Мягкие полярные моды и фазовые состояния твердых растворов Ca_{1-x}Pb_xTiO₃

© А.А. Волков, Г.А. Командин, Б.П. Горшунов, В.В. Леманов*, В.И. Торгашев**

Институт общей физики Российской академии наук,

117942 Москва, Россия

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

** Ростовский государственный университет,

Ростов-на-Дону, Россия

(Поступила в Редакцию 20 октября 2003 г.)

Исследованы диэлектрические спектры $\varepsilon'(v)$ и $\varepsilon''(v)$ керамических образцов Ca_{1-x}Pb_xTiO₃ (x = 0, 0.15, 0.2 и 0.4) в области частот v = 7-1000 cm⁻¹ при температурах 5–300 К методами ИК Фурье-спектроскопии и субмиллиметровой техники. В области низких частот установлена температурная эволюция полярных фононов. Результаты обсуждаются в рамках теории Ландау фазовых переходов второго рода для взаимодействующих мягких мод. Предполагается возможность существования одного (или нескольких) фазовых состояний в области промежуточных концентраций в твердых растворах Ca_{1-x}Pb_xTiO₃.

Авторы из ИОФ РАН благодарят Российский фонд фундаментальных исследований за финансовую поддержку работы (грант № 03-02-16720). В ФТИ РАН работа проводилась при частичной финансовой поддержке по гранту президента РФ НШ-2168.2003.2 и программы Отделения физических наук РАН.

1. Введение

Титанат кальция (CaTiO₃) является родоначальником обширного семейства кристаллов со структурой перовскита, к которым относится множество соединений — сегнетоэлектрики и антисегнетоэлектрики, высокотемпературные сверхпроводники, манганиты с колоссальным магнитосопротивлением и др. Структуру перовскита имеют классические сегнетоэлектрики ВаТіО₃, PbTiO₃, KNbO₃ и потенциальные сегнетоэлектрики SrTiO₃ и KTaO₃ [1]. Диэлектрическая проницаемость (є) последних, как и у нормальных сегнетоэлектриков, сильно зависит от температуры. Она растет при охлаждении до гигантских величин $\varepsilon \sim 10^4$, но не имеет резкой пиковой аномалии. При низких температурах в районе 40 К $\varepsilon(T)$ насыщается, а сегнетоэлектрический фазовый переход так и не происходит. Поэтому эти соединения классифицируются как "потенциальные сегнетоэлектрики".

Динамическая теория кристаллической решетки связывает температурную расходимость диэлектрической проницаемости в перовскитах с понижением частоты полярной мягкой моды симметрии F_{1u} , существование которой уверенно подтверждается температурным поведением инфракрасных спектров поглощения и отражения. Считается, что в SrTiO₃ и KTaO₃ статические диэлектрические аномалии всецело определяются температурным поведением мягкой моды в соответствии с соотношением Лиддена–Сакса–Теллера [2]. Базовый перовскит (CaTiO₃) в этом отношении исследован сравнительно слабо. В CaTiO₃ диэлектрическая проницаемость изменяется в пределах от 170 до 330 при снижении температуры от комнатной до температуры жидкого гелия [3], т.е. не столь сильно, как в SrTiO₃ и KTaO₃.

С точки зрения динамической теории сегнетоэлектричества это предполагает наличие в CaTiO₃ решеточной неустойчивости в виде полярной мягкой моды и его склонность к сегнетоэлектрическому фазовому переходу. В работе [4], по-видимому впервые, действительно наблюдалось соответствующее температурное поведение инфракрасных спектров отражения. Новые данные о мягкой моде в CaTiO₃ получены совсем недавно [5,6].

Примеси могут индуцировать переход в сегнетоэлектрическое состояние. Это явление детально изучено для SrTiO₃: Ca [7], для SrTiO₃, допированного другими примесями [8], а также для примесей Li и Nb в KTaO₃ [9]. Твердые растворы $Ca_{1-x}Pb_xTiO_3$ до последнего времени изучались только со стороны РbTiO₃ ($x \ge 0.5$) [10–12]. В связи с этим исследование диэлектрических свойств и возможность индуцирования сегнетоэлектричества при варьировании состава в $Ca_{1-x}Pb_xTiO_3$ со стороны CaTiO₃ вызывает интерес как с практической, так и фундаментальной точек зрения в рамках решения вопроса о микроскопических причинах нестабильности этих твердых растворов относительно сегнетоэлектрических флуктуаций и их трансформации из потенциально сегнетоэлектрического состояния в реальное. Недавно положительный ответ на вопрос об индуцировании сегнетоэлектричества был получен в [13] при изучении диэлектрической проницаемости $\varepsilon(v)$ в области частот $10 \text{ Hz} < \nu < 1 \text{ MHz}$ и петель гистерезиса. Установлено [13], что температура фазового перехода в сегнетоэлектрическое состояние линейно повышается при увеличении концентрации свинца и при x > 0.28 твердых раствор переходит в полярное состояние при $T > 0 \, \text{K}.$

Кроме того, в работах [13,14] показано, что твердые растворы Ca_{1-x}Pb_xTiO₃ обладают релаксорными свой-

¹⁹⁴⁰²¹ Санкт-Петербург, Россия

1500 1300 1100 900 O_h^1 C_{4v}^{1} 500 D_{2h}^{16} 300 100 0 -1000.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 x

Рис. 1. Экспериментальная фазовая диаграмма системы твердых растворов Ca_{1-x}Pb_xTiO₃, построенная на основе оптических [17] (маленькие светлые кружки) и диэлектрических [13] (маленькие темные кружки и квадраты) данных. Сплошные линии фазовых переходов проведены по точкам, штриховые линии — их экстраполяция. Фазы IV и VI предположительно имеют тетрагональную структуру, а фаза V — ороторомбическую. Мультифазные точки О и F, отмеченные большими темными кружками, — предполагаемые аналоги соответствующих точек на рис. 16 теоретической фазовой диаграммы. Большие светлые кружки — трехфазные точки, достоверность существования которых требует дополнительных исследований. Пунктирные вертикальные линии соответствуют образцам, изученным в настоящей работе.

ствами при некоторых концентрациях х. Так, при исследовании диэлектрического поведения керамик с малым содержанием Pb показано [13], что составы с x < 0.3ведут себя аналогично чистому перовскиту, но при x > 0.3 в них установлена зависимость размытого максимума $\varepsilon'(T)$ от частоты измерительного поля и несовпадение температур максимумов $\varepsilon'(T_{\max})$ и $\varepsilon''(T_{\max})$. В [14] методом дифракции нейтронов проведено исследование твердого раствора (Ca_{0.5}Pb_{0.5})TiO₃ и сделан вывод, что структура орторомбически искажена за счет поворотов октаэдров и смещений ионов Pb²⁺/Ca²⁺ из центральных перовскитных позиций. Симметрия этого твердого раствора такая же, как и у титаната кальция: $Pnma - D_{2h}^{16}$ [15]. На основе изучения реальной и мнимой частей диэлектрического тензора авторы [14] пришли к заключению, что (Ca_{0.5}Pb_{0.5})TiO₃ обладает релаксорными свойствами, связанными со структурной фрустрацией из-за поворотов ТіО₆-октаэдров в матрице СаТіО₃. Для составов x = 0.1 и 0.2 структура остается орторомбической, орторомбические искажения существенно уменьшаются при x = 0.3 и 0.4 (сингония точно не определена), а для x > 0.5 решетка тетрагональна, что установлено ТЕМ-исследованием соответствующих твердых растворов [16]. Не обнаружено свидетельств упорядочения атомов свинца и кальция для составов x = 0.1 и 0.2, но частичное упорядочение происходит при *x* = 0.3 [16].

В работе [17] проведены оптические исследования кристаллов $Ca_{1-x}Pb_xTiO_3$ и построена x-T-диаграмма для 0.38 < x < 1. На рис. 1 эти данные приведены вместе с результатами работы [13]. Как видно, в области 0.5 < x < 0.7 наблюдается несколько различных фазовых состояний.

