Твердый раствор $Pb_{1-x}Eu_x$ Te ($0 \le x \le 1$) — материал для вертикально-излучающих лазеров в средней инфракрасной области спектра 4-5 мкм

© Д.А. Пашкеев, Ю.Г. Селиванов, Е.Г. Чижевский, И.И. Засавицкий

Физический институт им. П.Н. Лебедева, 119991 Москва, Россия E-mail: d.pashkeev@gmail.com

(Получена 28 мая 2015 г. Принята к печати 3 июня 2015 г.)

Проведен анализ оптических свойств эпитаксиальных слоев и гетероструктур на основе твердого раствора $Pb_{1-x}Eu_xTe$ ($0 \le x \le 1$) с целью разработки брэгтовских зеркал и вертикально-излучающих лазеров для средней инфракрасной области спектра. Показано, что для лазерных микрорезонаторов оптимальной является гетеропара $Pb_{1-x}Eu_xTe$ ($x \approx 0.06$)/EuTe. На ее основе методом молекулярно-пучковой эпитаксии на подложках (111) BaF₂ получены высокоотражающие брэгтовские зеркала с коэффициентом отражения $R \ge 99.8\%$ в центре стоп-зоны при трех периодах. Созданы одномодовые лазеры с вертикальным выводом излучения при оптической накачке и азотной температуре для области спектра 4-5 мкм.

1. Введение

Для видимой и ближней инфракрасной (ИК) области спектра вертикально-излучающие лазеры успешно разрабатываются и широко используются на основе материалов $A^{III}B^V$ [1]. Такие лазеры характеризуются одномодовым режимом генерации, малой угловой расходимостью и симметричной диаграммой излучения. Полупроводниковые соединения типа $A^{IV}B^{VI}$ (PbS, PbSe и PbTe), характеризующиеся узкой запрещенной зоной (ширина $E_g \sim 0.1$ эВ) и высоким значением показателя преломления ($N \approx 5$) [2], являются традиционными материалами для инжекционных лазеров [3,4] и приемников ИК излучения [5] на область спектра 3–40 мкм. Для разработки вертикально-излучающих лазеров среднего ИК диапазона представляют интерес твердые растворы халькогенидов свинца с добавлением Eu [6,7].

В случае твердого раствора $Pb_{1-x}Eu_xTe$ $(0 \le x \le 1)$ добавление Еи сильно изменяет ширину запрещенной зоны от $E_g \approx 0.2$ эВ для РbTe до $E_g \approx 2$ эВ для EuTe, а показатель преломления уменьшается от $N \approx 6$ (PbTe) до $N \approx 2$ (EuTe). При этом оба соединения имеют одинаковый тип кристаллической структуры NaCl и рассогласование постоянных решеток ~ 2%. Это делает возможным создание эпитаксиальных лазерных гетероструктур на основе твердых растворов РbEuTe с различным содержанием Eu. Резкое изменение Eg позволяет использовать в качестве активной области лазеров как эпитаксиальные слои, так и различные квантоворазмерные гетероструктуры. Значительное изменение N позволяет выращивать гетеропары с высоким оптическим контрастом для брэгговских зеркал, формирующих микрорезонатор.

Эпитаксиальные брэгговские зеркала с периодом $d = (d_1 + d_2)$ формируются из последовательности выращенных на подложке повторяющихся пар слоев, имеющих толщины d_1 и d_2 и различные показатели преломления N_1 и N_2 , причем оптическая толщина

каждого слоя равна четверти заданной (целевой) длины волны. В определенной области спектра, называемой стоп-зоной, коэффициент отражения таких зеркал R может достигать значений ~ 100%, что является важным условием формирования лазерного микрорезонатора. Необходимое для таких значений R число пар слоев обратно пропорционально относительному оптическому контрасту в слоях $(N_1 - N_2)/(N_1 + N_2)$. Спектральное положение и ширина стоп-зоны, а также достижимые значения R зависят от оптических свойств материалов. Анализ дисперсии показателя преломления, спектров фотолюминесценции (ФЛ) и ширины запрещенной зоны от содержания Еu позволяет определить оптимальные толщины и составы слоев при проектировании микрорезонаторов и создании вертикально-излучающих лазеров.

