05 Структурные характеристики и магнитные свойства монокристаллов A⁵₂B⁶₃, интеркалированных кобальтом

© В.Б. Боледзюк,¹ З.Д. Ковалюк,¹ З.Р. Кудринский,¹ А.Д. Шевченко²

¹ Институт проблем материаловедения НАН Украины, Черновицкое отделение, 58001 Черновцы, Украина ² Институт металлофизики НАН Украины, 03680 Киев, Украина e-mail: chimsp@ukrpost.ua

(Поступило в Редакцию 13 января 2015 г.)

Рассмотрены магнитные свойства монокристаллов Bi_2Te_3 и Bi_2Se_3 , интеркалированных кобальтом в постоянном магнитном поле. Исследовано влияние постоянного магнитного поля на процесс внедрения и магнитные свойства полученных интеркалатов. Показано, что внедрение кобальта в Bi_2Te_3 (Bi_2Se_3) сопровождается изменением кристаллографических параметров в зависимости от наличия магнитного поля в процессе интеркалирования, а структурный тип исследуемых образцов остается неизменным. В интеркалатах $Co_{0.15}Bi_2Te_3$ и $Co_{0.15}Bi_2Se_3$ обнаружено проявление ферромагнетизма: зависимость магнитного момента от напряженности магнитного поля имеет вид петель гистерезиса, характерных для магнитотвердых ферромагнетиков.

Введение

Слоистые соединения А₂⁵В₃⁶ и твердые растворы на их основе широко используются в качестве материалов для термоэлектрических преобразователей энергии [1,2]. Основная структурная единица этих соединений — пятислойный блок, который состоит из чередующихся одноатомных плоскостей висмута и халькогена ... Te(Se)-Bi-Te(Se)-Bi-Te(Se) Внутри блока атомы соединены между собой прочными ковалентными связями, а между блоками действуют силы Ван-дер-Ваальса. В последнее время возрос интерес к исследованиям данных материалов, легированных различными металлами, поскольку объединение на микроскопическом уровне металлических и полупроводниковых слоев может приводить к появлению кристаллов с новыми электронными свойствами. Исследованы ферромагнитные свойства различных полупроводниковых систем, таких как GaAs, Ge [3,4] и GaSe [5]. Экспериментально установлено, что *p*-Bi₂Te₃, легированный Fe, приобретает ферромагнитное упорядочение при $T = 12 \,\mathrm{K}$ [6]. При введении в кристаллическую решетку полупроводника небольшого количества магнитной примеси при отсутствии прямого обменного взаимодействия между магнитными атомами получается так называемый разбавленный магнитный полупроводник [7]. При этом обменное взаимодействие происходит благодаря свободным носителям заряда. Это открывает возможности использования таких материалов в спинтронике [8,9].

Методика эксперимента

Монокристаллы Bi₂Te₃ и Bi₂Se₃ выращивали методом Бриджмена из компонент в стехиометрическом соотношении. Полученные кристаллы кристаллизировались в слоистую структуру, слои которой перпендикулярны оси симметрии третьего порядка и обладали ромбоэдрической структурой с пространственной группой $D_{3d}^5(R3m)$. Параметры кристаллической решетки составляли соответственно для Bi_2Te_3 : a = 4.3838 Å, c = 30.487 Å и Bi₂Se₃: a = 4.147 Å, c = 28.681 Å. Детально кристаллическая структура, параметры и свойства слоистых соединений типа A₂^VB^{VI} описаны в [2,10]. Образцы для исследований получали из монокристаллических слитков простым скалыванием вдоль плоскости слоев (0001). Внедрение ионов Co²⁺ осуществляли электрохимическим интеркалированием методом "тянущего" электрического поля [11]. В качестве электролита использовали насыщенный водный раствор CoSO₄. Для предотвращения осаждения внедряемой примеси или ее солей на образцах или электродах электрохимической ячейки внедрение проводили в гальваностатическом режиме токами, величина которых не превышала 0.4 mA/cm². Контроль кристаллической структуры исходных и интеркалированных кобальтом образцов монокристаллов Bi2Te3 и Bi2Se3 проводили рентгенографичеким методом на установке ДРОН-2.0 в Си K_{α} -излучении. Результаты измерений обрабатывали методом Ритвельда. Поскольку кобальт пренадлежит к группе переходных 3*d*-металлов, которым свойственен ферромагнетизм, внедрение проводили при наличии и отсутствии постоянного магнитного поля, направление которого было перпендикулярно кристаллографической оси с кристалла. Магнитное поле создавали двумя постоянными неодимовыми магнитами, между которыми располагался интерклируемый образец. Величина напряженности магнитного поля в месте расположения образца составляла 4 kOe.

