# 03,13

# Низкотемпературный спрей-пиролиз пленок FeS<sub>2</sub>, их электрические и оптические свойства

© И.Г. Орлецкий<sup>1</sup>, П.Д. Марьянчук<sup>1</sup>, Э.В. Майструк<sup>1</sup>, М.Н. Солован<sup>1</sup>, В.В. Брус<sup>1,2</sup>

<sup>1</sup> Черновицкий национальный университет им. Юрия Федьковича, Черновцы, Украина <sup>2</sup> University of California, Santa Barbara, USA E-mail: i.orletskyi@chnu.edu.ua

(Поступила в Редакцию 30 июня 2015 г.)

Методом спрей-пиролиза водных растворов солей FeCl<sub>3</sub> · 6H<sub>2</sub>O и (NH<sub>2</sub>)<sub>2</sub>CS при низких температурах 250  $\leq T_S \leq 400^{\circ}$ C получены пленки FeS<sub>2</sub> с широким диапазоном значений удельного сопротивления 100  $\Omega \cdot$  cm  $\leq \rho \leq 800$  k  $\Omega \cdot$  cm, высокой адгезией к подложке и устойчивостью к воздействию агрессивных сред. Пленки FeS<sub>2</sub> обладают высоким коэффициентом пропускания  $T \approx 60-70\%$  и характеризуются резким краем пропускания. Установлена зависимость оптической ширины запрещенной зоны для прямых ( $E_g^{op} = 2.19-2.78$  eV) и непрямых ( $E_g^{'op} = 1.26-1.36$  eV) оптических переходов от условий изготовления.

#### 1. Введение

Дисульфид железа FeS<sub>2</sub> (пирит) является нетоксичным материалом и благодаря широкому распространению на Земле имеет перспективу стать недорогой альтернативой для создания высокоэффективных солнечных элементов. Этому способствует как его экологичность, так и близкие к оптимальным для эффективного преобразования энергии излучения оптические свойства: энергия запрещенной зоны 0.95 eV и коэффициент оптического поглощения больше 10<sup>5</sup> ст<sup>-1</sup> при энергии hv > 1.4 eV [1]. При изготовлении пленок железо и сера могут образовывать сульфиды с различным стехиометрическим составом и структурой, что отражается на свойствах материала. С учетом сложной зонной структуры [2,3] получаются тонкие пленки FeS<sub>2</sub> с широким диапазоном собственного поглощения (от 1 до 3.8 eV) [4]. В зависимости от оптических свойств они могут находить применение в солнечных элементах как фотоактивный поглощающий слой [5] или как фронтальный полупрозрачный слой в гетероструктурах [6]. Среди способов изготовления тонких пленок полупроводников метод спрей-пиролиза привлекает внимание в связи с простой реализацией, высокой мобильностью условий нанесения слоев и отсутствием сложного технологического оборудования. При условии получения удовлетворительных по качеству материалов для фотопреобразователей этот метод может существенно снизить стоимость изготовления солнечных элементов. Тонкие пленки FeS2 изготавливают с использованием метода спрей-пиролиза путем образования сульфида непосредственно после пиролиза [4,7,8] или с помощью пиролиза пленок оксида железа с последующей сульфуризацией [9]. Прямое получение методом спрей-пиролиза пленок FeS<sub>2</sub> преимущественно проводят при достаточно высоких температурах разложения солей-реагентов (~ 500°С и больше). В настоящей работе представлены результаты исследования электрических и оптических свойств тонких пленок  $FeS_2$ , полученных при низких температурах пиролиза: от 250 до 400°C.

### 2. Эксперимент

Тонкие пленки FeS<sub>2</sub> толщиной до 0.6 µm получались методом спрей-пиролиза 0.1 М водных растворов солей трихлористого железа FeCl3 · 6H2O и тиомочевины (NH<sub>2</sub>)<sub>2</sub>CS. Для приготовления растворов использовалась бидистиллированная вода. Соотношение компонентов, которые образуют пленку, в растворе составляет [Fe]: [S] = 1:3. Температура пиролиза для получения образцов пленок на подложках стекла и ситалла составляла  $T_S = 250, 300, 350$  и 400°С. Подложки перед нанесением пленок обезжиривались в аммиачно-перекисном растворе  $H_2O_2$ : (NH<sub>2</sub>)OH:  $H_2O_2$ , обрабатывались в растворе двухромовокислого калия K2Cr2O7 и промывались в бидистиллированной воде. Для исследования оптических свойств использовались образцы пленок, которые изготовлены на подложках стекла размером 18 × 18 mm. Для измерения электрических параметров готовились образцы на подложках ситалла. Контакты к пленкам формировались магнетронным напылением молибдена в универсальной вакуумной установке Leybold-Heraeus L560 [10]. Омичность контактов проверялась трехзондовым методом.