Столь сложное концентрационное поведение системы твердых растворов Ca_{1-x}Pb_xTiO₃ должно проявиться не только на макро-, но и на микроуровне. В связи с этим была поставлена задача исследовать поведение спектрального отклика этих твердых растворов методами ИК и субмиллиметровой спектроскопии. В настоящей работе приводятся результаты исследования диэлектрических спектров $\varepsilon'(v)$ и $\varepsilon''(v)$ керамических образцов $Ca_{1-x}Pb_xTiO_3$ (x = 0, 0.15, 0.2, 0.4), измеренных в области частот $v = 7 - 1000 \, \mathrm{cm}^{-1}$ при температурах 5-300 К. В дальнейшем такие исследования предполагается провести для значений x от 0.4 до 1.0, т.е. планируется исследовать всю систему твердых растворов Ca1-rPbrTiO3. Результаты работы обсуждаются в рамках теории фазовых переходов Ландау для взаимодействующих мягких мод. На основе теории построена адаптированная для этой системы твердых растворов фазовая диаграмма на плоскости T-x.

2. Эксперимент

Образцы изготавливались по стандартной керамической технологии [13]. В качестве исходных материалов использовались карбонат кальция (СаСО₃) марки ОСЧ 16-2, диоксид титана (TiO₂) марки ОСЧ 5-2 и окись свинца (PbO) марки ОСЧ 5-3. После прокаливания при температуре 1150°C в течение 20 часов образцы были окончательно спечены за 1 час при 1390°С в закрытых платиновых тиглях в атмосфере избытка оксида свинца. По данным рентгенографического анализа образцы были однофазными и обладали структурой перовскита. Все образцы имели плотность 0.92-0.95 от теоретической рентгеновской.

На образцах в виде полированных таблеток диаметров 1 ст и толщиной от 0.05 до 0.3 mm измерялись субмиллиметровые спектры пропускания в диапазоне частот $3-18 \,\mathrm{cm}^{-1}$ при температурах $5-300 \,\mathrm{K}$ и спектры инфракрасного отражения в диапазоне $30-1000\,\mathrm{cm}^{-1}$ при комнатной температуре. В первом случае использовался лабораторный ЛОВ-спектрометр "Эпсилон" (на основе лампы обратной волны) [18], во втором инфракрасный Фурье-спектрометр "Bruker-113v".

Для получения количественной информации о параметрах фононных линий проведен дисперсионный анализ в рамках модели аддитивных осцилляторов с затуханием. Для описания спектров $\varepsilon'(v)$, $\varepsilon''(v)$ и R(v) использовались следующие формулы с подгонкой по методу наименьших квадратов:

$$\varepsilon'(\nu) = \varepsilon_{\infty} + \sum_{i} \frac{\Delta \varepsilon_{i} \nu_{i}^{2} (\nu_{i}^{2} - \nu^{2})}{(\nu_{i}^{2} - \nu^{2})^{2} + \gamma_{i}^{2} \nu^{2}}, \qquad (1)$$

$$\varepsilon''(\nu) = \sum_{i} \frac{\Delta \varepsilon_{i} \nu_{i}^{2} \nu \gamma_{i}}{(\nu_{i}^{2} - \nu^{2})^{2} + \gamma_{i}^{2} \nu^{2}},$$
(2)

$$R(\nu) = \left| \frac{\sqrt{\varepsilon(\nu)} - 1}{\sqrt{\varepsilon(\nu)} + 1} \right|^2.$$
(3)

Здесь ε_{∞} — высокочастотный диэлектрический вклад, ν_i — собственная частота, γ_i — константа затухания, $\Delta \varepsilon_i$ — диэлектрический вклад с $\Delta \varepsilon_i \nu_i^2 = f_i$ в качестве силы осциллятора для каждой моды.

Кристаллическая структура и фактор-групповой анализ

Титанат кальция при температурах T > 1580 K обладает идеальной кубической перовскитной структурой с пространственной группой *Рт3m-O*¹_h. При понижении температуры СаТіО₃ претерпевает последовательность фазовых переходов, температуры которых и симметрия реализующихся фаз, однако, до сих пор установлены неоднозначно [19,20]. Предполагается, что последовательность фаз такая же, как в SrZrO₃: $Pm3m \rightarrow I4/mcm \rightarrow Cmcm \rightarrow Pnma$ [21]. При T < 1380 K структурное искажение стабилизируется и описывается ромбической ячейкой с параметрами a = 5.444, b = 7.644 и c = 5.367 Å и симметрией $Pnma - D_{2h}^{16}$ (рис. 2, *a*) [15,22]. Отклонения от кубической структуры малы и параметр приведенной ячейки $(a/\sqrt{2},$ $b/2, c/\sqrt{2}$) равен 3.82 Å. Элементарная ячейка содержит четыре формульных единицы и, таким образом, в ромбическом титанате кальция реализуется 60 колебательных степеней свободы.

Исходя из ромбической структуры CaTiO₃, Кохрен и Зиа нашли, что искажение кубической перовскитной ячейки требует для своего описания участия трех мягких мод (из M-, R- и X-точек) [23]. Последующий анализ показал, однако, что наблюдаемые смещения атомов могут быть получены при участии всего лишь двух мягких мод из M- и R-точек кубической зоны Бриллюэна, а моды из X-точек следует рассматривать как вторичные параметры порядка [24,25]. На рис. 2, b показана трансформация первой зоны Бриллюэна при этих искажениях. В результате высокотемпературных фазовых переходов происходит обогащение спектра Г-точки D_{2h}^{16} -фазы CaTiO₃ новыми линиями относительно спектра идеального перовскита. Снимается вырождение с трехкратно вырожденных мод центра зоны Бриллюэна

Рис. 2. Элементарная ячейка орторомбического CaTiO₃ (*a*) и зоны Бриллюэна простой кубической Γ_c и орторомбической Γ_o ячеек (*b*). Точки *M*, *R*, *X* кубической ячейки "перебрасываются" в центр зоны Бриллюэна орторомбической ячейки в результате антиферродисторсионного фазового перехода $Pm3m \rightarrow Pnma$.

кубической фазы и в результате свертки зоны (folding) происходит переброс мод из граничных M-, R- и X-точек в центр зоны (рис. 2, b). На рис. 3 приведены соответствующие корреляции представлений. Там же для полноты картины даны корреляции симметрийных типов для случая фазового перехода в PbTiO₃.

В ряде работ для титаната кальция были проведены расчеты частоты мягкой моды из первых принципов. Оказалось, что для кубического титаната кальция частота полярной мягкой моды при T = 0 является мнимой и составляет (в ст⁻¹) 153*i* [27] и 140*i* [28]. Это означает, что, если бы титанат кальция был кубическим, он являлся бы сегнетоэлектриком с довольно высокой

 D_{2h}^{16} -phase: $7A_g$ [Raman] + $5B_{1g}$ [Raman] + $7B_{2g}$ [Raman] + $5B_{3g}$ [Raman] + $8A_u$ [silent] + $10B_{1u}$ [IR] + $8B_{2u}$ [IR] + $10B_{3u}$ [IR]

Рис. 3. Состав механических представлений и корреляционные диаграммы для симметрийных типов *Pm3m*-кубического перовскита, тетрагональной *P4mm*-фазы PbTiO₃ и орторомбической *Pnma*-фазы CaTiO₃. Обозначения представлений в соответствии с [26]. Числа перед символом неприводимого представления показывают, сколько раз оно входит в механическое представление, а числа после символа в скобках определяют размерность малого неприводимого представления. Акустические и оптические моды разъединены. Внизу для большей наглядности приведен состав механических представлений для центров зон Бриллюэна кубической и ромбической фаз CaTiO₃, причем для кубической фазы даны обозначения представлений как в спектроскопической символике, так и в символике [26]; в скобках после символа неприводимого представления на кубической опредставления и в одном из этих явлений).

температурой сегнетоэлектрического фазового перехода. Те же расчеты [28] для ромбической фазы дают частоту мягкой моды около 90 сm⁻¹. В этом случае сегнетоэлектрический фазовый переход должен отсутствовать, что и имеет место.

