10

Фононный спектр оксихлорида свинца Pb₃O₂Cl₂: *ab initio* расчет и эксперимент

© Д.О. Закирьянов¹, В.А. Чернышев¹, И.Д. Закирьянова^{1,2}

¹ Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

² ФГБУН Институт высокотемпературной электрохимии УрО РАН,

Екатеринбург, Россия

E-mail: dm96i@mail.ru

(Поступила в Редакцию 2 июня 2015 г.)

Впервые зарегистрированы ИК- и КР-спектры $Pb_3O_2Cl_2$ в диапазоне 50-600 cm⁻¹. Проведены *ab initio* расчеты кристаллической структуры и фононного спектра $Pb_3O_2Cl_2$ в рамках МО ЛКАО подхода методом Хартри-Фока, а также в рамках теории функционала плотности с использованием гибридных функционалов. Результаты расчетов позволили провести интерпретацию экспериментальных колебательных спектров, а также выявить "молчащие" моды, не проявляющиеся в этих спектрах, но влияющие на оптические свойства кристалла.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 15-03-00368а.

1. Введение

Оксихлорид свинца $Pb_3O_2Cl_2$ (пространственная группа Pnma), известный также как мендипит, относится к группе перспективных материалов — оксигалогенидов свинца, имеющих особые физико-химические свойства. В частности, на основе оксихлорида $Pb_3O_2Cl_2$ недавно были получены нанотрубки, обладающие уникально большой величиной двулучепреломления [1], значение которой на порядок превышает соответствующие величины для природных неорганических материалов. Несмотря на то что имеются надежные данные о кристаллической структуре $Pb_3O_2Cl_2$, полученные методом рентгеноструктурного анализа [2] сведения о его фононных спектрах отрывочны, а приводимое в литературе отнесение колебательных полос носит предположительный характер.

В печати отсутствуют данные по *ab initio* расчетам структуры и фононных спектров мендипита. Между тем, такой расчет позволит интерпретировать экспериментальные спектры ИК-поглощения и комбинационного рассеяния (КР), а также выявит моды, не активные в этих спектрах, но влияющие на оптические свойства кристалла. Кроме того, такой расчет даст дополнительную информацию о взаимодействии атомов в решетке и анизотропийных свойствах кристалла.

2. Эксперимент

2.1. Подготовка реактивов и синтез оксихлорида Pb₃O₂Cl₂. Для приготовления оксихлорида свинца Pb₃O₂Cl₂ использовали PbCl₂ марки "ХЧ" и PbO марки "ОСЧ". Для удаления следов адсорбированной воды хлорид свинца сушили в вакууме при постепенном повышении температуры, затем переплавляли в атмосфере аргона. Оксид свинца сушили в инертной атмосфере при 200°С, затем плавили в алундовом тигле и выдерживали расплав при температуре 940°C в течение 1 h.

Оксихлорид $Pb_3O_2Cl_2$ был синтезирован в результате реакции:

 $2PbO(тв.) + PbCl_2(распл.) \rightarrow Pb_3O_2Cl_2(распл.)$

из перетертой смеси соответствующих стехиометрии соединения навесок PbO и PbCl₂, нагреванием в атмосфере сухого воздуха до температур на 100 градусов выше температуры его плавления (695 \pm 2°C [3]) и выдержки при этих температурах в течение трех часов. Образование фазы Pb₃O₂Cl₂ подтверждено методом рентгенофазового анализа (PФA) (рис. 1).

2.2. Методика регистрации ИК-спектров. Спектры регистрировали с помощью вакуумного ИК-Фурье спектрометра Vertex 70v (BRUKER) методом нарушенного полного внутреннего отражения (НПВО) на приставке ATR с алмазным оптическим элементом в диапазоне $50-600 \,\mathrm{cm}^{-1}$. Условия регистрации: разрешение $2 \,\mathrm{cm}^{-1}$, усреднение сигнала при 16-кратном сканировании, температура 25° С, атмосфера в рабочей камере прибора — вакуум.