Измерения зависимости сопротивления от температуры проводились в интервале  $T = 20-150^{\circ}$ С. Поскольку в процессе измерения температурных зависимостей возможно изменение параметров пленки вследствие необратимых процессов [11], исследования проводились как при повышении температуры, так и при ее понижении. Электросопротивление высокоомных пленок измерялось мегамметром E6-17. Толщина пленок измерялась с помощью микроинтерферометра Линника МИИ-4.

Спектры пропускания тонких пленок получены с помощью спектрофотометра СФ-2000. Экспериментальные точки измерялись в области длин волн 200–1100 nm с шагом 1 nm.

#### 3. Результаты и их обсуждение

3.1. Электрические свойства. Температурная зависимость удельного электрического сопротивления  $\rho$ в диапазоне температур 20 < T < 150°C для пленок FeS<sub>2</sub>, изготовленных при различных температурах спрей-пиролиза T<sub>S</sub>, показана на рис. 1, *a*-*c*. Для подтверждения стабильности электрических свойств пленок при изменении температуры до 150°C измерения проводились в двух направлениях ее изменения (нагрев и охлаждение). Удельное сопротивление образцов пленок, полученных пиролизом при  $T_S = 250$ и  $300^{\circ}$ С ( $\rho \approx 100 \,\Omega \cdot \text{сm}$  при комнатной температуре), существенно ниже значения сопротивления в случае пиролиза при 350 и 400°С ( $\rho \approx 200$  и  $\approx 800 \, \mathrm{k\Omega \cdot cm}$ соответственно) (рис. 2). При более высоких температурах спрей-пиролиза растет количество вакансий серы в пленках FeS<sub>2</sub> из-за ее высокой летучести. В бинарных соединениях сульфидов подобные явления, как правило, сопровождаются увеличением концентрации электронов. В работе [9] наблюдался рост электрического сопротивления пленок FeS2 при увеличении содержания серы в пленках электронного типа проводимости. Пленки FeS<sub>2</sub>, изготовленные при  $T_S = 300^{\circ}$ С, имеют слабо выраженный р-тип проводимости, но при более высоких температурах пиролиза рост вакансий серы приводит к компенсации дырочной проводимости и увеличению удельного сопротивления. Рассчитанная из зависимостей  $\ln \sigma = f(10^3/T)$  (рис. 3) на основе соотношения для электропроводности  $\sigma = \sigma_0 \exp(-E_a/kT)$  энергия активации проводимости пленок FeS2 в области температур  $20 < T < 70^{\circ}$ С составляет  $E_a = 0.21 \text{ eV}$  при температуре пиролиза  $T_S = 300^{\circ}$ С и возрастает до  $E_a = 0.27$  и  $0.36 \,\mathrm{eV}$  при  $T_S = 350$  и  $400^\circ\mathrm{C}$  соответственно. Значительное влияние на величину энергии активации электропроводности в пленках FeS2 оказывают зарядовые состояния на границах зерен [12]. При более высоких температурах пиролиза на границах зерен увеличивается концентрация атомов кислорода и серы, которые образуют положительно заряженные донорные состояния, что приводит к увеличению энергетических барьеров на границах зерен для основных носителей заряда.

3.2. Оптические свойства. На рис. 4 представлены спектры пропускания тонких пленок FeS<sub>2</sub>, полученных при различных температурах пиролиза ( $250 \le T_S \le 400^{\circ}$ С) из 0.1 М водных растворов FeCl<sub>3</sub> · 6H<sub>2</sub>O и (NH<sub>2</sub>)<sub>2</sub>CS при соотношении компонентов [Fe]: [S] = 1:3. Полученные пленки толщиной  $d = 0.2 - 0.6 \,\mu$ m в области длин волн  $\lambda > 0.6 \,\mu$ m име-



**Рис. 1.** Температурная зависимость удельного электрического сопротивления  $\rho$  пленок FeS<sub>2</sub>, изготовленных при различных температурах спрей-пиролиза  $T_s = 300$  (*a*), 350 (*b*), 400°C (*c*).