4. Субмиллиметровые и инфракрасные спектры

4.1. Титанат кальция. На рис. 4 представлены субмиллиметровые спектры пропускания Tr(v) керамического плоскопараллельного образца CaTiO₃ толщиной d = 0.245 mm. Они представляют собой типичные для прозрачных образцов осциллирующие кривые, свидетельствующие о происходящей в образце интерференции плоских монохроматических волн электромагнитного излучения (эффект Фабри-Перо). В этих условиях максимумы пропускания при изменении частоты излучения возникают всякий раз, когда целое число полуволн в образце укладывается на его толщине

$$m(\lambda/2) = nd$$
,

где m — номер интерференционного максимума, λ — длина волны излучения, n — коэффициент преломления. Положения пиков пропускания Tr(v) на частотной шкале и расстояния между ними определяются величиной коэффициента преломления n(v), а значения Tr(v) в максимумах и размах осцилляций зависят от величины коэффициента экстинкции k(v) (мнимая часть

Рис. 4. Субмиллиметровые спектры пропускания керамической пластинки CaTiO₃ толщиной d = 0.245 mm при 5 и 300 K. Точки — эксперимент, линии — расчет по френелевской формуле пропускания плоского диэлектрического слоя с параметрами ε' и ε'' , представленными на рис. 8. Цифрами обозначены номера пиков *m*.

Рис. 5. Инфракрасный спектр отражения R(v) керамического образца CaTiO₃ при 295 К и рассчитанный на его основе метод дисперсионного анализа спектр поглощения $\varepsilon''(v)$. Точки в спектре R(v) — эксперимент, сплошная и штриховая линии — модельное описание тринадцатью осцилляторами соответственно с учетом и без учета связи двух крайних из них по частоте. Темный кружок — привязочное значение R, рассчитанное на основе субмиллиметровых данных по ε' и ε'' .

показателя преломления). Сжатие интерференционной "гармошки" на рис. 4 при охлаждении образца означает, что при низких температурах происходит увеличение показателя преломления. При этом показатель преломления не зависит от частоты ни при 295 К, ни при 5 К, на что указывает эквидистантное по частоте расположение пиков при обеих температурах.

Сплошные линии на рис. 4 дают описание экспериментальной зависимости Tr(v) с помощью френелевской формулы для пропускания плоского диэлектрического слоя. Такая процедура путем подгонки позволяет определить зависимости действительной и мнимой частей показателя преломления n(v, T) и k(v, T), действительной и мнимой частей диэлектрической проницаемости $\varepsilon'(v, T)$, $\varepsilon''(v, T)$ и коэффициента отражения R(v, T) [18].

На рис. 5 представлены спектры инфракрасного отражения $R(\nu)$. Сплошной линией показан результат дисперсионного анализа, выполненного методом наименьших квадратов согласно (1)–(3). Спектр R(v) смоделирован суммой тринадцати гармонических осцилляторов (согласно фактор-групповому анализу (рис. 3) в ИК спектре должны наблюдаться 25 линий симметрии $9B_{1u} + 7B_{2u} + 9B_{3u}$, наблюдаемое их число меньше, возможное объяснение см. в [6]). Все осцилляторы считались независимыми и учитывалась только связь первого осциллятора с последним (сплошная линия на рис. 5). При этом использовалась мнимая связь δ_{1-13} , которая традиционно используется для случая перовскитов [29]. Как видно из рис. 5, учет такой связи существен на частотах выше 500 ст⁻¹. Полученные подгонкой значения параметров приведены в табл. 1.

Таблица 1. Частоты v_i , диэлектрические вклады $\Delta \varepsilon_i$ и затухания γ_i ИК-активных мод в СаТіО₃, полученные методом дисперсионного анализа спектра отражения R(v), приведенного на рис. 5.

i	v_i, cm^{-1}	$\Delta \varepsilon_i$	$\gamma_i, \mathrm{cm}^{-1}$
1	108.7	140 ± 2	19.6
2	170.6	10.10	16.2
3	187.3	2.70	10.1
4	223.0	1.40	8.5
5	252.5	1.90	56.3
6	260.9	0.40	14.5
7	307.0	0.40	11.7
8	312.4	0.10	19.7
9	323.5	0.90	25.4
10	373.2	0.40	30.2
11	441.3	0.80	43.7
12	449.1	0.20	24.7
13	541.6	1.30	27.4

Примечание. Точность определения ν_i и γ_i составляет ± 0.1 сm⁻¹, $\Delta \varepsilon_i$ для i = 2-13, ± 0.05 . Температура комнатная. Связь между первым и тринадцатым осциллятором $\delta_{1-13} = 63 \pm 3$, $\varepsilon_{\infty} = 5.20 \pm 0.05$.

Известная трудность отражательной ИК-спектроскопии состоит в недостаточной точности измерения спектров отражения R(v) на низких частотах, ниже примерно 100 cm⁻¹. Мы исключили это обстоятельство, введя в расчеты с высоким весом точное привязочное значение $R = 0.73 \pm 0.01$ на низкой частоте (черный кружок слева на рис. 5), рассчитанное из субмиллиметровых данных по *n* и *k*. В нижней части рис. 5 приведен модельный спектр поглощения, составленный из тринадцати осцилляторов, отвечающий экспериментальному спектру $R(\nu)$. Рисунок иллюстрирует сложную и неочевидную связь между спектрами отражения R(v)и поглощения $\varepsilon''(v)$: резким и большим по величине изменениям *R* на высоких частотах соответствуют лишь слабые флуктуации ε'' , в то время как на низких частотах гораздо меньшей дисперсии R(v) отвечает мощный решеточный пик.

Из табл. 1 следует, что основной вклад в статическую диэлектрическую проницаемость ε_0 вносит всего лишь одна самая низкочастотная мода, диэлектрический вклад которой составляет $\Delta \varepsilon \approx 140$. Остальные двенадцать колебаний совместно с ε_∞ дают значение около 26, т.е. ~ 15% общей величины. Предполагая, что наблюдаемые температурные изменения $\varepsilon'(T)$ и $\varepsilon''(T)$ в субмиллиметровом диапазоне обусловлены температурной эволюцией именно этой, самой мощной (назовем ее мягкой) моды (с частотой Ω_M), т. е. пренебрегая температурными изменениями остальных вкладов, получаем для вклада мягкой моды $\Delta \varepsilon$ следующую температурную зависимость: $\Delta \varepsilon(T) = \varepsilon'(T) - 26$. Она представлена на рис. 6 черными точками. Считем далее, что сила осциллятора мягкой моды $f(T) = \Delta \varepsilon(T) \Omega_M^2(T)$, как и ε_{∞} , не зависит от температуры, что эквивалентно предположению о выполнении соотношения Лиддена-Сакса-Теллера. В пользу такого предположения свидетельствует практически полное совпадение субмиллиметровых значений диэлектрической проницаемости ε' со статической диэлектрической проницаемостью ε_0 , измеренной на низких частотах [13] и, следовательно, отсутствие дополнительных к мягкой моде более низкочастотных

Рис. 6. Температурные зависимости действительной и мнимой частей диэлектрической проницаемости ε' и ε'' в CaTiO₃. Светлые точки — данные субмиллиметровых измерений для $\nu = 10 \text{ cm}^{-1}$, темные точки — расчетный диэлектрический вклад мягкой моды $\Delta \varepsilon$, сплошная линия — статическая диэлектрическая проницаемость [13].

Рис. 7. Температурные зависимости частоты и затухания мягкой моды в керамическом образце CaTiO₃, полученные подгонкой осцилляторной модели под эксперимент (рис. 5).

905

Рис. 8. Частотно-температурная панорама $\varepsilon'(v, T)$ и $\varepsilon''(v, T)$ мягкой моды в CaTiO₃. Точки — эксперимент (рис. 4), линии — модельный расчет по тринадцати осцилляторам с параметрами, приведенными в табл. 1.

Рис. 9. Сопоставление спектров $R(\nu)$ и $\varepsilon''(\nu)$ при разных температурах для CaTiO₃.