Магнитные характеристики интеркалатов Co_{0.15}Bi₂Te₃ и Co_{0.15}Bi₂Se₃ исследовали методом магнитометрии на вибрационном магнитрометре "Vibrating Magnetometer 7404 VSM". Чувствительность магнитометра составляет $\sim 10^{-7}$ EMU, что позволяет исследовать магнитный момент на образцах массой единицы миллиграмм. Измерения магнитного момента проведены при комнатной температуре вдоль и поперек плоскости слоев кристалла.

Результаты и обсуждение

На рис. 1 представлены дифрактограммы интеркалированных кобальтом монокристаллов Bi₂Te₃, полученных без наложения магнитного поля (а) и в магнитном поле (b). Сопоставление полученных дифрактограмм с данными для чистых образцов Bi2Te3 свидетельствует о том, что структурный тип и пространственная группа интеркалатов Co_{0.15}Bi₂Te₃ остаются неизменными независимо от наличия магнитного поля в процессе интеркалирования. Внедрение ионов Co²⁺ в кристаллическую структуру Bi₂Te₃ сопровождается незначительным уширением пиков дифракционных отражений для интеркалированных образцов. Кроме того, для интеркалатов Co_{0.15}Bi₂Te₃, полученных в магнитном поле, наблюдаются незначительные добавочные пики (рис. 1, b), которые, вероятно, обусловлены кобальтом, локализированным в межслоевом пространстве. Полученные значения параметров кристаллической решетки интеркалатов Co_{0.15}Bi₂Te₃ составили соответственно для образцов, полученных без наложения магнитного поля: a = 4.3439 Å, c = 30.3954 Å и при наличии магнитного поля: a = 4.3586 Å, c = 30.4384 Å. Сравнивая полученные данные с параметрами кристаллической решетки для Bi₂Te₃ [2], можно констатировать тот факт, что интеркалирование Bi2Te3 кобальтом приводит к уменьшению параметров кристаллической решетки исследуемых образцов. Следует отметить, что аналогичное уменьшение параметров кристаллической решетки наблюдается и в интералатах Co_{0.15}Bi₂Se₃. Такое уменьшение кристаллографических параметров характерно для многих слоистых полупроводников, интеркалированных 3d-переходными металлами группы железа [5,12-15], и обусловлено гибридизацией 3d-орбиталей атомов металла (в нашем случае Со) с р-состояниями халькогена (Te, Se). Данная гибридизация способствует возникновению ковалентно-подобных связей между интеркалянтом и кристаллической матрицей, которые оказывают стягивающее действие на кристаллические слои, что и приводит к уменьшению параметров решетки.

При электрохимическом интеркалировании теллурида висмута кобальтом интеркалянт локализируется в вандер-ваальсовских щелях Te(1)—Te(1), которые образованы атомами соседних слоев — теллуридных квинтетов [5,13]. Чужеродные атомы или молекулы ведут себя как независимая система, сохраняя при этом свойства, присущие им до внедрения. В работах [16,17]

Рис. 1. Дифрактограммы исходных образцов Bi_2Te_3 и интеркалатов $Co_{0.15}Bi_2Te_3$, полученных интеркалированием в отсутствие (*a*) и при наложении постоянного магнитного поля (*b*).