В данной работе проведен анализ оптических свойств твердого раствора $Pb_{1-x}Eu_xTe$ ($0 \le x \le 1$) с целью разработки на его основе брэгговских зеркал и микрорезонаторов для средней ИК области спектра. Созданы одномодовые лазеры с вертикальным выводом излучения для спектрального диапазона 4-5 мкм, работающие при оптической накачке и низких температурах.

2. Анализ оптических свойств твердого раствора $Pb_{1-x}Eu_xTe$ $(0 \le x \le 1)$

Анализ оптических свойств гетероструктур и численный расчет спектров пропускания как отдельных слоев, так и многослойных структур проводились на основе дисперсии показателя преломления. Она определялась в работе [8] для эпитаксиальных слоев твердого раствора Pb_{1-x}Eu_xTe с содержанием Eu от x = 0 до 1 при двух температурах T = 80, 295 K в спектральной области, расположенной по энергии ниже E_g . С ростом x значения показателя преломления нелинейно убывают и изменяются в широком диапазоне от N = 5.84 для

x	<i>Е</i> _g , эВ		$N~(\lambda=5$ мкм)		Δ для гетеропары Pb _{1-x} Eu _s Te/EuTe		Интенсивность ФЛ относительно РbTe
	80 K	295 K	80 K	295 K	80 K	295 K	80 K
0	0.22	0.32	6.25	5.84	0.47	0.44	1
0.031	0.35	0.43	5.51	5.25	0.42	0.40	0.90
0.059	0.45	0.51	4.96	4.80	0.38	0.36	0.35
0.110	0.56	0.61	4.74	4.46	0.36	0.33	0.08
1	2.24	2.20	2.24	2.25	—	—	—

Некоторые характеристики эпитаксиальных слоев твердого раствора $Pb_{1-x}Eu_xTe$ $(0 \le x \le 1)$

РbTe до N = 2.25 для EuTe на длине волны излучения $\lambda = 5$ мкм при комнатной температуре. В таблице показаны значения N для некоторых составов. Для гетеропары Pb_{1-x}Eu_xTe/EuTe приведены также значения относительного оптического контраста, определяемого как $\Delta = (N_1 - N_2)/(N_1 + N_2)$, где N_1 и N_2 — показатели преломления соответственно слоев Pb_{1-x}Eu_xTe и EuTe.

При такой значительной разнице в показателях преломления относительный оптический контраст может достигать значения $\Delta \approx 0.5$. При разработке брэгговских зеркал целесообразно выбирать гетеропары с наибольшим Δ . Это позволяет достигать коэффициента отражения зеркал на заданной длине волны R > 99%при небольшом количестве периодов. При этом для проявления интерференционных эффектов необходимо предусмотреть, чтобы поглощение в слоях было минимальным.

Так как твердый раствор PbEuTe является полупроводниковым материалом, то в рассматриваемом спектральном диапазоне $\lambda = 4 - 5$ мкм (энергии фотонов $\hbar \omega = 0.25 - 0.31 \, \mathrm{sB}$) доминирующими механизмами поглощения излучения выступают межзонное поглощение для энергий фотона > Eg и поглощение на свободных носителях заряда для энергий ниже края фундаментального поглощения. Зависимость ширины запрещенной зоны твердого раствора от состава (от x) и температуры изучались в работе [9]. С увеличением содержания Eu E_g увеличивается (см. таблицу). Коэффициенты dE_{e}/dT для бинарных соединений имеют противоположные знаки, а именно: 0.47 и -0.19 мэВ/К для РbTe и EuTe соответственно. В случае тройного твердого раствора имеет место инверсия знака коэффициента dE_g/dT в области составов с $x \approx 0.5$.