2.3. Методика регистрации КР-спектров. Спектры регистрировались при комнатной температуре на рамановском микроскопе-спектрометре U 1000 (Renishaw, Великобритания), включающем микроскоп марки "Leica DMLM" (объектив x50), нотч-фильтр, ССD-детектор, диодный лазер мощностью 4 mW и длиной волны $\lambda = 532$ nm. При регистрации использовалась 180-градусная оптическая схема рассеяния. Исследуемый спектральный диапазон составил 50–600 cm⁻¹, разрешение 2 cm⁻¹.

3. Методы расчета

Ab initio расчеты были проведены в рамках МО ЛКАО подхода методом Хартри-Фока (ХФ), а также рамках

Рис. 1. Результаты РФА синтезированного оксихлорида Pb₃O₂Cl₂.

теории функционала плотности (DFT) с функционалами всех уровней: LDA, GGA и гибридными, учитывающими обменное взаимодействие частично в рамках ХФ-формализма. Ранее было показано, что для описания оксидов наиболее адекватны гибридные функционалы WC1LYP и B3LYP [4].

Расчеты проводились с использованием программы CRYSTAL09 [5], предназначенной для периодических систем. Фононный спектр в CRYSTAL рассчитывается методом замороженных фононов.

При описании атомных орбиталей были использованы полноэлектронные базисные наборы (Gauss-type orbitals)

для кислорода, а также псевдопотенциалы для описания внутренних оболочек Pb и Cl (их валентные орбитали при этом также описывались базисными наборами). Такое приближение позволяет с достаточной точностью описывать структуру и динамику кристаллической решетки, так как внутренние орбитали мало участвуют в химической связи и слабо влияют на частоты колебаний атомов.

Чтобы оптимизировать время расчета, были рассмотрены два варианта базисных наборов, отличающихся количеством диффузных и поляризационных орбиталей (табл. 1).

Атом	Псевдопотенциал Валентные орбитали	
		Вариант 1
Pb Cl O	ECP60MDF [6] HAYWLC [8]	$(6sp)^8(5d)^{10}(1sp)^2(1sp)^0(1sp)^0(1sp)^0$ [7] (3sp) ⁸ (1sp) ⁰ [9] Полноэлектронный базисный набор (6s) ² (2sp) ⁸ (1sp) ⁰ (1sp) ⁰ (1sp) ⁰ (1d) ⁰ [10]
		Вариант 2
Pb Cl O	HAYWLC [8] HAYWLC [8]	$(2sp)^2(1sp)^0(1sp)^0(1d)^0$ [11] (3sp) ⁸ (1sp)^0 [9] Полноэлектронный базисный набор (8s) ² (4sp) ⁸ (1sp) ⁰ (1sp) ⁰ (1d) ⁰ [12]

Таблица 1. Варианты базисных наборов

ATOL	Базисн	ый набор 1	Базисный набор 2		
AIOM	Исходный	Оптимиз.	Исходный	Оптимиз.	
Рb	0 1 1 0. 1. 0. 17 1. 1. 0 3 1 0. 1 0.238 1.	При оптимизации изменений не потребовалась	0 1 1 0.1. 0.14203115 1.0 1.0 0 3 1 0. 1. 0.1933887 1.0	0 1 1 0. 1. 0.1220315 1.0 1.0 0 3 1 0. 1. 0.1233887 1.0	
Cl	0 1 1 0. 1. 0.131 1.0 1.0	0 1 1 0. 1. 0.1385 1.0 1.0	0 1 1 o. 1. 0.131 1.0 1.0	0 1 1 0. 1. 0.1385 1.0 1.0	
0	0 1 1 0. 1.0 0.272 1.0 1.0 0 3 1 0. 1.0 1.25 1.0	0 1 1 0. 1.0 0.26375 1.0 1.0 0 3 1 0. 1.0 0.12 1.0	0 3 1 1.0 1.0 0.4509895 1.0	0 3 1 0.0 1.0 0.3509895 1.0	