возбуждений. По известным при комнатной температуре значениям $\Delta \varepsilon$ и Ω_M (табл. 1) определяем привязочное значение силы осциллятора при комнатной температуре: $f = 1.7 \cdot 10^6 \,\mathrm{cm}^{-2}$; с этим постоянным значением f по зависимости $\Delta \varepsilon(T)$ рассчитываем температурную зависимость частоты мягкой моды $\Omega_M(T)$, рис. 7.

Из полученных описанным способом зависимостей $\Delta \varepsilon(T)$ и $\Omega_M(T)$ определялась температурная зависимость затухания мягкой моды $\gamma(T)$. Для этой цели в фиксированных по температуре точках при заданных $\Delta \varepsilon$ и Ω_M с помощью лоренцианов моделировались частотные зависимости диэлектрической проницаемости $\varepsilon'(\nu)$ и $\varepsilon''(v)$ с такими γ , которые обеспечивали прохождение расчетных низкочастотных хвостов линий $\varepsilon'(v)$ и $\varepsilon''(v)$ через экспериментальные значения ε' и ε'' , измеренные в субмиллиметровом диапазоне (рис. 8). Полученная таким образом температурная зависимость затухания $\gamma(T)$ представлена на рис. 7.

Приведенные на рис. 8 данные представляют собой полную частотно-температурную панораму поведения мягкой моды в CaTiO₃, сконструированную описанным выше способом. Здесь следует отметить, что, поскольку частота мягкой моды низка, а интенсивность велика, наблюдение мягкой моды традиционным методом ИК-отражения представляется весьма проблематичным. На рис. 9 приведено сопоставление спектров поглощения, обусловленных мягкой модой с соответствующими спектрами коэффициента отражения. Видно, что грандиозные частотно-температурные преобразования мягкой моды совсем слабо выражены в спектрах отражения. Для успешного извлечения из таких спектров параметров мягкой моды требуются высокие точности (не хуже 1%) абсолютных измерений коэффициента отражения по всему спектру.

4.2. Твердые растворы $Ca_{1-x}Pb_xTiO_3$. При измерениях образцов твердых растворов использована аналогичная пункту 4.1 процедура. На рис. 10 и 11 приведены наборы спектров, измеренных в настоящей работе: спектры инфракрасного отражения (для частот выше 20 cm^{-1}), субмиллиметрового пропускания и фазы (на вставках ниже 20 cm^{-1}) на примере образцов x = 0.15 и 0.4 для разных температур. Спектры действительной и мнимой частей диэлектрической проницаемости в низкочастотной области спектра приведены на рис. 12, 13.

Спектры отражения представляют картину, типичную для перовскитов и похожи на спектры чистого CaTiO₃ (см. п. 4.1, а также [4–6,30]). В образцах Ca_{1-r}Pb_rTiO₃ (как и в CaTiO₃) только три самые низкочастотные моды вносят основной вклад в макроскопическое диэлектрическое поведение образцов. Совокупный вклад в $\varepsilon_0 = \varepsilon_\infty + \Sigma_i \Delta \varepsilon_i$ от остальных (i > 3) высокочастотных линий не превышает 15%. Обращает на себя внимание принципиально разное температурное поведение спектров для образца с малым содержанием свинца (x = 0.15) и образца с x = 0.4. Для первого из них частотный диапазон ниже $\sim 200\,{
m cm^{-1}}$ может быть удовлетворительно охарактеризован тремя линиями (обозначенными на рис. 12 M₁, M₂, M₃). При 300 К экстраполированное из спектров для образца x = 0.15 статическое значение $\varepsilon_0 \approx 250$, оно постепенно возрастает и достигает примерно в 3 раза большего значения при 5 К. Как видно из рис. 12, этот рост обусловлен одновременным смягчением всех трех указанных линий. С другой стороны, в образце с x = 0.4 температурное поведение линий совсем другое: только самая низкочастотная мода M_1 относительно неустойчива по температуре, причем температурная зависимость моды не является монотонной (рис. 13). Сначала по мере понижения температуры мода

Рис. 10. Спектры отражения R(v) и пропускания Tr(v) (на вставке) при 5 и 300 К образца $Ca_{1-x}Pb_xTiO_3$ с x = 0.15. Точки — эксперимент, линии — подгонка в рамках модели аддитивных осцилляторов (1)–(3). Толшина образца d = 0.3 mm.

Рис. 11. Спектры отражения R(v), пропускания Tr(v) и фазового сдвига $\varphi(v)$ (на вставке) при 300 К образцов Ca_{1-x}Pb_xTiO₃ разной толщины с x = 0.4. Точки — эксперимент, линии — подгонка в рамках модели аддитивных осцилляторов (1)–(3).

Рис. 12. Спектры действительной $\varepsilon'(v)$ и мнимой $\varepsilon''(v)$ частей диэлектрической проницаемости образца Ca_{1-x}Pb_xTiO₃ с x = 0.15. Точки — эксперимент, линии — подгонка в рамках модели аддитивных осцилляторов в соответствии с (1)–(3). M_1, M_2, M_3 — три самые низкочастотные линии в спектрах.

смягчается, но ниже ~ 180 К опять начинает ужесточаться, при этом статический диэлектрический вклад при высокой и низкой температурах примерно одинаков ($\varepsilon_0 \approx 650$). Отметим еще одно, на наш взгляд, важное различие, заключающееся в очень большой ширине моды M_1 в образце x = 0.4 по сравнению с образцами с малым содержанием свинца (ср. рис. 12 и 13). При этом ее контур сохраняет резонансный характер передемпфированного осциллятора (отрицательное $\varepsilon'(v)$ на высоких частотах). Приведенное качественное описание иллюстрируют рис. 14 и 15.

На рис. 14 показано температурное поведение квадратов частот мод M_1 , M_2 , M_3 при x = 0, 0.15, 0.2 и 0.4. Для образцов с низким содержанием свинца смягчаются все три резонанса (но M_3 незначительно), что характерно для обычного температурного поведения мягких мод. Определенно все три моды связаны друг с другом. Для образцов x = 0, 0.15 и 0.2 температурно-концентрационная эволюция мягких мод M_1 , M_2 , M_3 и статической диэлектрической проницаемости ε_0 из [13] согласованы в соответствии с соотношением Лиддена–Сакса–Теллера (синхронное изменение частот мягких мод и обратной статической проницаемости). Температура перехода в полярное состояние, однако, все еще

Рис. 13. Спектры действительной $\varepsilon'(v)$ и мнимой $\varepsilon''(v)$ частей диэлектрической проницаемости образца Ca_{1-x}Pb_xTiO₃ с x = 0.4 при разных температурах. Точки — эксперимент, линии — подгонка в рамках модели аддитивных осцилляторов в соответствии с (1)–(3). $M_1, M_{2,3}$ — две самые низкочастотные линии в спектрах.

Рис. 14. Температурное поведение частот низкочастотных мод в твердых растворах $Ca_{1-x}Pb_xTiO_3$. M_1 , M_2 , M_3 — три самые низкочастотные линии в спектрах. x = 0.15 (темные кружки и сплошные линии), x = 0.2 (светлые кружки и штриховые линии), x = 0.4 (треугольники и штрихпунктирные линии). Правая шкала для частоты — нелинейная, дублирует основную, приводится для удобства. Пунктирная прямая, исходящая из $T_0 = -105$ К, демонстрирует для сравнения температурное поведение мягкой моды в чистом CaTiO₃ из [16].

Рис. 15. Температурное поведение осцилляторных параметров низкочастотных мод в твердых растворах $\operatorname{Ca}_{1-x}\operatorname{Pb}_x\operatorname{TiO}_3$. M_1, M_2, M_3 — три самые низкочастотные линии в спектрах. a — диэлектрический вклад $\Delta \varepsilon(T)$ для мод M_1 и M_2 . Обозначения те же, что на рис. 14. $\Sigma_{0.15}$ и $\Sigma_{0.2}$ — суммарные диэлектрические вклады от трех самых низкочастотных мод в образцах x = 0.15 и 0.2 соответственно. b — температурное поведение $\varepsilon(T)$ и $\varepsilon^{-1}(T)$ в образце x = 0.4 при частоте измерительного поля 1 kHz. Штриховые и пунктирные прямые на $\varepsilon^{-1}(T)$ имитируют линейные участки с поведением по закону Кюри-Вейсса.