Для излучения с $\hbar\omega < E_g$ значение коэффициента поглощения достигает величин $\alpha \sim 10^5 \text{ см}^{-1}$ [10]. При таком значении α все излучение поглощается на толщине слоя, равной ~ 0.1 мкм. Для $\hbar\omega < E_g$ коэффициент поглощения на свободных носителях α_0 (в см⁻¹) можно оценить по формуле [11]

$$\alpha_0 = 5.26 \cdot 10^{-17} \frac{n\lambda^2}{N\mu m_{\sigma}^2},$$
 (1)

где n — концентрация свободных носителей заряда (см⁻³), μ — подвижность носителей заряда (см²/B · c),

 λ — длина волны излучения (мкм), N — реальная часть показателя преломления, m_{σ} — эффективная масса проводимости,

$$\frac{1}{m_{\sigma}} = \frac{1}{3} \left(\frac{2}{m_t} + \frac{1}{m_l} \right),\tag{2}$$

где m_l и m_t — продольная и поперечная эффективные массы носителей соответственно.

Для РbTe значения эффективных масс электрона равняются: $m_t = 0.022m_0$ и $m_l = 0.24m_0$ [2]. Для тройных растворов их значения можно оценить, вводя поправки. С увеличением ширины запрещенной зоны эффективные массы материалов $A^{IV}B^{VI}$ увеличиваются примерно пропорционально изменению E_g . Концентрация и подвижность носителей заряда твердых растворов определялись только для слоев с содержанием Eu $x \le 0.1$ и выдерживались на уровне $n \sim 10^{17}$ см⁻³, $\mu \sim 10^3$ см²/B·c. Для составов с x > 0.1 значение E_g становится > 0.5 эВ и определение электрических характеристик становится затруднительным из-за малости измеряемых сигналов.

Используя эти данные, можно оценить значения α_0 для составов с $x \le 0.1$, и они составляют $10-20 \text{ см}^{-1}$. Например, если положить $\lambda = 5 \text{ мкм}$, $n = 10^{17} \text{ см}^{-3}$ и $\mu = 10^3 \text{ см}^2/\text{B} \cdot \text{с}$, то при T = 80 K для PbTe N = 6.2, $E_g = 0.22$ эВ и получается $\alpha_0 \approx 20 \text{ см}^{-1}$, а для слоя Pb_{0.94}Eu_{0.06}Te соответствующие значения составляют N = 4.9, $E_g = 0.42$ эВ. Увеличивая эффективные массы пропорционально увеличению ширины запрещенной зоны, получаем $m_t \approx 0.042m_0$, $m_l \approx 0.46m_0$ и $\alpha_0 \approx 10 \text{ см}^{-1}$. Тогда коэффициент ослабления излучения на толщине в 1 мкм составляет $\sim 10^{-3}$.

Таким образом, при проектировании брэгговских зеркал для лазерных микрорезонаторов необходимо выбирать твердые растворы с шириной запрещенной зоны, большей, чем энергия излучения активной области. В данной работе в качестве активной области лазеров использовались эпитаксиальные слои твердого раствора Pb_{1-x}Eu_xTe. PbTe является прямозонным полупроводником, излучательные переходы происходят между зоной проводимости L_6^- и валентной зоной L_6^+ . С добавлением Еи зонная структура материала изменяется и люминесценция твердого раствора начинает быстро затухать, но для составов с малым x, по крайней мере до $x \approx 0.2$, энергия излучения по-прежнему определяется шириной запрещенной зоны E_g [9]. В таблице приведены значения интенсивности излучения в относительных единицах для нескольких эпитаксиальных слоев твердого раствора PbEuTe с различным составом. За единицу выбрана интенсивность люминесценции слоя PbTe. Видно, что для состава с $x \approx 0.11$ интенсивность люминесценции уменьшается более чем на порядок.

В таком случае для заданного спектрального диапазона 4–5 мкм оптимальное содержание Еи в твердом растворе активной области должно находиться в пределах от 0 до 0.03 в зависимости от выбранной рабочей температуры лазера. Для брэгговских зеркал оптимальной будет гетеропара Pb_{1-x}Eu_xTe ($x \approx 0.06$)/EuTe с относительными оптическими контрастами $\Delta \approx 0.38$ при T = 80 K и $\Delta \approx 0.36$ при T = 295 K (см. таблицу). Эти результаты позволили получить высокоотражающие брэгговские зеркала и микрорезонаторы и провести анализ их спектров пропускания.