Таблица 2. Оптимизация базисов

Таблица 3. Параметры решетки

Параметр	Базисный набор 1			Базисный набор 2			Эксп [2]	
Tupunetp	B3LYP	PBE0	WC1LYP	HF	B3LYP	PBE0	WC1LYP	
a, Å b, Å c, Å Δ, %	12.213 5.987 10.097 8	12.020 5.860 9.811 4	12.070 5.926 9.866 5	12.545 5.944 10.228 11	12.265 5.837 10.041 8	11.984 5.757 9.660 3	12.139 5.793 9.805 5	11.808 5.779 9.478
a/b a/c b/c Д, %	2.040 1.210 0.593 3	2.051 1.225 0.597 2	2.037 1.223 0.601 2	2.110 1.227 0.581 6	2.101 1.222 0.581 5	2.082 1.241 0.596 3	2.096 1.238 0.591 4	2.043 1.246 0.610

В таблице число в скобках указывает на количество гауссовых примитивов, описывающих данную орбиталь, число над скобкой — количество электронов на орбитали.

Все базисы, приведенные в табл. 1, можно найти на сайте программы CRYSTAL [5]. Внешние орбитали в базисе атома, отвечающие за химическую связь, могут несколько меняться от соединения к соединению. Таким образом, необходимо варьировать показатели экспонент гауссовых примитивов, описывающих диффузные и поляризационные орбитали, с целью минимизировать энергию ячейки Pb₃O₂Cl₂. Это позволит получить оптимизированные для данного соединения базисные наборы. В данном случае в результате оптимизации уменьшение энергии ячейки (относительно расчетов с исходными базисами, опубликованными на сайте CRYSTAL) составило 0.12 eV и 0.35 eV для базисных наборов 1 и 2 соответственно (при точности расчета энергии $\Delta = 10^{-8}$ eV). Несмотря на то что данные поправки к общей энергии ячейки составляют сотые доли процента, такое различие может быть важно при расчете свойств, зависящих от первых и вторых производных от энергии по координатам атомов (например, частот фононов). Параметры оптимизированных орбиталей приведены в табл. 2. Как видно из табл. 2, изменения в показателях экспонент

Физика твердого тела, 2016, том 58, вып. 2

диффузных и поляризационных орбиталей при оптимизации для конкретного соединения составляют несколько сотых.

После получения базисных наборов, оптимизированных для Pb₃O₂Cl₂, были проведены расчеты. Из условия минимума энергии была рассчитана кристаллическая структура, затем для нее был проведен расчет фононного спектра.

4. Результаты и обсуждение

4.1.Кристаллическая структура. Оксихлорид свинца состава $Pb_3O_2Cl_2$ имеет пространственную группу симметрии D_{2h}^{16} (Pnma) и содержит четыре формульные единицы в элементарной ячейке. Кристаллическая структура мендипита (рис. 2) состоит из двойных цепочек $[O_2Pb_3]^{2+}$, образованных оксоцентрированными тетраэдрами OPb₄, объединенными по общим ребрам. Между собой цепочки связываются через слабые связи Pb-Cl [2].

Рассчитанные параметры кристаллической структуры приведены в табл. 3. Как видно из табл. 3, наилучшее согласие с экспериментом обеспечивают функционалы PBE0 и WC1LYP. Хорошее воспроизведение соотношения длин постоянных решетки говорит об адекватном описании связей и анизотропных взаимодействий. В табл. 4 показаны в качестве примера координаты атомов в решетке, полученные при расчетах с функционалом WC1LYP и базисным набором 1. Согласие с экспериментом можно считать очень хорошим.

Заметим, что качество расчета кристаллической структуры фактически одинаковое при использовании обоих базисных наборов.

4.2. Зонная структура. В литературе отсутствуют экспериментальные данные по зонной структуре и ширине запрещенной зоны Pb₃O₂Cl₂. Однако, измерена

Рис. 2. Кристаллическая решетка Pb₃O₂Cl₂.

Рис. 3. Зонная структура $Pb_3O_2Cl_2$.