отрицательна, как следует из экстраполяции зависимостей для мод M_1 и M_2 , но выше по сравнению с чистым CaTiO₃ (экстраполированное значение $T_0 = -142$ K в настоящей работе (рис. 7) и $T_0 = -110$ K в работе [6]). Это не выполняется для образца x = 0.4. Здесь вариация частоты моды M_1 с температурой немонотонна и указывает на возможность фазовых переходов при $T_c > 70$ K. При этом моды M_2 и M_3 неразличимы (их частоты, вероятно, очень близки, и мы их обозначили как $M_{2,3}$) и практически не зависят от температуры.

На рис. 15, а приведены температурные зависимости диэлектрических вкладов резонансов. Для образцов с x < 0.3 имеет место неплохая корреляция на количественном уровне статических из [13] и суммарных динамических значений $\varepsilon_0 = \varepsilon_\infty + \Sigma_i \Delta \varepsilon_i$ (i = 3) настоящей работы во всем температурном диапазоне. С другой стороны, для x = 0.4 диэлектрический вклад от моды M_1 достигает максимума ($\varepsilon(T) \sim 950$) вблизи 180 K, что близко к высокотемпературному максимуму низкочастотной диэлектрической проницаемости $\varepsilon(T)$, график

которой показан на рис. 15, b. При этом отметим, что линейная экстраполяция высокотемпературной части зависимости $v^2(T)$ для этой линии (рис. 14) и аналогичной экстраполяции для зависимости низкочастотной $\varepsilon^{-1}(T)$, показанной на рис. 15, b, дают примерно одну и ту же температуру ($\sim 70 \,\mathrm{K}$). То же самое имеет место для экстраполяций низкотемпературных участков обеих зависимостей при обращении в нуль вблизи 250 К. Отсутствие "двугорбности" на графике $\Delta \varepsilon(T)$ (рис. 15), скорее всего, обусловлено большим шагом ΔT , выбранным при получении спектров. Таким образом, и для образца x = 0.4 имеет место корреляция между статическими и динамическими данными. Небольшое количественное расхождение может быть связано с тем, что статические и спектроскопические измерения проводились на разных образцах (но изготовленных по

Таблица 2. Численные значения осцилляторных параметров для трех самых низкочастотных мод M_1 , M_2 , M_3 в твердых растворах Ca_{1-x}Pb_xTiO₃ при 5 и 300 K

			Осцилляторные параметры				
Образец	<i>Т</i> ,К	Мода	ν , cm ⁻¹	Δε	γ , cm ⁻¹	Суммарные диэлектрические вклады	
<i>x</i> = 0	300	1 2 3	81 106 130	24.5 90.0 23.8	60 21 17	$\Sigma\Delta\varepsilon_M = 138.3$ $\Sigma\Delta\varepsilon_{IR} = 22.3$ $\varepsilon_{\infty} = 5$	
	5	1 2 3	66.2 73.4 107.8	131.1 210.4 50.6	17.0 13.5 13.2	$\Sigma\Delta\varepsilon_{M} = 392.1$ $\Sigma\Delta\varepsilon_{IR} = 22.3$ $\varepsilon_{\infty} = 5$	
<i>x</i> = 0.15	300	1 2 3	69 95 105	88 60 85	60 21 17	$ \begin{aligned} \Sigma\Delta\varepsilon_M &= 233\\ \Sigma\Delta\varepsilon_{IR} &= 7.3\\ \varepsilon_\infty &= 5 \end{aligned} $	
	5	1 2 3	18.2 47 87	41.5 491.0 124.7	60 21 17	$ \begin{aligned} \Sigma \Delta \varepsilon_M &= 657.2 \\ \Sigma \Delta \varepsilon_{IR} &= 7.3 \\ \varepsilon_\infty &= 5 \end{aligned} $	
<i>x</i> = 0.20	300	1 2 3	59 95 107	126.3 66.8 68.8	9 36 107	$\Sigma\Delta\varepsilon_M = 261.9$ $\Sigma\Delta\varepsilon_{IR} = 8.1$ $\varepsilon_{\infty} = 5$	
	5	1 2 3	15.6 41.0 97.0	151.7 480.0 99.5	0.9 4.2 35.0	$\Sigma\Delta\varepsilon_{M} = 731.2$ $\Sigma\Delta\varepsilon_{IR} = 8.1$ $\varepsilon_{\infty} = 5$	
<i>x</i> = 0.4	300	1 2.3	33 89	512 83	35 34	$\Sigma\Delta\varepsilon_M = 595$ $\Sigma\Delta\varepsilon_{IR} = 13.8$ $\varepsilon_{\infty} = 5$	
	5	1 2.3	29 87	643 43	20.0 21.0	$\Sigma\Delta\overline{\varepsilon_M} = 686$ $\Sigma\Delta\overline{\varepsilon_{IR}} = 13.8$ $\varepsilon_{\infty} = 5$	

Примечание. ν — резонансная частота; $\Delta \varepsilon$ — диэлектрический вклад; γ — константа затухания; ε_{∞} — высокочастотная (электронная) диэлектрическая проницаемость; $\Sigma \Delta \varepsilon_{M}$ — суммарный диэлектрический вклад в статическую проницаемость от мод M_1, M_2, M_3 ; $\Sigma \Delta \varepsilon_{IR}$ — то же от всех остальных более высокочастотных мод.

одинаковой технологии). При этом для x = 0.4, где затруднено образование твердого раствора, возможна определенная невоспроизводимость образцов. Наконец, отметим некую аналогию (наличие двух максимумов, но "инверсных" по интенсивности на шкале температур) в поведении $\varepsilon(T)$ в образце $Ca_{1-x}Pb_xTiO_3$ с x = 0.4 и в керамиках [31] и кристаллах CdTiO₃ [32].

В табл. 2 для разных составов $Ca_{1-x}Pb_xTiO_3$ приведены осцилляторные параметры для трех самых низкочастотных линий при 5 и 300 К, полученных в результате описанной подгонки спектров.

Обсуждение результатов и фазовая диаграмма твердых растворов Ca_{1-x}Pb_xTiO₃

Для понимания экспериментальных результатов рассмотрим простую модель в рамках феноменологической теории Ландау.

Перовскит CaTiO₃ является кубическим (симметрия $Pm\bar{3}m-O_h^1$) выше 1580 К и претерпевает последовательность из трех фазовых переходов [15]

$$Pnma - D_{2h}^{16} \stackrel{1380 \text{ K}}{\longleftrightarrow} Cmcm - D_{2h}^{17}$$

$$\stackrel{1500 \text{ K}}{\longleftrightarrow} I4/mcm - D_{4h}^{18} \stackrel{1580 \text{ K}}{\longleftrightarrow} Pm\bar{3}m - O_{4h}^{18}$$

Эти высокотемпературные фазовые переходы описываются как результат искажений из-за неустойчивости трехкратно вырожденных фононных мод в R- и M-точках зоны Бриллюэна. Собственные векторы указанных мод характеризует "чистое" вращение октаэдров TiO₆ (синфазное или антифазное для сопряженных октаэдров, рис. 2, а) относительно разных осей перовскитной ячейки [33]. Фаза симметрии $I4/mcm-D_{4h}^{18}$ реализуется, когда конденсируется только одна компонента трехкратно вырожденной моды из *R*-точки. Дополнительная конденсация одной компоненты неустойчивой М-моды приводит к ФП в орторомбические $Cmcm - D_{2h}^{17}$ и $Pnma - D_{2h}^{16}$ фазы, при этом в последнем случае конденсируется еще одна компонента *R*-моды. Ситуация становится более сложной, когда к вращениям добавляются смещения ионов Ті из их октаэдрических позиций, за которые ответственна мода симметрии F_{1µ} из центра зоны Бриллюэна. Недавнов в [34] с помощью метода теории групп выполнен анализ структурных искажений, возникающих при учете всех трех указанных выше мягких мод. В результате авторы работы [34] получили список из 60 низкосимметричных фаз. Отметим, что в [34] приведены не все симметрийно допустимые искажения, которых, как можно показать, 92, но рассмотрение этого вопроса не является целью данной статьи. Для нас важно то, что сегнетоэлектрические фазы $Pmc2_1 - C_{2v}^2$, $Pmn2_1 - C_{2v}^7$ и $Pna2_1 - C_{2v}^9$ реализуются из $Pnma - D_{2h}^{16}$ -фазы, когда дополнительно конденсируются одна или две компоненты (но равной амплитуды) трехкратновырожденной *F*_{1*u}</sub>-моды [34].</sub>*