ют высокий коэффициент пропускания  $T \approx 60-70\%$ и характеризуются резким уменьшением пропускания в области края собственного поглощения света при  $\lambda \approx 0.5\,\mu$ m, что может свидетельствовать о хорошем качестве пленок. Для пленок FeS<sub>2</sub>, изготовленных при



**Рис. 2.** Зависимость удельного электрического сопротивления пленок FeS<sub>2</sub> от температуры пиролиза  $T_S$ . Измерения проводились при комнатной температуре.



**Рис. 3.** Температурная зависимость электропроводности  $\ln \sigma = f(10^3/T)$  пленок FeS<sub>2</sub>, изготовленных при различных температурах спрей-пиролиза  $T_s$ .



**Рис. 4.** Спектр пропускания тонких пленок FeS<sub>2</sub>, изготовленных при различных температурах пиролиза  $(250 \le T_S \le 400^{\circ}\text{C})$  с использованием 0.1 М водных растворов FeCl<sub>3</sub> · 6H<sub>2</sub>O и (NH<sub>2</sub>)<sub>2</sub>CS при соотношении компонентов [Fe]: [S] = 1:3.



Рис. 5. Спектр пропускания тонких пленок FeS<sub>2</sub>, изготовленных при температуре пиролиза  $T_S = 400^{\circ}$ С с использованием солей FeCl<sub>3</sub> · 6H<sub>2</sub>O и (NH<sub>2</sub>)<sub>2</sub>CS при соотношении компонентов [Fe]: [S] = 1:3 (1) и 1:18 (2).

более высоких температурах пиролиза ( $T_S = 400^{\circ}$ C), наблюдается смещение края собственного поглощения в коротковолновую область.

При применении метода спрей-пиролиза для изготовления пленок сульфидов металлов из-за высокой летучести серы и особенности образования химических смесей используют высокие концентрации ее солей ((NH<sub>2</sub>)<sub>2</sub>CS) в растворе для пиролиза [7]. Это влияет на процессы зародышеобразования и роста пленок и может изменять их физические свойства. На рис. 5 представлены спектры пропускания тонких пленок FeS<sub>2</sub>, изготовленных при температуре пиролиза  $T_S = 400^{\circ} \text{C} \text{ c}$ использованием водных растворов FeCl<sub>3</sub> · 6H<sub>2</sub>O (0.1 M) и (NH<sub>2</sub>)<sub>2</sub>CS (0.1 M) при соотношении компонентов [Fe]: [S] = 1:3 (кривая 1), а также водных растворов  $FeCl_3 \cdot 6H_2O$  (0.1 M) и (NH<sub>2</sub>)<sub>2</sub>CS (0.6 M) при [Fe]: [S] = 1: 18 (кривая 2). Для тонких пленок FeS<sub>2</sub>, полученных при высокой концентрации серы, характерен более резкий край пропускания, что свидетельствует об их лучшем структурном совершенстве. Поскольку не зафиксировано заметного влияния повышенного содержания серы в растворе на электрические свойства пленок, изменение края спектра пропускания может быть связано с лучшей гомогенностью растворов со значительной концентрацией тиомочевины и отсутствием включений нерастворимых гидроксидних групп металлов, ухудшающих качество пленок.

Коэффициент пропускания *T* исследуемых образцов пленок FeS<sub>2</sub> соответствующей толщины *d* с показателем преломления n при отсутствии интерференции описывается формулой [13,14]

$$T = \frac{(1-R)^2 [1 + (\lambda \alpha / 4\pi n)^2]}{e^{\alpha d} - R^2 e^{-\alpha d}}.$$
 (1)

С учетом соотношения между показателем преломления и коэффициентом экстинкции  $(k) \ n^2 \gg k^2$  выполня-

Зависимость энергетических параметров пленок  $FeS_2$  от температуры пиролиза  $T_S$ 

| Температура<br>пиролиза, <i>T</i> <sub>S</sub> , °С | Ширина<br>запрещенной зоны<br>(прямые переходы) $E_g^{op}$ , eV | Ширина<br>запрещенной зоны<br>(непрямые переходы) $E_g^{\prime op}$ , eV | Энергия<br>фонона <i>E<sub>p</sub></i> , eV |
|-----------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|
| 250                                                 | 2.19                                                            | 1.26                                                                     | 0.14                                        |
| 300<br>350                                          | 2.41<br>2.68                                                    | 1.37<br>1.36                                                             | 0.21                                        |
| 400                                                 | 2.78                                                            | 1.26                                                                     | 0.34                                        |

