распределенным "весом".

Распределение термоупругих напряжений в образце с геометрией пластины, с приложенным градиентом температуры, можно рассчитать по следующей формуле [5]:

$$\sigma = [E/(1-\mu)](\varepsilon_T + x\chi_T - \alpha_T T), \qquad (1)$$

где E — модуль Юнга, μ — коэффициент Пуассона, T — температура, x — координата температурного поля, $\varepsilon_T = 1/L \int_0^L \alpha_T T dx$, $\chi_T = 12/L^3 \int_0^L \alpha_T T x dx$.

Учет температурных и кристаллографических зависимостей механических параметров: модуля Юнга *E* и коэффициента Пуассона ν представляют значительные трудности, поэтому для вычислений использовались следующие постоянные значения: $E_{[111]} = 190 \cdot 10^3$ МПа, $\nu = 0.3$, толщина структуры L = 250 мкм, а коэффициент линейного теплового расширения $\alpha =$ $= (2.6 + 0.0025\Delta T \cdot K^{-1}) \cdot 10^{-6}$ K⁻¹.

На рис. 2 приведен рассчитанный профиль распределения термоупругих напряжений в кристаллографических направлениях типа [111], в плоскости *p*-*n*-перехода образца.

Как сжатие, так и растяжение кремния по направлениям [111] приводят к уменьшению ширины запрещенной зоны вследствие смещения долин зоны проводимости и расщепления уровней валентной зоны [6]. Рассчитанные зависимости смещения энергетических уровней E_c и E_v в направлении [111], перпендикулярном к плоскости p-n-перехода, показаны на рис. 3.

Изменение параметров зонной структуры и плотности состояний валентной зоны при упругой деформации приводят к изменению ширины области объемного заряда

Физика и техника полупроводников, 2016, том 50, вып. 4

структуры. Это в свою очередь приводит к перераспределению электрических полей в области объемного заряда. При этом поле, обусловленное объемным зарядом и зависящее от координаты, одинаково для всех носителей заряда, включая электроны всех смещенных долин импульсного пространства. В потенциальной яме, сформированной у контакта в базовой области, происходит накопление неосновных носителей заряда, чему также способствует увеличение времени их жизни, обусловленное температурой. Обогащение базовой области носителями заряда компенсирует заряд ионизированных атомов, которое усиливает электрическое поле в данной области. Данный процесс соответственно перераспределяет электрическое поле с ослаблением поля в области умножения.

Формирование потенциальных ям в области контактов обусловлено изменением высоты потенциального барье-

Рис. 2. Профиль распределения термоупругих напряжений, в направлении [111] плоскости *p*-*n*-перехода, по толщине перехода.

Рис. 3. Зависимости смещения энергетических уровней E_c и ΔE_v по толщине p-n-перехода, обусловленные термоупругими напряжениями.

ра контакт-полупроводник Φ_b с давлением и практически совпадает с литературными данными для барического коэффициента ширины запрещенной зоны кремния [7].

$$-(d\Phi_b/dP) \approx -(dE_g/dP).$$
(2)

Известно, что энергия ионизации в кремниевых *p*-*n*-структурах при лавинном пробое существенно зависит как от ширины запрещенной зоны Eg, так и от эффективных масс свободных носителей заряда, участвующих в процессе. Ионизирующая энергия носителей E_i больше E_g и возрастает с ростом E_g . Так как коэффициент ионизации экспоненциально зависит от E_i [8], то изменение ширины запрещенной зоны Е_g приводит к существенной пространственной зависимости данного коэффициента. Кроме того, в варизонной системе процесс лавинообразования становится еще более несимметричным по отношению к электронам и дыркам, что обусловлено геометрией развития лавинного процесса. В случае, когда ширина запрещенной зоны возрастает по направлению электрического поля, коэффициент лавинообразования для электронов увеличивается, а дырок уменьшается.

Ударная ионизация характеризуется коэффициентом ионизации электронов α_n .

$$\alpha_n = (1/\nu_n) \int_E^\infty \omega_{in}(E) \cdot F(E) \cdot \rho(E) dE, \qquad (3)$$

где v_n — дрейфовая скорость электронов; $\omega_{in}(E)$ вероятность ударной ионизации в единицу времени; $\rho(E)$ — плотность состояний.

Коэффициент ударной ионизации для дырок α_p определяется формулой, аналогичной (3). По литературным данным, характерное поле ионизации в кремнии составляет $E_{in} = 1.75 \cdot 10^6$ и $E_{ih} = 3.26 \cdot 10^6$ В/см для электронов и дырок соответственно.