Таблица 3. Некоторые немодельные решения (однопараметрические для каждой отдельной моды) уравнений состояния для параметра порядка, преобразующегося по приводимому представлению $M_5 \oplus R_8 \oplus \Gamma_{10}$ пространственной группы симметрии $Pm\bar{3}m-O_h^1$

N⁰	Параметр порядка			Пространственная группа и ее номер
1	$m_1 00$	000	000	$P4/mbm - D_{4h}^5 (N 127)$
2	000	$r_1 00$	000	$I4/mcm - D_{4h}^{18}$ (N 140)
3	000	000	$g_{1}00$	$P4mm - C_{4v}^1$ (N 99)
4	$\begin{array}{c} 00m_{3} \\ 00m_{3} \end{array}$	$\begin{array}{c} 0r_2r_2\\ 00r_3 \end{array}$	000 000	$\begin{array}{l} Pnma - D_{2h}^{16} \ ({\rm N} \ 62) \\ Cmcm - D_{2h}^{17} \ ({\rm N} \ 63) \end{array}$
5	$m_1 00$	000	$00g_{3}$	$P4bm - C_{4v}^2$ (N 100)
6	000	$r_1 00$	$g_{1}00$	$I4cm - C_{4v}^{10}$ (N 108)
7	$m_100 \ 00m_3 \ 00m_3$	$r_1 - r_1 0 \\ 0 r_2 r_2 \\ 0 r_2 r_2$	$g_1 - g_1 0 \\ 0 g_2 g_2 \\ g_1 0 0$	$\begin{array}{l} Pmc2_{1}-C_{2v}^{2} \ (N\ 26)\\ Pmn2_{1}-C_{2v}^{7} \ (N\ 31)\\ Pna2_{1}-C_{2v}^{9} \ (N\ 33) \end{array}$

Примечание. Номера представлений — согласно [26]. Столбец, озаглавленный "параметр порядка", определяет вид параметра порядка и разделен на три столбца, в которых приведены сконденсировавшиеся при соответствующем фазовом переходе компоненты трехкратно вырожденных мод перовскита: $M_5(m_i)$, $R_8(r_i)$ и $\Gamma_{10}(g_i)$ соответственно. Пространственные группы записаны в символике Германа—Могена и Шёнфлиса. Их номера приведены согласно Интернациональным таблицам для кристаллографии.

Далее придерживаемся идеологии термодинамической теории Ландау для переходов второго рода, основное положение которой — допущение возможности разложить неравновесный потенциал $\Phi(\eta)$ в ряд по степеням "малого" параметра *η* (параметра порядка) с обрывом ряда на невысоких степенях разложения. В нашем случае параметр порядка должен быть составлен из базисных функций представлений, соответствующих модам смещений M_5 , R_8 и Γ_{10} (F_{1u}) . (Здесь использована нумерация неприводимых представлений по Ковалеву [26]). В силу трехкратного вырождения каждой из мод $(M_5, R_8$ и $\Gamma_{10})$ параметр порядка η является девятимерным $[(m_1, m_2, m_3)(r_1, r_2, r_3)(g_1, g_2, g_3)]$. Решениями уравнений состояния для фаз, указанных выше (и нескольких других), являются векторы в пространстве представлений, они приведены в табл. 3 и аналогичны соответствующим векторам из [34]. В силу однопараметричности этих безмодельных решений для каждой из мод соответствующий эффективный термодинамический потенциал Ландау можно записать в "изотропном" виде с биквадратичными взаимодействиями между модами (т.е. пренебречь трехкратным вырождением мод и необходимостью введения в потенциал слагаемых, обеспечивающих анизотропию взаимодействий)

$$\Phi = \alpha_2 m^2 + \alpha_4 m^4 + \beta_2 r^2 + \beta_4 r^4 + \gamma_2 g^2 + \gamma_4 g^4$$
$$-\delta_{22} m^2 r^2 - \varepsilon_{22} m^2 g^2 - \eta_{22} r^2 g^2 + \dots$$
(4)

Потенциал (4) является функцией компонент трех (теперь невырожденных) мод *m*, *r* и *g* и ограничен 4-й степенью инвариантов по "чистым" модам и их биквадратичными взаимодействиями. Греческими буквами обозначены константы потенциала, в общем случае зависящие от внешних условий (температуры, давления, состава кристалла и т.д.). Здесь мы считаем, что взаимодействие между модами понижает энергию системы, т. е. $\delta_{22} > 0$, $\varepsilon_{22} > 0$, $\eta_{22} > 0$. Кроме того, будем полагать (как обычно в теории Ландау), что только константы α_2 , β_2 , γ_2 при квадратичных слагаемых являются линейными функциями температуры и концентрации

$$\begin{aligned} \alpha_2 &= \alpha_{mT}(T - T_M) + \alpha_{mx}(x - x_M), \\ \beta_2 &= \beta_{rT}(T - T_R) + \beta_{rx}(x - x_R), \\ \gamma_2 &= \gamma_{gT}(T - T_\Gamma) + \gamma_{gx}(x - x_\Gamma). \end{aligned}$$

Уравнения состояния модели (4): $\partial \Phi / \partial m = \partial \Phi / \partial r$ = $\partial \Phi / \partial g = 0$ допускают следующие восемь решений:

0)
$$m = r = g = 0;$$

1) $m \neq 0, r = 0, g = 0$ $m^{2} = -\frac{\alpha_{2}}{2\alpha_{4}};$ 2) $m = 0, r \neq 0, g = 0$ $r^{2} = -\frac{\beta_{2}}{2\beta_{4}};$ 3) $m = 0, r = 0, g \neq 0$ $m^{2} = -\frac{\beta_{2}\delta_{22} + 2\beta_{4}\alpha_{2}}{4\alpha_{4}\beta_{4} - \delta_{22}^{2}},$ 5) $m \neq 0, r = 0, g \neq 0$ $m^{2} = -\frac{\gamma_{2}\varepsilon_{22} + 2\beta_{4}\alpha_{2}}{4\alpha_{4}\beta_{4} - \delta_{22}^{2}},$ $r^{2} = -\frac{\alpha_{2}\delta_{22} + 2\alpha_{4}\beta_{2}}{4\alpha_{4}\beta_{4} - \delta_{22}^{2}};$ 5) $m \neq 0, r = 0, g \neq 0$ $m^{2} = -\frac{\gamma_{2}\varepsilon_{22} + 2\gamma_{4}\alpha_{2}}{4\alpha_{4}\gamma_{4} - \varepsilon_{22}^{2}},$ $g^{2} = -\frac{\alpha_{2}\varepsilon_{22} + 2\alpha_{4}\gamma_{2}}{4\alpha_{4}\gamma_{4} - \varepsilon_{22}^{2}};$

6) $m = 0, r \neq 0, g \neq 0$

$$r^{2} = -\frac{\gamma_{2}\eta_{22} + 2\gamma_{4}\beta_{2}}{4\beta_{4}\gamma_{4} - \eta_{22}^{2}}, \qquad g^{2} = -\frac{\beta_{2}\eta_{22} + 2\beta_{4}\gamma_{2}}{4\beta_{4}\gamma_{4} - \eta_{22}^{2}};$$

