15

Чувствительность эксперимента по поиску нейтрон-антинейтронных осцилляций на проектируемом источнике ультрахолодных нейтронов на реакторе BBP-M

© А.П. Серебров¹, А.К. Фомин¹, Ю.А. Камышков²

 ¹ Петербургский институт ядерной физики им. Б.П. Константинова НИЦ "КИ", Гатчина, Россия
 ² University of Tennessee, Knoxville TN 37996, USA E-mail: serebrov@pnpi.spb.ru

Поступило в Редакцию 1 сентября 2015 г.

Предложен эксперимент по поиску нейтрон-антинейтронных осцилляций с хранением ультрахолодных нейтронов в материальной ловушке. Факторами, влияющими на чувствительность эксперимента, являются размер ловушки и количество ультрахолодных нейтронов в ней. В настоящее время на реакторе ВВР-М в ФГБУ "ПИЯФ" создается высокоинтенсивный источник ультрахолодных нейтронов, в котором будет получена плотность на 2–3 порядка выше, чем на существующих в мире источниках. По результатам моделирования эксперимента по поиску нейтрон-антинейтронных осцилляций на новом источнике можно сделать вывод о возможности улучшения чувствительности в $\sim 20-80$ раз по отношению к существующей в зависимости от модели отражения нейтрона от стенок.

В работе А.Д. Сахарова [1] указаны три условия возникновения Вселенной: нарушение барионного числа, С- и СР-нарушения и наличие неравновесного термодинамического процесса. При нарушении барионного числа становится возможным процесс перехода нейтрона в антинейтрон и обратно. В недавней работе [2] было показано, что все три условия А.Д. Сахарова могут выполняться для процесса превращения нейтрона в антинейтрон. Впервые о возможности экспериментального поиска нейтрон-антинейтронных осцилляций было упомянуто в работе [3]. Предложена схема эксперимента, когда поток нейтронов от реактора, пройдя некоторое расстояние в вакууме, падает

85

на мишень. Осцилляции можно обнаружить по аннигиляции образовавшихся антинейтронов на мишени. Для проведения эксперимента необходимо экранирование магнитного поля Земли, так как оно подавляет амплитуду осцилляций. Вероятность обнаружить антинейтрон через время t определяется формулой: $P_{n\tilde{n}} = \left(\frac{t}{\tau_{n\tilde{n}}}\right)^2$, где $\tau_{n\tilde{n}}$ — период нейтрон-антинейтронных осцилляций. Чувствительность эксперимента определяется выражением Nt^2 , где N — число нейтронов, попадающих в мишень в секунду, t — время пролета нейтрона до мишени.

В Институте Лауэ–Ланжевена (Гренобль, Франция) был осуществлен эксперимент по поиску нейтрон-антинейтронных осцилляций на пучке холодных нейтронов от реактора [4]. Нейтроны пролетали расстояние около 60 m со скоростью около 600 m/s в откачанной и экранированной от магнитного поля трубе. За время измерений 2.4 · 10⁷ s антинейтронных событий зарегистрировано не было. Получена оценка на пероид осцилляций $\tau_{n\bar{n}} \ge 0.86 \cdot 10^8$ s (90% CL). Среднее время пролета нейтронов было 0.109 s. Чувствительность эксперимента составила $Nt^2 = 1.5 \cdot 10^9$ n · s.

Наряду с пучковым экспериментом был рассмотрен метод проведения эксперимента с использованием хранения ультрахолодных нейтронов (УХН) в материальной ловушке [5]. В дальнейшем он обсуждался в ряде публикаций, например [6,7]. Реализация эксперимента с УХН будет более компактной и менее дорогостоящей, так как при этом не требуется большой пролетной базы, как в случае с холодными нейтронами. Однако в ней имеются сложности детектирования сигнала от антинейтрона. В ловушке большого объема время свободного пролета УХН составляет около 1 s. Для получения высокой чувствительности эксперимента необходимо наличие мощного источника УХН.