3. Спектры пропускания брэгговских зеркал и микрорезонаторов на основе гетеропары $Pb_{1-x}Eu_xTe(x \approx 0.06)/EuTe$

Эпитаксиальные слои и гетероструктуры на основе $Pb_{1-x}Eu_xTe$ ($0 \le x \le 1$) выращивались на подложках (111) BaF₂ в установке молекулярно-пучковой эпитаксии типа ЭП-1201 [12], специально модифицированной для роста соединений типа $A^{IV}B^{VI}$.

Спектры пропускания гетероструктур измерялись на фурье-спектрометре типа Vektor 22 (фирмы Bruker) с разрешением 1 см⁻¹ в диапазоне волновых чисел от k = 650 до $8000 \,\mathrm{cm}^{-1}$. На рис. 1 показаны типичные спектры пропускания трехпериодного брэгговского зеркала на основе гетеропары Pb0.94Eu0.06Te/EuTe (толщины слоев 220/470 нм) с дополнительным просветляющим четвертьволновым слоем Pb_{0.94}Eu_{0.06}Te при двух температурах — 80 и 295 К. Видно, что в области частот от 1900 до 3400 см-1 расположена зона высокого отражения (стоп-зона). Ее ширина, измеряемая на уровне пропускания $T_b = 0.1$, равняется $\Delta k_b = 1430 \, {\rm cm}^{-1}$. Центр стоп-зоны соответствует целевой длине волны излучения (λ_t). На нее настраивается зеркало, и если излучение падает нормально, то λ_t связана с толщиной слоев d выражением $d = \lambda_t/4N$. На этой длине волны достигается максимальное отражение в стоп-зоне, и для брэгговского зеркала на рис. 1 измерения коэффициента отражения с эталонным зеркалом на λ_t показали, что $R \approx 99.8\%$.

С изменением температуры меняются значения показателя преломления слоев, а значит, меняется целевая длина волны излучения в материале (λ_t/N), поэтому стоп-зона будет смещаться. Как видно из рис. 1, при изменении температуры от 80 до 295 К положение центра стоп-зоны смещается в сторону меньших частот на $\Delta k = 100 \text{ см}^{-1}$. При этом пропускание в стоп-зоне не изменяется.

Рис. 1. Спектр пропускания трехпериодного брэгтовского зеркала на основе гетеропары Pb_{0.94}Eu_{0.06}Te/EuTe с дополнительным четвертьволновым защитным слоем Pb_{0.94}Eu_{0.06}Te при температурах 80 и 295 К. На вставке — фотография скола структуры, полученная в сканирующем электронном микроскопе.

Измерение спектров пропускания позволяет контролировать поглощение в структуре. В данном случае оно проявляется в высокоэнергетической части спектра в виде резкого уменьшения амплитуд интерференционных максимумов пропускания и определяется межзонными переходами в слоях $Pb_{0.94}Eu_{0.06}$ Те, так как из всех слоев заркала они имеют наименьшую E_g из всех слоев. Из рис. 1 видно, что с уменьшением температуры край поглощения смещается в сторону меньших частот (E_g уменьшается), но при этом еще не затрагивает стоп-зону.

Полученные характеристики спектров пропускания брэгговских зеркал, такие как ширина стоп-зоны и величина пропускания в ней, имеют большое значение при дальнейшем конструировании микрорезонаторов. Для точного контроля изменения данных величин был проведен численный анализ спектров в зависимости от целевой длины волны излучения, количества пар в зеркале и оптического контраста в паре. Спектры пропускания рассчитывались методом матрицы переноса [13] с использованием полученной дисперсии показателя преломления твердого раствора $Pb_{1-x}Eu_x$ Те для всей области составов ($0 \le x \le 1$).