7)
$$m \neq 0, r \neq 0, g \neq 0$$
:

$$m^{2} = \frac{1}{2} \cdot \frac{(4\beta_{4}\gamma_{4} - \eta_{22}^{2})\alpha_{2} + (2\gamma_{4}\delta_{22} + \varepsilon_{22}\eta_{22})\beta_{2} + (2\beta_{4}\varepsilon_{22} + \delta_{22}\eta_{22})\gamma_{2}}{\delta_{22}\varepsilon_{22}\eta_{22} - (4\alpha_{4}\beta_{4} - \delta_{22}^{2})\gamma_{4} + \alpha_{4}\eta_{22}^{2} + \beta_{4}\varepsilon_{22}^{2}},$$

$$m^{2} = \frac{1}{2} \cdot \frac{(4\alpha_{4}\gamma_{4} - \varepsilon_{22}^{2})\beta_{2} + (2\gamma_{4}\delta_{22} + \varepsilon_{22}\eta_{22})\alpha_{2} + (2\alpha_{4}\eta_{22} + \delta_{22}\varepsilon_{22})\gamma_{2}}{\delta_{22}\varepsilon_{22}\eta_{22} - (4\alpha_{4}\beta_{4} - \delta_{22}^{2})\gamma_{4} + \alpha_{4}\eta_{22}^{2} + \beta_{4}\varepsilon_{22}^{2}},$$

$$(4\alpha_{4}\beta_{4} - \delta_{22}^{2})\gamma_{2} + (2\alpha_{4}\eta_{22} + \varepsilon_{22}\delta_{22})\beta_{2} + (2\beta_{4}\varepsilon_{22} + \delta_{22}\eta_{22})\alpha_{2} + (2\beta_{4}\varepsilon_{22} + \delta_{22}\eta_{22})\alpha_{2}},$$

$$g^{2} = \frac{1}{2} \cdot \frac{(4\alpha_{4}\beta_{4} - \delta_{22}^{2})\gamma_{2} - (4\alpha_{4}\beta_{4} - \delta_{22}^{2})\gamma_{4} + \alpha_{4}\eta_{22}^{2} + \beta_{4}\varepsilon_{22}^{2}}{\delta_{22}\varepsilon_{22}\eta_{22} - (4\alpha_{4}\beta_{4} - \delta_{22}^{2})\gamma_{4} + \alpha_{4}\eta_{22}^{2} + \beta_{4}\varepsilon_{22}^{2}}.$$

$$(5)$$

Соответствие между этими решениями и немодельными решениями из табл. 3 очевидно, за исключением фаз D_{2h}^{17} и D_{2h}^{16} , с одной стороны, и полярных орторомбических

Рис. 16. Сечение плоскостью ($\beta_2\gamma_2$) диаграммы фазовых состояний для модели (4). Пронумерованные кружки соответствуют решениям уравнений состояния (5), а группы симметрии фаз — табл. 3. Штриховые линии — фазовые переходы второго рода. Сплошные линии — оси T и x с началом координат в точке (x = 0, T = 0 K). Константы потенциала: $\alpha_4 > 0, \beta_4 > 0, \gamma_4 > 0, \delta_{22} > 0, \varepsilon_{22} > 0, \eta_{22} > 0.$

фаз C_{2v}^2 , C_{2v}^7 и C_{2v}^9 — с другой, которые в модели (4) "неразличимы". Поскольку до настоящего времени симметрия полярных фаз не определена, данный факт не делает некорректным предложенный вид потенциала. То же самое можно сказать о двух ромбических фазах D_{2h}^{17} и D_{2h}^{16} , наличие первой из которых достоверно не доказано [15]. Отметим, однако, что разная область устойчивости последних фаз обеспечивается добавлением в (4) слагаемых как шестой степени, так и слагаемых, описывающих анизотропию взаимодействий.

Анализируя положительную определенность соответствующего гессиана и проверяя действительность корней уравнений состояния (5), мы получили фазовую диаграмму, одно из сечений которой показано на рис. 16. Оси *x* и *T* на рис. 16 являются прямыми в силу сделанных выше предположений. Плоскость x-T наложена на плоскость $\beta_2 - \gamma_2$ так, чтобы отразить наиболее существенные качественные детали экспериментальной ситуации.

1) Наличие двух (или трех) высокотемпературных фазовых переходов при T_{c1} $O_h^1 \leftrightarrow D_{4h}^{18}$ и при T_{c2} в фазу D_{2h}^{16} (напомним, что в данной модели область существования фазы D_{2h}^{17} совпадает с D_{2h}^{16} и далее как отдельная не рассматривается).

2) Положение оси концентраций x выбрано так, что фазовый переход при T_{c3} для x = 0 (чистый CaTiO₃) в одну из полярных фаз реализуется при отрицательных температурах. По мере увеличения концентрации свинца температура перехода растет линейно с концентрацией (линия $T_{c3} - T'_{c3}$ фазовых переходов 2-го рода на рис. 16 является прямой, что соответствует линейной зависимости $T_0^B \sim (x - x_c)$, экспериментально установленной

в [13]), сдвигается к области положительных температур и наконец при $T > T'_{c3}$ фазовый переход в полярное сегнетоэлектрическое состояние реализуется при T > 0 К. В какую из трех возможных низкосимметричных C_{2v} фаз переходят твердые растворы, на основании наших спектроскопических данных сказать нельзя изза невозможности проведения поляризационных измерений на керамических образцах. На рис. 16 в качестве полярной приведена фаза симметрии C_{2v}^9 в предположении, что неустойчива B_{2u}-мода (напомним, что в D_{2h}^{16} -фазе трехкратновырожденная $\Gamma_{10}(F_{1u})$ мода перовскита расщеплена на три компоненты $B_{1u} + B_{2u} + B_{3u}$). С другой стороны, в нашем эксперименте в образцах с x = 0.15 и 0.2 обнаружены две существенно мягкие линии $(M_1 \ \text{и} \ M_2)$. Это может свидетельствовать о возможности последовательности, по крайней мере, из двух фазовых переходов в разные полярные фазы со сменой направления вектора поляризации. В этом случае модель (4) должна быть усложнена учетом трехкратного вырождения моды F_{1u} . Вблизи концентрации $x \approx 0.3$ на диаграмме (рис. 1 настоящей работы и рис. 3 из [13]) должна присутствовать тройная точка и клиновидная область для моноклинной фазы, разделяющей две $C_{2,n}$ фазы разной симметрии.

3) При дальнейшем увеличении концентрации свинца между T_{c4} и T_{c5} "вклинивается" тетрагональная сегнетоэлектрическая фаза с симметрией C_{4v}^{10} . Наличием промежуточной фазы можно обосновать вид спектральной плотности образца с x = 0.4. Как уже отмечалось, его спектр в области низких частот представлен широкой линией M₁. С одной стороны, данный факт "допускает" вывод, что этот образец можно охарактеризовать как релаксор (сильная низкочастотная дисперсия). Но с другой стороны, для этих концентраций можно ожидать присутствия еще нескольких фаз, отличающихся как от перовскитной D_{2h}^{16} -, так и от C_{4v}^1 -полярной фазы титаната свинца (рис. 1). Из нашей простой модели следует, что эти две фазы должна разделять фаза C_{4v}^{10} (на рис. 1 ей может соответствовать область фазы VI) или ее подгруппы более низкой симметрии C_{2v}^{20} или C_{2v}^{22} с такой же мультиплицированной элементарной ячейкой, как и у перовскита, т.е. в 4 раза большей, чем в PbTiO₃. Наличие промежуточной фазы (или нескольких фаз) позволяет "сгладить" фрустрацию для направлений вектора поляризации. В силу тетрагональности этой фазы полярная $\Gamma_{10}(F_{1u})$ мода кубического перовскита здесь расщепляется на дублет $A_1 + E$ ($\Gamma_1 + \Gamma_5$ на рис. 3 в обозначениях [26]). Как следует из рис. 13, именно две линии при x = 0.4 присутствуют в спектре (M_1 и $M_{2,3}$). Интересно отметить, что численное значение частоты линии М2.3 весьма близко значению мягкого поперечного фонона в PbTiO₃ [35,36], тогда как частота линии M₁ ближе к самой низкочастотной моде перовскита. Возможно этот своеобразный "кроссовер" и облегчает (на микроскопическом уровне) переход твердого раствора Ca_{1-x}Pb_xTiO₃ от ромбической упаковки атомов в CaTiO₃ к тетрагональной в PbTiO₃ с уменьшением объема ячейки в 4 раза.