На реакторе ВВР-М в ФГБУ "ПИЯФ" сейчас создается высокоинтенсивный источник УХН [8], в котором будет получена плотность на 2–3 порядка выше, чем на существующих в мире источниках УХН. Производительность источника составит 10⁸ n/s. В связи с этим мы решили оценить чувствительность эксперимента с УХН на планируемом источнике по сравнению с чувствительностью эксперимента [4].

Нами была проведена оценка чувствительности эксперимента методом Монте-Карло. В расчете была смоделирована траектория каждого нейтрона с учетом гравитации. В моделировании использовалась модель источника УХН на реакторе ВВР-М из работы [9]. УХН поступают

Рис. 1. Варианты представления хранения ультрахолодных нейтронов в ловушке с частичным накоплением антинейтронной фазы (*a*) и без накопления антинейтронной фазы (*b*). Сплошная линия — реальная часть потенциального барьера для нейтрона, пунктирная линия — для антинейтрона.

из источника со сверхтекучим гелием в экспериментальный объем в постоянном режиме через нейтроновод диаметром 140 mm. Нейтроновод имеет внутри напыление ⁵⁸NiMo с граничной скоростью 7.8 m/s и коэффициентом потерь $3 \cdot 10^{-4}$. Ловушка УХН имеет высоту 2.5 m. Вертикальный размер ловушки определяется высотой подскока УХН в гравитационном поле Земли. Расчеты выполнены для радиусов ловушки от 1 до 6 m. Ловушка напылена внутри Ве с граничной скоростью 6.8 m/s и коэффициентом потерь $3 \cdot 10^{-5}$. При отражении нейтронов от стенок нейтроноводов 0.7% отражений являются диффузными, а при отражении от стенок ловушки УХН — 90%. Вопросы регистрации событий аннигиляции в модели не рассматривались.

Варианты представления условий хранения для нейтрона и антинейтрона в ловушке показаны на рис. 1. Рассмотрены два крайних случая: 1) реальная часть потенциала отражения для нейтрона и антинейтрона близка или совпадает; 2) реальная часть потенциала отражения для антинейтрона близка к нулю. В первом случае можно ожидать отражение антинейтронов от стенок и накопление антинейтронной фазы. Во втором случае такого накопления не может быть. Антинейтрон, входя в вещество, немедленно аннигилирует. Для первого случая коэффициент отражения антинейтронов не может быть достаточно высоким из-за большой мнимой части потенциала отражения для антинейтрона из-за сечения аннигиляции. Из-за этого коэффициент отражения для антинейтрона не может быть близок к 1, как это имеет быть для

Рис. 2. Коэффициент отражения антинейтрона в зависимости от $\tilde{\eta}$ для разных энергий.

нейтрона. В моделировании рассмотрены два подхода: с частичным накоплением антинейтронной фазы и без накопления. Для варианта с частичным накоплением антинейтронной фазы коэффициент отражения антинейтрона вычислялся по формуле

$$ilde{\mathcal{R}} = \left|rac{1-\sqrt{1-rac{ ilde{U}_0}{ ilde{E}_\perp}\left(1-i ilde{\eta}
ight)}}{1+\sqrt{1-rac{ ilde{U}_0}{ ilde{E}_\perp}\left(1-i ilde{\eta}
ight)}}
ight|^2$$

где \tilde{E}_{\perp} — нормальная сотавляющая энергии антинейтрона, $\tilde{U} = \tilde{U}_0 - i\tilde{W}$ — эффективный потенциал среды для антинейтронов, $\tilde{\eta} = \frac{\tilde{W}}{U_0}$. Возможный \tilde{R} приведен на рис. 2. Коэффициент $\tilde{\eta}$ для антинейтронов принят равным 0.2, как среднее значение по ядрам [5,10]. При $\tilde{\eta} = 0.2 \ \tilde{R}$ меняется от ~ 0.3 до ~ 0.9 в зависимости от нормальной составляющей энергии подлетающего антинейтрона. Случай с частичным накоплением антинейтронной фазы в данной схеме соответствует тому, что реальная часть потенциала отражения для антинейтронов и нейтронов совпадает.