Таблица 4. Координаты атомов в решетке

Атом	$x_{\rm calc}$	<i>x</i> _{exp} [2]	y calc	y _{exp} [2]	Z_{calc}	z _{exp} [2]
Pb1	0.4168	0.4186			0.4193	0.4179
Pb2	0.7186	0.7182			0.3647	0.3683
Pb3	0.438	0.4402	0.25	0.25	0.8074	0.7959
Cl1	0.6404	0.6357			0.0635	0.0811
Cl2	0.6908	0.6897			0.6904	0.694
Ο	0.5783	0.5793	0.9963	0.9948	0.3803	0.3873

Таблица 5. Соотнесение колебательных частот, активных в КР-спектре

2	Волновое	Неприводимое	0
Эксп.	число, cm ⁻¹	представление	Отнесение
	26	A_{g}	Pb1, PB2, Pb3, Cl1, Cl2, O
	33	B_{1g}	Pb2, Pb3, Cl1, C12, O
	34	B_{3g}	Pb1, Pb2, Pb3, Cl1, C12, O
	37	B_{2g}	Pb2, Pb3, Cl1, Cl1, O
	55	A_g	Pb1, PB2 Pb3, Cl1, Cl2, O
63	64	B_{3g}	Pb1, Pb2, Pb3, Cl1, O
	65	A_g	Pb1, Pb2, Pg3, Cl1, Cl2
	68	B_{1g}	Pb1, Pb2. Pb3, Cl2
	69	B_{2g}	Pb1, Pb2, Pb3,Cl1,Cl2
73	74	B_{3g}	Pb1, Pb2, Pb3, Ck1, Cl2, O
	75	A_g	Pb2, Pb3, Cl1,Cl2. O
81	78	B_{3g}	Pb1 , Pb2, Pb3, Cl1, Cl2, O
	85	A_g	Pb1, Pb2, Pb3, Cl1, Cl2, O
	87	B_{3g}	Pb1, Pb2, Pb3, Cl1, Cl2
91	91	B_{2g}	Pb2, Cl1, Cl2
	91	A_n	Pb1, Pb2, Cl1, Cl2, O
	95	B_{1g}	Pb3, Cl1, Cl2
99	100	B_{3g}	Pb1, Pb2, Pb3, Cl1, CL2, O
	101	A_g	Cl1, Cl2
	114	A_g	Cl1, Cl2
116	118	B_{3g}	Cl1, Cl2
	126	B2g	Pb1 Pb2, Pb3, Cl1, Cl2
	127	B_{1g}	Pb1, Pb2, Pb3, Cl1, Cl2
	131	B_{1g}	Cl1, Cl2
	134	B_{2g}	Cl1, Cl2
	138	B_{3g}	Pb1, Pb2, Pb2, Cl1, Cl2
140	143	A_g	Pb1, Pb2, Pb3, Cl1, Cl2
	152	A_g	Cl1,Cl2
	163	B_{3g}	Cl1, Cl2
	170	B_{3g}	Cl2
	271	B_{2g}	0
274	271	B_{1g}	Ο
	298	A_g	Ο
	302	B_{3g}	Ο
	338	B_{1g}	Ο
340	339	B_{2g}	Ο
	369	B_{2g}	Ο
372	369	B_{1g}	0
	435	A_g	0
	441	B_{3g}	0
474	473	A_g	0
480	498	B_{3g}	0

Эксп.	Волновое число, ст ⁻¹	I _{rel}	Неприводимое представление	Отнесение
	30	0	$B_{2\mu}$	Pb1, Pb2, Pb3, Cl1, Cl2, O
	45	0	B_{1u}	Pb1, Pb2, Pb3, O
	48	0	B_{2u}	Pb1,Pb2, Pb3,Cl1, Cl2
	60	0	B_{1u}	Pb1, Pb2, Pb3, Cl1, Cl2
	67	0	B_{3u}	Pb1, Pb2, Pb3
	70	3	B_{2u}	Pb1, Pb2, Pb3, Cl1, Cl2
	73	2	B_{1u}	Pb1, Pb2, Pb3, Cl1, Cl2
	86	11	B_{2u}	Pb2, Pb3, Cl1, Cl2
	87	6	B_{1u}	Pb3, Cl1 , Cl2
	92	33	B_{3u}	Pb2, Cl1, Cl2
	96	12	B_{1u}	Pb1, Pb2, Cl1, Cl2
	103	1	B_{3u}	Pb2 , Pb3, Cl1, O
	108	11	B_{2u}	Cl1, Cl2
	112	6	B_{1u}	Pb1, Pb2, Pb3, Cl1, Cl2
	113	2	B_{2u}	Pb1, Pb2, Pb3, Cl1, Cl2
	120	5	B_{2u}	Pb1, Pb2, Pb3, Cl1, Cl2
	129	5	B_{3u}	Cl1, Cl2, O
	139	0	B_{2u}	Pb1, Pb2, Pb3, Cl1
	139	3	B_{1u}	Cl1, Cl2
	145	0	B_{1u}	Pb1, Pb2, Pb3, Cl2
	155	0	B_{2u}	Cl1, Cl2
	162	5	B_{1u}	Cl1, Cl2, O
213	202	36	B_{3u}	C12, O
	297	0	B_{3u}	0
	347	100	B_{3u}	0
350	349	41	B_{2u}	0
	367	48	B_{1u}	0
431	427	10	B_{2u}	О
440	435	17	B_{1u}	0
	485	0	B_{1u}	0
	502	7	B_{2u}	Ο