На рис. 2 показаны зависимости величины пропускания (для $\lambda_t = 4$ и 5 мкм) и ширины стоп-зоны (Δk_b на уровне $T_b = 0.1$) от относительного оптического контраста Δ материала и количества пар (3 и 4 пары). Величина показателя преломления одного слоя в паре была зафиксирована, $N_2 = 2.2$ (EuTe), а значение N_1 варьировалось от 4.5 до 5.5. На верхней шкале рисунка показаны значения N_1 , соответствующие значениям Δ на нижней шкале. Штриховыми линиями, перпендикулярными оси абсцисс, показан диапазон изменения оп-

тического контраста для гетеропары Pb_{0.94}Eu_{0.06}Te/EuTe при температурах 80 и 295 К. Как видно, при таком значении Δ для трехпериодного зеркала пропускание в стоп-зоне становится T_b < 5%. При этом величина пропускания уменьшается с увеличением количества периодов и почти не зависит от λ_t . Что касается ширины стоп-зоны Δk_b , то для таких значений Δ , λ_t и количества периодов ее величина изменяется в пределах от 1000 до 1400 см⁻¹. Как видно из рисунка, чем меньше λ_t , тем шире стоп-зона. Для четырехпериодного зеркала зависимость $\Delta k_b(\Delta)$ почти линейная, а для трехпериодного виден сильный изгиб при $\Delta < 0.38$. Это связано с тем, что при увеличении пропускания Т_b зеркала дно стоп-зоны становится менее выраженным (стенки более округлые), поэтому ширина Δk_b на $T_b = 0.1$ начинает уменьшаться быстрее.

Таким образом, из проведенного анализа следует, что свойства брэгговских зеркал определяются следующими параметрами:

— целевая длина волны излучения — выбирается в зависимости от необходимой задачи и определяется толщинами четвертьволновых пар зеркала;

— ширина стоп-зоны — тем больше, чем больше λ_t и чем выше оптический контраст;

— отражение в центре стоп-зоны — тем выше, чем выше оптический контраст в паре (определяется показателями преломления материалов) и чем больше таких пар в зеркале.

Спектр пропускания микрорезонатора также имеет область высокого отражения. Ее положение и размер, а также величина пропускания в ней определяются

брэгговскими зеркалами, из которых он формируется. Однако в отличие от зеркал в стоп-зоне микрорезонатора появляется некоторый дискретный набор максимумов пропускания, соответствующий модам резонатора Фабри–Перо.

На рис. З представлен спектр пропускания микрорезонатора, состоящего из трехпериодных зеркал на основе гетеропары $Pb_{1-x}Eu_xTe(x \approx 0.06)/EuTe$ и активной области в виде эпитаксиального слоя PbTe, при T = 295 K. На вставке показана фотография скола структуры, сделанная в электронном микроскопе. Толщины слоев равняются: $d_1 \approx 310$ нм — $Pb_{0.94}Eu_{0.06}Te$, $d_2 \approx 610$ нм — EuTe, толщина активной области $d_a \approx 840$ нм. Состав тройных соединений приведен по технологическим данным, а толщины слоев измерены на электронном микроскопе.

Сплошной линией на рис. 3 показан спектр, измеренный на фурье-спектрометре, а точками — расчетный, полученный методом матрицы переноса. При расчетах использовалась только реальная часть показателя преломления, т.е. поглощение не учитывалось. Поэтому положения экстремумов расчетного и измеренного спектров хорошо совпадают друг с другом (некоторые несоответствия можно устранить путем более точной подгонки), а амплитуды пропускания разные. Особенно это заметно в области больших значений k, где начинается межзонное поглощение в активном слое при $T = 295 \, \text{K}$ и пропускание резко уменьшается. Данная структура выращена так, чтобы стоп-зона располагалась по энергии ниже края поглощения активной области, что позволило измерить фурье-спектр пропускания стопзоны без влияния поглощения в активном слое.

Из рисунка видно, что ширина стоп-зоны равняется $\Delta k_b \approx 1090 \,\mathrm{cm^{-1}}$ с целевой длиной волны излучения $\lambda_t \approx 5.6 \,\mathrm{mkm}$, соответствующей $k_t = 1785 \,\mathrm{cm^{-1}}$. В ней

Рис. 3. Спектр пропускания микрорезонатора с трехпериодными брэгговскими зеркалами на основе гетеропары Pb_{0.94}Eu_{0.06}Te/EuTe (0.31/0.61 мкм) с активной областью PbTe ($d_a \approx 1.8\lambda_t/2N_a \approx 0.84$ мкм) при температуре 295 К. На вставке — фотография скола структуры, полученная в электронном микроскопе.