Рис. 3. Чувствительность эксперимента в зависимости от радиуса объема хранения УХН (левая шкала) для варианта: ■ — без накопления антинейтронной фазы, ▲ — с частичным накоплением антинейтронной фазы; пунктирная линия — чувствительность эксперимента в ИЛЛ [4]; о — максимальная плотность УХН около дна в объеме хранения (правая шкала).

Результаты моделирования представлены на рис. 3. При увеличении радиуса цилиндрической ловушки высотой 2.5 m плотность УХН в ловушке будет падать. Но общее количество УХН будет расти, увеличивая чувствительность эксперимента. На рис. 3 приведены две зависимости увеличения чувствительности от радиуса ловушки для схемы: с частичным накоплением антинейтронной фазы (верхняя кривая) и без накопления (нижняя кривая). Увеличивать радиус ловушки 3 m чувствительность эксперимента 2.7 · 10¹⁰ n · s для варианта без накопления антинейтронной фазы и $1.2 \cdot 10^{11}$ n · s для варианта с частичным накоплением. Таким образом, можно сделать вывод о возможности улучшения чувствительности эксперимента по поиску нейтрон-антинейтронных осцилляций в ~ 20–80 раз в зависимости от модели отражения нейтрона от стенок при радиусе ловушки 3 m. Период осцилляций определяется по формуле $\tau_{n\tilde{n}} = \sqrt{\frac{(Nt^2)T\varepsilon}{N}}$, где T —

время набора статистики, ε — эффективность регистрации, \tilde{N} — число событий-кандидатов. При отсутствии антинейтронных событий ($\tilde{N} \leq 2.3$ при 90% CL) за 3 года набора статистики при $\varepsilon = 0.9$ можно получить ограничение на период осцилляций: $\tau_{n\tilde{n}} \ge (1-2) \cdot 10^9$ s (90% CL).

В заключение следует отметить, что существует проект эксперимента по поиску нейтрон-антинейтронных осцилляций с холодными нейтронами на источнике ESS (European Spallation Source) [11]. Планируется, что в нем будет улучшена чувствительность эксперимента [4] на 2-3 порядка, т. е. приблизительно на порядок лучше, чем в рассмотренном варианте с ультрахолодными нейтронами. Однако представляется важным получение результата в независимом эксперименте с использованием другой методики. Возможно, что сравнение финансовых затрат проектов также имеет значение.

Исследование выполнено в ФГБУ "ПИЯФ" НИЦ "КИ" за счет гранта Российского научного фонда (проект № 14-22-00105).

Список литературы

- [1] Сахаров А.Д. // Письма в ЖЭТФ. 1967. Т. 5. С. 32.
- [2] Berezhiani Z., Vainshtein A. // arXiv:1506.05096.
- [3] Казарновский М.В. и др. // Письма в ЖЭТФ. 1980. Т. 32. В. 1. С. 88.
- [4] Baldo-Ceolin M., Benetti P., Bitter T. // Z. Phys. C. 1994. V. 63. P. 409.
- [5] Казарновский М.В. и др. // Письма в ЖЭТФ. 1981. Т. 34. В. 1. С. 49.
- [6] Ignatovich V.K. // Phys. Rev. D. 2003. V. 67. P. 016 004.
- [7] Kerbikov B.O. et al. // ЖЭТФ. 2004. T. 125. B. 3. C. 476.
- [8] Serebrov A.P. // Crystallography Reports. 2011. V. 56. N 7. P. 1230.
- [9] Серебров А.П., Фомин А.К. // ЖТФ. 2015. Т. 85. В. 8. С. 136.
- [10] Golubeva Ye.S., Kondratyuk L.A. // Nucl. Phys. B (Proc. Suppl.). 1997. V. 56A. P. 103.
- [11] Phillips II D.G., Snow W.M., Babu K. et al. // arXiv:1410.1100.