Таблица 6. Соотнесение колебательных частот, активных в ИК-спектре

Таблица 7. Колебательные частоты молчащих мод

Волновое число, ст ⁻¹	Неприводимое представление	Отнесение
21	A_u	Pb1, Pb2, Pb3, Cl1, Cl2, O
65	A_u	Pb1, Pb2, Pb3, Cl1, Cl2
94	A_u	Pb3, Cl1, Cl2
104	A_u	Pb2, Pb3, Cl1, Cl2
129	A_u	Cl1, Cl2, O
202	A_u	Cl2, O
296	A_u	Ο
346	A_u	0

температурная зависимость проводимости [13]. Из данной зависимости можно оценить ширину запрещенной зоны по формуле

$$\varepsilon = \ln\left(\frac{\sigma_1}{\sigma_2}\right) \left/ \left(\frac{1}{2k_{\mathrm{B}}T_2} - \frac{1}{2k_{\mathrm{B}}T_1}\right) \right.$$

Расчет по этой двухточечной формуле для различных пар точек из работы [13] дает значения ширины

запрещенной зоны в интервале 2–4 eV. Проведенные разными методами (Хартри–Фока, DFT) расчеты дают небольшую разницу в значениях ширины запрещенной зоны со средним 4.2 eV. Расчеты всеми методами предсказали прямую щель. Зонная структура, полученная при расчетах с функционалом PBE0, показана на рис. 3.

4.3. Колебательные частоты.

Рассчитаны колебательные частоты оксихлорида свинца. Проведенный расчет дает следующий набор колебательных мод:

$$\Gamma = 13A_g + 8B_{1g} + 8B_{2g} + 13B_{3g} + 8A_u + 13B_{1u} + 13B_{2u} + 8B_{3u}.$$

Сравнение рассчитанных различными методами колебательных частот, активных в КР- и ИК-спектрах с экспериментальными данными представлено на рис. 4–7.

Как видно, наилучший результат дает расчет в рамках DFT с функционалом PBE0. Заметим, что при этом происходит дальнейшее улучшение согласия с экспериментальным спектром, если использовать базисный набор 2. Несмотря на то что этот набор содержит меньшее количество диффузных и поляризационных орбиталей и является более примитивным, он обеспечивает лучший результат, поскольку он лучше оптимизирован для мендипита Pb₃O₂Cl₂.

Для расчета, выполненного методом PBE0 с базисным набором 2, проведена интерпретация частот: произведено сопоставление пиков с колебаниями атомов, соответ-

Рис. 4. Частоты, активные в КР-спектре Pb₃O₂Cl₂. Эксперимент и расчет разными методами (базисный набор 1).

Рис. 5. Частоты, активные в ИК-спектре Pb₃O₂Cl₂. Эксперимент и расчет разными методами (базисный набор 1).

Рис. 6. Частоты, активные в КР-спектре Pb₃O₂Cl₂. Эксперимент и расчет разными методами (базисный набор 2).

Рис. 7. Частоты, активные в ИК спектре Pb₃O₂Cl₂. Эксперимент и расчет разными методами (базисный набор 2).

ствующими данной моде. Рассчитанные колебательные частоты и сопоставленные им экспериментальные, относительные интенсивности и информация о симметрии колебаний представлены в табл. 5, 6 и 7.