ется условие  $(\alpha \lambda / 4\pi n) < 1$ . Формула для коэффициента пропускания *T* приобретает вид

$$T = \frac{(1-R)^2 e^{-\alpha d}}{1-R^2 e^{-2\alpha d}}.$$
 (2)

Коэффициент поглощения можно рассчитать по формуле

$$\alpha = \frac{1}{d} \ln \left[ \frac{(1-R)^2}{2T} + \sqrt{\frac{(1-R)^2}{4t^2} + R^2} \right].$$
 (3)

Использование выражения (3) для расчета  $\alpha$  обусловлено отсутствием наблюдения интерференционной картины на спектральных зависимостях коэффициента пропускания пленок FeS<sub>2</sub>, что дало возможность не учитывать интерференционные явления на границе раздела пленка—подложка. Коэффициент отражения пленок в исследуемой области спектра меняется от R = 15% при энергии hv > 2.5 eV до R = 25% при hv = 1 eV [8].

Данные оптических исследований анализировались на основе классических соотношений

$$\alpha = \frac{\alpha_0 (h\nu - E_g^{\rm op})^n}{h\nu},\tag{4}$$

где  $\alpha_0$  — константа, n — константа, которая зависит от типа оптического перехода. Для прямых переходов n = 1/2, для непрямых n = 2.

На рис. 6 показаны зависимости  $(\alpha hv)^2 = f(hv)$  для пленок FeS<sub>2</sub>, полученных из 0.1 М водных растворов солей FeCl<sub>3</sub> · 6H<sub>2</sub>O и (NH<sub>2</sub>)<sub>2</sub>CS при различных температурах спрей-пиролиза. Экстраполяцией прямолинейных участков до нулевого значения коэффициента поглощения получаются значения оптической ширины запрещенной зоны  $E_g^{op}$ . Наблюдается рост ширины запрещенной зоны тонких пленок пирита от  $E_g^{op} = 2.19$  eV при температуре пиролиза  $T_S = 250^{\circ}$ C до  $E_g^{op} = 2.78$  eV при  $T_S = 400^{\circ}$ C.

Присутствие непрямых переходов в пленках FeS<sub>2</sub> подтверждалось анализом соотношения для коэффициента поглощения с участием фононов

$$\alpha = \frac{\alpha'_0 (h\nu - E'^{\rm op}_g \pm E_p)^n}{h\nu},\tag{5}$$

где n = 2; знак "минус" соответствует фононной эмиссии, знак "плюс" — для фононному поглощению:  $\alpha'_0$  — константа;  $E_g^{\prime op}$  — оптическая ширина запрещенной зоны, отвечающая непрямым переходам;  $E_p$  — энергия фонона, который участвует в переходе.

На рис. 7 показаны зависимости  $(\alpha h\nu)^{1/2} = f(h\nu)$  для пленок FeS<sub>2</sub>, изготовленных при различных температурах спрей-пиролиза. Данные зависимости имеют по два прямолинейных участка: один в высокоэнергетической



**Рис. 6.** Зависимость  $(\alpha h\nu)^2 = f(h\nu)$  для пленок FeS<sub>2</sub> и  $E_g^{op}$  (на вставке) от температуры пиролиза  $T_S$ .



**Рис. 7.** Зависимость  $(\alpha h v)^2 = f(hv)$  для пленок FeS<sub>2</sub> от температуры пиролиза  $T_S$ .

области, другой при более низких энергиях. Экстраполяция высокоэнергетических линейных участков на ось энергий дает значение  $E_g'^{op} + E_p$ , экстраполяция при меньших энергиях определяет величину  $E_g'^{op} - E_p$ . Данные о зависимости оптической ширины запрещенной зоны  $E_g^{op}$  для прямых и  $E_g'^{op}$  для непрямых оптических переходов, а также энергии фонона  $E_p$  от температуры пиролиза  $T_S$  пленок FeS<sub>2</sub> представлены в таблице.