Физика и техника полупроводников, 2016, том 50, вып. 2

расположены два резонанса пропускания. Если длина резонатора (в данном случае это толщина слоя активной области d_a) равняется кратному числу полуволн в материале, т.е. удовлетворяет уравнению

$$d_a = \frac{m\lambda_t/2}{N_a},\tag{3}$$

где m — порядок моды резонатора, то в центре стопзоны на λ_t будет находиться резонанс пропускания и его порядок будет равен m. Для микрорезонатора на рис. 3 его длина равняется $d_a \approx 1.8\lambda_t/2N_a \approx 0.84$ мкм. Поэтому резонанс с m = 2 немного смещен от центра стопзоны. Если постепенно увеличить d_a , то он переместится на λ_t . Резонанс с m = 1 отстоит от него на величину межмодового расстояния $\Delta k_m \approx 630$ см⁻¹ и находится на самом краю стоп-зоны в области малых k.

Чем шире стоп-зона (зависит от λ_t и Δ , см. рис. 2) и меньше межмодовое расстояние Δk_m в резонаторе, тем больше резонансов можно наблюдать. Расстояние между модами резонатора Фабри–Перо выражается формулой

$$\Delta k_m = \frac{1}{2d_a N_a}.\tag{4}$$

Подставляя значения d_a и N_a , получим величину межмодового расстояния, равную $\Delta k_m \approx 1000 \text{ сm}^{-1}$, что значительно меньше измеренного значения. Это связано с тем, что излучение не полностью отражается на границе резонатора, как в случае, например, с металлическими зеркалами, а проходит в диэлектрические слои брэгговских зеркал и уже за счет многолучевых эффектов появляется зона высокого отражения. Чтобы это учесть, используется понятие эффективной длины резонатора d_a^{eff} , для ее расчета можно ввести понятие эффективного порядка моды, который рассчитывается по следующей формуле [14]:

$$m_{\rm eff} = m + \frac{N_s}{N_b - N_s},\tag{5}$$

где N_b и N_s — соответственно большее и меньшее значения показателя преломления в периоде брэгговского зеркала. Например, для гетеропары Pb_{0.94}Eu_{0.06}Te/EuTe значения величин равняются $N_b = N_1 = 4.8$, а $N_s = N_2 = 2.25$ и рассчитанное значение $m_{\rm eff} \approx 2.9$. Подставляя полученное значение в формулу (3) вместо *m*, получаем $d_a^{\rm eff} \approx 1.4$ мкм. Тогда из формулы (4) следует, что $\Delta k_m \approx 630$ см⁻¹, что хорошо согласуется с измеренными значениями.

Следует отметить разницу в ширинах резонансов измеренного и расчетного спектров пропускания. Причиной являются, во-первых, поглощение в слоях, не учитываемое при расчете, и, во-вторых, рассеяние на дефектах структуры (ступени и шаги скола подложки BaF_2 и несовершенство гетероинтерфейсов из-за заметного рассогласования постоянных решеток, ~ 2%). Использование кремниевых полированных подложек позволяет увеличить добротность и достичь пропускания, близкого к теоретическому [15].

Добротности резонансов (F) можно оценить по формуле $Fm = k/\Delta k$, где m — порядок моды, k — волновое число, на котором расположен резонанс, Δk — его ширина на полувысоте. Для данного резонатора добротность резонанса с m = 2 равняется $F \approx 100$. Второй резонанс имеет меньшую добротность, $F \approx 50$, потому что расположен на самом краю стоп-зоны, а отражение зеркал в данной области уменьшается.

Край поглощения в спектре пропускания микрорезонатора определяется E_g активной области. Это позволяет контролировать ее состав и оценивать рабочую температуру лазера. Для того чтобы излучение, возникающее за счет рекомбинации электронов в активной области, могло выйти из резонатора, его частота должна совпадать с частотой собственных мод резонатора (резонансов пропускания). Температурный сдвиг резонансов определяется по спектрам пропускания, измеренным при различных температурах. Тогда, зная dE_g/dT [9], можно рассчитать температуру, при которой положение резонанса по энергии совпадет с энергией излучения.