В таблицах жирным шрифтом выделены атомы, смещения которых по какой-либо координате в моде на порядки больше, чем у остальных колеблющихся атомов. В таблице учтены лишь атомы, смещения которых в моде составляют более 0.01 Å. Как видно из данных, приведенных в табл. 6, наиболее интенсивные колебательные моды ИК-спектра лежат в области $347-367 \text{ cm}^{-1}$ с самой яркой модой 347 cm^{-1} . Это хорошо согласуется с экспериментальными данными: наблюдается широкая интенсивная полоса в области 350 cm^{-1} . Согласно проведенным расчетам, эта полоса образована тремя модами: B_{3u} , B_{2u} и B_{1u} с самой яркой модой B_{3u} .

В области малых волновых чисел на экспериментальный ИК-спектр Pb₃O₂Cl₂ накладывается край полосы поглощения материала подложки. Кроме того, наблюдаемое перекрывание колебательных полос затрудняет их разрешение и не позволяет идентифицировать пики. В связи с этим, по полученным экспериментальным данным провести интерпретацию ИК-спектра в области малых частот не представляется возможным.

Тем не менее, проведенные нами расчеты позволили выявить фононные моды в низкочастотной области ИКспектра.

В соответствии с рассчитанными данными, интенсивные пики, лежащие в низкоэнергетической области экспериментального КР-спектра, образованы 31 модами. Интерпретация в этом регионе затруднена из-за высокой плотности пиков и недостаточной точности расчетного метода. Пики КР-спектра, лежащие в области высоких частот, хорошо соотносятся с рассчитанными данными.

5. Заключение

Впервые были зарегистрированы ИК- и КР-спектры оксихлорида $Pb_3O_2Cl_2$ в диапазоне 50–600 сm⁻¹.

Впервые проведены *ab initio* расчеты кристаллической структуры и фононного спектра Pb₃O₂Cl₂. Получено хорошее согласие с экспериментальными данными, проведена интерпретация измеренных спектров.

Полученная в результате расчетов информация позволит в дальнейшем проводить интерпретацию экспериментальных фононных спектров изоструктурных кристаллических соединений со структурой типа мендипита.

Авторы выражают благодарность П.А. Архипову за синтез оксихлорида свинца Pb₃O₂Cl₂, ЦКП ИВТЭ УрО РАН "Состав вещества" за регистрацию спектров и проведение рентгенофазового анализа.

Список литературы

- M.B. Sigman, jr, B.A. Korgel. J. Am. Chem. Soc. 127, 10089 (2005).
- [2] O.I. Siidra, S.V. Krivovichev, T. Armbruster, W. Depmeier. Z. Kristallogr. 223, 204 (2008).
- [3] H. Podsiadlo. J. Thermal. Anal. **37**, 613 (1991).
- [4] I.I. Leonidov, V.P. Petrov, V.A. Chernyshev, A.E. Nikiforov, E.G. Vovkotrub, A.P. Tyutyunnik, V.G. Zubkov. J. Phys. Chem. C 118, 8090 (2014).

- [5] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D'Arco, M. Llunell. CRYSTAL09 User's Manual. (2010). 306 p.
- [6] B. Metz, H. Stoll, M. Dolg. J. Chem. Phys. 113, 2563 (2000).
- [7] G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, R. Dovesi. Phase Transitions: A Multinat. J. 81, 1069 (2013).
- [8] P.J. Hay, W.R. Wadt. J. Chem. Phys. 82, 270 (1985).
- [9] M. Prencipe. Laurea Thesis. Laurea University of Applied Sciences, Vantaa (1990). P. 87.
- [10] J. Baima, A. Erba, M. Rérat, R. Orlando, R. Dovesi. J. Phys. Chem. C 117, 12864 (2013).
- [11] S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel. Comp. Mat. Science 29, 165 (2004).
- [12] T. Bredow, K. Jug, R.A. Evarestov. Phys. Status Solidi B 243, 10 (2006).
- [13] H. Matsumoto, T. Miyake, H. Iwahara. Mater. Res. 36, 1177 (2001).