Дальнейшее обсуждение, по нашему мнению, может быть существенно плодотворнее при тщательном исследовании образцов в более широкой области концентраций при x от 0.3 до 1.0. Проведение таких исследований, как уже отмечалось, планируется в ближайшем будущем. Безусловно, модель (4) при этом должна быть расширена с помощью учета многомерности взаимодействующих мод, а также учета более высоких степеней разложения потенциала.

6. Выводы

ИК-спектроскопическое исследование динамического поведения твердых растворов $Ca_{1-x}Pb_x TiO_3$ со стороны $CaTiO_3$ установило аналогию на количественном уровне со статическими результатами [13], что позволяет сделать вывод об отсутствии в этой системе дополнительных к мягким модам низкочастотных возбуждений (центрального пика), т. е. не обнаружено каких-либо фактов, которые могли бы свидетельствовать о "переходе" исследованных растворов $Ca_{1-x}Pb_x TiO_3$ в релаксорное состояние.

Динамическое поведение твердых растворов Са1-, Pb, TiO3 в области низких оптических частот принципиально разное. Спектр образцов с x < 0.3 качественно похож на спектр орторомбического перовскита. По мере увеличения концентрации свинца спектр "смягчается", что свидетельствует о приближении температуры фазовых переходов в сегнетоэлектрическое состояние. Данный факт коррелирует с результатами макроскопических измерений $\varepsilon(T)$ на низких частотах и выводом [13] о "трансформации" сегнетоэлектричества от "потенциального" (для x < 0.28) к реальному (для x > 0.28) по мере увеличения концентрации свинца. Важно отметить разницу между спектральной картиной в области низких частот в чистом перовските CaTiO₃ и в Ca_{1-x}Pb_xTiO₃. В первом из них расщепление на три компоненты полярной моды F_{1u} незначительно, тогда как в твердых растворах отчетливо визуализируются три компоненты, две из которых существенно мягкие. Данный факт может свидетельствовать о каскаде по крайней мере из двух (или трех) потенциальных фазовых переходов в полярные фазы с разными направлениями векторов спонтанной поляризации. Спектр образцов с x = 0.4 отличается кардинальным образом. В нем в области низких частот доминирует мощная широкая резонансная линия с немонотонной температурной эволюцией, предполагающая возможность наличия нескольких фазовых переходов (вероятно, первого рода) пока невыясненной природы. Предложена простая феноменологическая модель биквадратично взаимодействующих мягких мод из центра и границы зоны Бриллюэна кубической фазы. Она позволила обосновать повышение температуры фазового перехода в одну из полярных фаз по мере увеличения концентрации свинца, причем температура перехода T_{c3} как функция xподчиняется линейной зависимости. Кроме того, рассмотренная модель позволила выдвинуть гипотезу о возможном существовании одного (или нескольких) фазовых состояний в области промежуточных концентраций. Наличие такой промежуточной фазы (или фаз) может "сглаживать" фрустрацию при установлении преимущественного направления поляризации в твердых растворах Ca_{1_x}Pb_xTiO₃.

Список литературы

- M.E. Lines, A.M. Glass. Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press, Oxford (1977). [М.Е. Лайнс, А.М. Гласс. Сегнетоэлектрики и родственные им материалы. Мир, М. (1981)].
- [2] R.A. Lyddane, R.G. Sachs, E. Teller. Phys. Rev. 59, 673 (1941).
- [3] V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht, R. Kunze. Solid State Commun. 110, 611 (1999).
- [4] А.С. Князев, Ю.М. Поплавко, В.А. Захаров, В.В. Алексеев. ФТТ 15, 3006 (1973).
- [5] V. Železhy, M.F. Limonov, D. Usvyat, V.V. Lemanov, J. Petzelt, A.A. Volkov. Ferroelectrics 272, 113 (2002).
- [6] V. Żelezhy', E. Cockayne, J. Petzelt, M.F. Limonov, D. Usvyat, V.V. Lemanov, A.A. Volkov. Phys. Rev. B 66, 224 303 (2002).
- [7] J.G. Bednorz, K.A. Müller. Phys. Rev. Lett. 52, 2289 (1984).
- [8] V.V. Lemanov. Ferroelectrics **226**, 133 (1999).
- [9] B.E. Vugmeister, M.D. Glinchuk. Rev. Mod. Phys. 62, 993 (1990).
- [10] E. Sawaguchi, M.L. Charters. J. Am. Ceram. Soc. 42, 157 (1959).
- [11] T. Yamamoto, M. Saho, K. Okazaki, E. Goo. Jpn. J. Appl. Phys. 26, 2, 57 (1987).
- [12] B. Jiménez, R. Jiménez. Phys. Rev. B 66, 014104 (2002).
- [13] V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht. Appl. Phys. Lett. 81, 886 (2002).
- [14] R. Ranjan, N. Singh, D. Pandey, V. Siruguri, P.S.R. Krishna, S.K. Paranjpe, A. Banerjee. Appl. Phys. Lett. 70, 3221 (1997).
- [15] B.J. Kennedy, C.J. Howard, B.C. Chakoumakos. J. Phys.: Condens. Matter 11, 1479 (1999).
- [16] R. Ganesh, E. Goo. J. Am. Ceram. Soc. 80, 653 (1997).
- [17] В.В. Еремкин, В.Г. Смотраков, Л.Е. Балюнис, С.И. Шевцова, А.Т. Козаков. Кристаллография **39**, 155 (1994).
- [18] A.A. Volkov, Yu.G. Goncharov, G.V. Kozlov, S.P. Lebedev, A.M. Prokhorov. Infrared Physics 25, 369 (1985).
- [19] T. Vogt, W.W. Schmahl. Europhys. Lett. 24, 281 (1993).
- [20] T. Matsui, H. Shigematsu, Y. Arita, Y. Hanajiri, N. Nakamitsu, T. Nagasaki. J. Nucl. Mater. 247, 72 (1997).
- [21] M. Ahtee, A. Glaser, A. Hewat. Acta Cryst. B 34, 752 (1978).
- [22] H.F. Kay, P.C. Bailey. Acta Cryst. 10, 219 (1957).
- [23] W. Cochran, A. Zia. Phys. Stat. Sol. 25, 273 (1968).
- [24] C. Darlington. Phys Stat. Sol (b) 66, 231 (1976).
- [25] K.S. Aleksandrov. Ferroelectrics 14, 801 (1976).
- [26] О.В. Ковалев. Неприводимые представления пространственных групп. Изд-во АН УССР, Киев (1961). 153 с.
- [27] W. Zhong, R.D. King-Smith, D. Vanderbilt. Phys. Rev. Lett. 72, 3618 (1994).
- [28] E. Cockayne, B.P. Burton. Phys. Rev. B 62, 3735 (2000).
- [29] A.S. Barker, jr. Ferroelectricity / Ed. by E.F. Weller. Elsevier Publishing (1967).
- [30] C.H. Perry, B.N. Khanna, G. Rupprecht. Phys. Rev. 135, A408 (1964).

- [31] М.Е. Гужва, В.В. Леманов, П.А. Марковин. ФТТ 43, 2958 (2001).
- [32] Y.J. Shan, H. Mori, H. Imoto, M. Itoh. Ferroelectrics 270, 381 (2002).
- [33] A.M. Glaser. Acta Cryst. B 28, 3384 (1972); ibid. A 31, 756 (1975).
- [34] H.T. Stokes, E.H. Kisi, D.M. Hatch, C.J. Howard. Acta Cryst. B 58, 934 (2002).
- [35] G. Burns, B.A. Scott. Phys. Rev. B 7, 3088 (1973).
- [36] I. Fedorov, J. Petzelt, V. Zelezny, G.A. Komandin, A.A. Volkov, K. Brooks, Y. Huang, N. Setter. J. Phys. Condens. Matter 7, 4313 (1995).