Энергия прямых и непрямых оптических переходов с эмиссией или поглощением фонона связана со строением энергетических зон пирита  $FeS_2$  [2,3]. Наибольшая плотность состояний для носителей заряда в валентной зоне пирита соответствует значениям энергии оптических переходов, близким к 2.6, 1.44 и 1.13 eV [8]. Значение энергии оптических переходов в исследованных пленках пирита  $FeS_2$ , полученных методом спрей-пиролиза, зависит от температуры пиролиза и находится в пределах 2.19–2.78 eV для прямых переходов, 1.4–1.6 eV для переходов с излучением фонона, 0.92–1.17 eV для переходов с поглощением фонона, что хорошо согласуется с [8].

# 4. Заключение

Методом спрей-пиролиза 0.1 М водных растворов FeCl<sub>3</sub> · 6H<sub>2</sub>O и (NH<sub>2</sub>)<sub>2</sub>CS при соотношении компонентов [Fe]: [S] = 1:3 и температурах пиролиза  $250 \le T_S \le 400^\circ \mathrm{C}$  получены пленки FeS<sub>2</sub> толщиной  $d \approx 0.2 - 0.6 \,\mu\text{m}$  с широким диапазоном значений удельного сопротивления (от  $ho \approx 100\,\Omega\cdot{
m cm}$  до  $\approx 800 \,\mathrm{k}\Omega \cdot \mathrm{cm}$ ). Пленки обладают высокой адгезией к подложкам и устойчивостью к воздействию агрессивных сред. В области длин волн  $\lambda > 0.6 \, \mu m$  пленки FeS2 обладают высоким коэффициентом пропускания  $T \approx 60-70\%$  и характеризуются резким краем пропускания в области собственного поглощения света. Оптическая ширина запрещенной зоны пленок зависит от условий получения и для прямых оптических переходов находится в диапазоне  $E_g^{op} = 2.19 - 2.78$  eV. Непрямые оптические переходы ( $E_g'^{op} = 1.26 - 1.36$  eV) происходят с участием фононов. Полученные в низкотемпературном режиме пиролиза пленки FeS2 могут быть использованы как фронтальный слой солнечных элементов на основе гетеропереходов.

#### Список литературы

- B. Rezig, H. Dahman, M. Kenzari. Renewable Energy 2, 125 (1992).
- [2] J. Hu, Y. Zhang, M. Law, R. Wu. J. Am. Chem. Soc. 134, 13 216 (2012)
- [3] P. Xiao, X.-L. Fan, L. M. Liu, W.-M. Lau. Phys. Chem. Chem. Phys. 16, 24 466 (2014).
- [4] A.K. Abass, Z.A. Ahmed, R.E. Tahir. Phys. Status Solisi A 97, 243 (1986).
- [5] P.P. Altermatt, T. Kiesewetter, K. Ellmer, H. Tributsch. Solar Energy Mater. Solar Cells 71, 181 (2002).

- [6] S. Middya, A. Layek, A. Dey, P.P. Ray. J. Mater. Sci. Technol. 30, 770 (2014).
- [7] A.K. Ratui, L. Ndjeli, K. Rabah. Renewable Energy 11, 191 (1997).
- [8] A.K. Abass, Z.A. Ahmed, R.M. Samuel. Phys. Status Solidi A 120, 247 (1990).
- [9] D.Y. Wan, Y.T. Wang, B.Y. Wang, C.X. Ma, H. Sun, L. Wei. Cryst. Growth 253, 230 (2003).
- [10] В.В. Брус, М.Н. Солован, Э.В. Майструк, И.П. Козярский, П.Д. Марьянчук, К.С. Ульяницкий, J. Rappich. ФТТ 56, 1886 (2014).
- [11] М.Н. Солован, В.В. Брус, П.Д. Марьянчук, Т.Т. Ковалюк, J. Rappich, M. Gluba. ФТТ 55, 2123 (2013).
- [12] B. Ouertani, J. Ouerfelli, M. Saadoun, B. Bessaïs, H. Ezzaouia. Mater. Charact. 54, 431 (2005).
- [13] Ю.И. Уханов. Оптические свойства полупроводников. Наука, М. (1977). 366 с.
- [14] М.Н. Солован, В.В. Брус, Э.В. Майструк, П.Д. Марьянчук. Неорган. материалы **50**, 46 (2014).