Характеристики вертикально-излучающих лазеров

На основе приведенного анализа были разработаны лазерные микрорезонаторы и показана работа одномодовых лазеров с вертикальным выводом излучения при оптической накачке для спектрального диапазона 4–5 мкм. Определены их основные характеристики: зависимости интегральной интенсивности излучения от уровня возбуждения, спектры излучения и перестройка длины волны излучения с температурой.

Лазерные структуры работали при температурах, близких к температуре жидкого азота. Образцы возбуждались в геометрии на просвет и на отражение с помощью YLF-лазера с длиной волны излучения 1.053 мкм (~ 1.18 эВ), длительностью импульса ~ 10 нс и частотой повторения 170 Гц. Спектры анализировались с помощью решеточного (150 штр/мм) монохроматора ИКМ-731 и двух приемников ИК излучения на основе Ge:Au, работающих при азотной температуре.

Зависимости изменения интегральной интенсивности излучения двух лазерных структур VCSEL # 535 и # 539 от плотности мощности возбуждения (I_e) показаны на рис. 4 в двойном логарифмическом масштабе. Пороговый уровень возбуждения составлял $I_e \approx 10 \text{ kBr/cm}^2$. Спонтанное излучение при низких уровнях возбуждения наблюдать не удалось. Видно, что обе кривые суперлинейны, для образца # 535 она более крутая, чем для # 539. С ростом уровня возбуждения скорость увеличения интенсивности начинает постепенно уменьшаться и видна тенденция к насыщению. Самого насыщения достичь не удалось — образцы разрушались. Для сравнения на том же рисунке показано, как изменяется интенсивность излучения от мощности возбуждения для эпитаксиального слоя с содержанием Eu x = 3%. Зави-

Рис. 4. Зависимость интегральной интенсивности излучения лазерных структур # 535, # 539 и отдельного эпитаксиального слоя Pb_{0.97}Eu_{0.03}Te от плотности мощности возбуждающего излучения.

Рис. 5. Спектры излучения лазерных структур # 535 (*a*), # 539 (*b*) при различных температурах.

симость линейная, и она более чем на порядок меньше по сравнению с лазерными структурами.

Спектры излучения лазерных структур # 535 и # 539 показаны на рис. 5 при различных температурах. Они состоят из одной моды и при температурной перестройке имеют максимум излучения при совпадении максимума пропускания микрорезонатора и максимума излучения активной области. Для образца # 535 максимум наблюдается при $T \approx 35$ K, для # 539 при $T \approx 58$ K. Для остальных температур контур усиления совпадает с модой резонатора частично. Диапазон температурной перестройки излучения лазеров составляет $\Delta T \approx 15-20$ K, что соответствует диапазону перестройки по волновым числам $\Delta k \approx 15 \,\mathrm{cm}^{-1}~(\sim 2.2\,\mathrm{MB})$. Ширина линии излучения на полувысоте составляет $\Delta k \approx 1.6 \, {\rm cm}^{-1} \, (0.2 \, {\rm M} {
m sB})$ и определяется аппаратной функцией спектрометра, при этом тепловая энергия k₀T составляет ~ 4 мэВ. Измерения расходимости пучка показали, что она составляет $\sim 5^{\circ}$.

Малая ширина линии излучения и малая расходимость пучка позволяют сделать вывод, что излучение образцов происходит в лазерном режиме.

Специальных измерений мощности излучения для данных лазеров не проводилось. Однако из сравнения величины их интегральной интенсивности излучения с интегральной интенсивностью лазеров на основе твердых растворов PbSSe с выходом излучения через торец, измеряемой на той же установке, для которых мощность известна, можно сделать оценки, что мощность лазеров с вертикальным выводом излучения была не менее десятков мВт.