Минимальная энергия ионизации Е_{in} для электрона определяется как

$$E_{in} = E_g \cdot [1 + 2(m_n/m_p)]/[1 + m_n/m_p].$$
(4)

Энергия ионизации Е_{ір} для дырки определяется путем взаимной замены эффективных масс электронов и дырок соответственно m_n на m_p .

Из соотношения (4) следует, что минимальные энергии ионизации, без деформации структуры, составляют для электронов $E_{in} = 1.39E_g$, для дырок $E_{ih} = 1.61E_g$. При деформации структуры, в условиях больших деформаций, энергии ионизации для электронов и дырок приблизительно равны и составляют $E_{in} \approx E_{ih} \approx 1.5 E_{e}$.

Исходя из вышеприведенных факторов влияния термоупругой деформации и неоднородного разогрева на ток ударной ионизации в кремниевых структурах можно сделать следующие выводы.

1. $p^+ - n - n^+$ -структуры.

-Увеличение ионизационного тока при dT/dx < 0обусловлено сужением ширины запрещенной зоны в области пространственного заряда (ОПЗ) p-n-перехода также тем, что область лавинной ионизации расположена в зоне с низкой температурой.

– Уменьшение ионизационного тока при dT/dx > 0связано с накоплением термически возбужденных электронов в потенциальной яме, образованной в приконтактной *n*⁺-области, которое приводит к компенсации положительного объемного заряда ионов в этой области. Данный эффект приводит к перераспределению электрического поля в структуре, которое уменьшает ионизационный ток. Кроме того, область лавинной ионизации находится в зоне с более высокой температурой, что также приводит к уменьшению коэффициента ионизации.

2. $p^+ - p - n^+$ -структуры.

– Увеличение ионизационного тока при dT/dx > 0обусловлено сужением ширины запрещенной зоны в области ОПЗ p-n-перехода и тем, что область лавинной ионизации расположена в области с низкой температурой.

– Уменьшение ионизационного тока при dT/dx < 0обусловлено тем, что в потенциальной яме, образованной в приконтактной области p^+ , происходит накопление дырок. Когда плотность объемного заряда дырок становится сравнимой с плотностью объемного заряда ионов примеси, происходит перераспределение поля, определяемое расширением ОПЗ. Данное ослабление электрического поля в области умножения приводит к уменьшению ионизационного тока. Также фактором уменьшения коэффициента ионизации является то, что область лавинной ионизации находится в зоне с более высокой температурой.

Как показано выше, в варизонной системе, процессы как электронного, так и дырочного лавинообразования являются анизотропными, что обусловлено геометрией развития лавинного процесса, связанной с конфигурацией направления электрического поля и знака градиента ширины запрещенной зоны.

Список литературы

- [1] В.Н. Добровольский, В.А. Романов. ФТП, 26, 1361 (1992).
- [2] В.Н. Добровольский, С.Б. Грязнов. ФТП, 26, 1366 (1992).
- [3] В.Н. Добровольский, И.Е. Пальцев. ФТП, 28, 266 (1994).
- [4] W. Rindner. Appl. Phys. Lett., 6, 225 (1965).
- [5] А.Д. Коваленко. Термоупругость (Киев, Вища шк., 1975) гл. 2.
- [6] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках (М., Наука, 1972) гл. 5, c. 374.
- [7] А.Л. Полякова. Деформация полупроводников и полупроводниковых приборов (М., Энергия, 1979) гл. 3.
- Л.Е. Воробьев, С.Н. Данилов, Е.Л. Ивченко, М.Е. Левинштейн, Д.А. Фирсов, В.А. Шалыгин. Кинетические и оптические явления в сильных электрических полях в полупроводниках и наноструктурах (СПб., Наука, 2000) гл. 2, с. 102.

Редактор А.Н. Смирнов

472

Физика и техника полупроводников, 2016, том 50, вып. 4

A.M. Musaev

Institute of Physics, Daghestan Scientific Center, Russian Academy of Sciences, 367003 Makhachkala, Russia

Abstract The paper presents the experimental results on, the effects of change in the impact ionization current in silicon diffused $p^+ - n - n^+$ and $n^+ - p - p^+$ -structures of inhomogeneous heating. The found effects are shown to be associated with the transformation of band energy levels caused by the thermoelastic stresses of the structures.