5. Заключение

Проведен анализ оптических свойств твердого раствора $Pb_{1-x}Eu_x Te \ (0 \le x \le 1)$ в зависимости от содержания Еи, и выполнен численный расчет спектров пропускания многослойных структур. Это позволило определить оптимальные параметры (состав и толщины слоев брэгговских зеркал и активной области) и вырастить методом молекулярно-пучковой эпитаксии брэгговские зеркала, микрорезонаторы и вертикально-излучающие лазеры для средней ИК области спектра. Установлено, что гетеропара $Pb_{1-x}Eu_xTe(x \approx 0.06)/EuTe$ является оптимальной для брэгговских зеркал на область спектра 4-5 мкм. Это позволило получить коэффициент отражения R > 99.8% в центре стоп-зоны уже при 3 периодах. Полученные результаты позволили создать одномодовый лазер с вертикальным выводом излучения для спектрального диапазона 4-5 мкм, работающий при оптической накачке в области низких температур. Диапазон температурной перестройки моды составляет $\Delta T \approx 15 - 20 \,\mathrm{K}$, что соответствует диапазону перестройки по частоте $\Delta k \approx 15 \,\mathrm{cm}^{-1}$.

Работа поддержана программой фундаментальных исследований президиума РАН № 24 "Фундаментальные основы технологий наноструктур и наноматериалов".

Список литературы

- [1] T.E. Sale. *Vertical cavity surface emitting lasers* (Taunton, Reseach Studies Press, 1995) p. 312.
- [2] R. Dornhaus, G. Nimtz, B. Schlicht. Springer Tracts in Mod. Phys. Series (1983) v. 98.
- [3] D.L. Partin. IEEE J. Quant. Electron., QE-24, 1716 (1988).
- [4] И.И. Засавицкий. Тр. ФИАН, 224, 3 (1993).
- [5] A. Rogalski. *Infrared detectors* (CRC Press, Taylor and Francis Group, 2011) p. 485.
- [6] M. Böberl, W. Heiss, T. Schwarzl, K. Wiesauer, G. Springholz. Appl. Phys. Lett., 82, 4065 (2003).
- [7] A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, H. Zogg. Appl. Phys. Lett., 99, 12109 (2011).
- [8] Д.А. Пашкеев, Ю.Г. Селиванов, Е.Г. Чижевский, Д.А. Ставровский, И.И. Засавицкий. ФТП, 45 (8), 1014 (2011).
- [9] Д.А. Пашкеев, И.И. Засавицкий. ФТП, 46 (6), 745 (2013).
- [10] Shu Yuan, H. Krenn, G. Springholz, G. Bauer. Phys. Rev. B, 47, 7213 (1993).
- [11] Ж. Панков. Оптические процессы в полупроводниках (М., Мир, 1973) с. 85.
- [12] Ю.Г. Селиванов, Е.Г. Чижевский, В.П. Мартовицкий, А.В. Кнотько, И.И. Засавицкий. Неорг. матер., 46, 1183 (2010).
- [13] A. Garard, J.M. Burch. *Introduction to Matrix Method in Optics* (London, John Wiley & Sons, 1994) p. 26.
- [14] R.P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, M. Ilegems. Appl. Phys. Lett., 65, 1883 (1994).
- [15] M. Rahim, A. Khiar, F. Felder, M. Fill, H. Zogg. Appl. Phys. Lett., 94, 201112 (2009).

Редактор Л.В. Шаронова

$Pb_{1-x}Eu_xTe \ (0 \le x \le 1)$ solid solution a material for vertical-cavity surface-emitting lasers in the midinfrared spectral range of $4-5\mu m$

D.A. Pashkeev, Yu.G. Selivanov, E.G. Chizhevskii, I.I. Zasavitskiy

Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract An analysis of optical properties of $Pb_{1-x}Eu_xTe$ ($0 \le x \le 1$) solid solution epilayers and heterostructures in order to design midinfrared Bragg mirrors and vertical-cavity surfaceemitting lasers has been done. It was presented that the $Pb_{1-x}Eu_xTe$ ($x \approx 0.06$)/EuTe heteropair is appropriate for laser microresonators. Basing on this heteropair the high reflective Bragg mirrors with reflectance of $R \ge 99.8\%$ at the center of stopband with three periods were prepared by molecular-beam epitaxy on (111) BaF₂ substrates. Single-mode vertical-cavity surfaceemitting lasers at optical pumping and liquid nitrogen temperatures was demonstrated for $4-5\mu$ m spectral range.