показано, что при интеркалировании Bi₂Te₃ атомами металлов (Cu, Ag, Ni) вдоль плоскости слоев (0001) происходит накопление, перераспределение и образование нанофрагментов интеркалянта в межслоевом пространстве, т.е. появляется дополнительный слой нанофрагментов внедряемого металла в кристаллической решетке. Ві2Тез и Ві2Se3 — диамагнетики. С помощью внедрения в структуру таких соединений атомов переходных металлов можно сформировать магнитные композитные наноструктуры, которые состоят из полупроводниковой слоистой матрицы и металлических магнитных прослоек, расположенных вдоль плоскости слоев кристалла [18]. Кроме того, магнитными свойствами интеркалированных слоистых полупроводников можно управлять, ясли процесс внедрения проводить в постоянном магнитном поле [5,13], поскольку магнитное поле оказывает влияние на упорядочение и самоорганизацию примеси в слоистой матрице [19].

На рис. 2 представлены зависимости магнитного момента от напряженности магнитного поля для интеркалированных кобальтом мнокристаллов Bi2Te3. Также показаны зависимости m = f(H) для интеркалатов Со_{0.15}Ві₂Se₃ (рис. 3). Как видно из представленных зависимостей, для обоих интеркалированных соединений наблюдается характерная для ферромагнетиков петля гистерезиса [20]. Необходимо отметить наличие данной ферромагнитной петли при $T = 300 \,\mathrm{K}$ в отличие от соединения Bi_{1.92}Fe_{0.08}Te₃, для которого гистерезисная петля наблюдается при низких температурах $T = 2 \,\mathrm{K}$ [21]. Известно, что слоистые полупроводники благодаря особенностям кристаллического строения сильно анизотропны [22]. Ширина гистерезисной петли для образцов Co_{0.15}Bi₂Te₃, полученных внедрением в магнитном поле, больше (рис. 2, b), чем для интеркалатов Co_{0.15}Bi₂Te₃, полученных без наложения магнитного поля (рис. 2, a), и в обоих случаях зависит от кристаллографической ориентации. Измерения магнитного момента вдоль и поперек плоскости слоев интеркалатов Со_{0.15}Ві₂Те₃ и Со_{0.15}Ві₂Se₃ показали, что в первом случае зависимость m = f(H) типична для ферромаг-

Рис. 2. Зависимость удельного магнитного момента от напряженности магнитного поля для интеркалатов $Co_{0.15}Bi_2Te_3$ вдоль (1) и поперек (2) плоскости слоев, полученных интеркалированием в отсутствие (*a*) и при наложении постоянного магнитного поля (*b*).

Рис. 3. Зависимость удельного магнитного момента от напряженности магнитного поля вдоль (a) и поперек (b) плоскости слоев для интеркалатов Co_{0.15}Bi₂Se₃ (1) и Co_{0.15}Bi₂Te₃ (2), полученных интеркалированием в постоянном магнитном поле.

нитного взаимодействия между атомами кобальта, а в случае измерений перпендикулярно слоям характер зависимости m = f(H) соответствует ферромагнитному взаимодействию между слоями. Значения удельного магнитного момента насыщения (m_S) и коэрцитивной силы (H_C) для обоих типов образцов приведены в таблице. Полученные значения коэрцитивной силы характерны для магнитотвердых ферромагнетиков [20].

Как уже отмечалось выше, магнитные свойства слоистых полупроводников, интеркалированных переходными металлами, которые обладают незаполненными 3d-электронными оболочками, определяются обменным взаимодействием между магнитными ионами интеркалянта, локализированного в октаэдрических и тетраэдрических пустотах межслоевого пространства кристалла [12,23]. Для слоистых кристаллов характерно наличие точечных дефектов (вакансий халькогена) в базисных плоскостях анионов. В процессе внедрения кобальта в соединения $A_2^5B_3^6$ атомы интеркалянта могут накапливаться и заполнять места вокруг дислокационных

89

	Co _{0.15} Bi ₂ Te ₃				$Co_{0.15}Bi_2Se_3$	
Измерение магнитного момента	Внеднение без магнитного поля		Внеднение в магнитном поле		m_S , emu/g	$H_C,$
	m_S , emu/g	H_C, G	m_S , emu/g	H_C, G	cilia, g	0
Вдоль плоскости слоев Поперек плоскости слоев	$\begin{array}{c} 2.168\cdot 10^{-3} \\ 0.731\cdot 10^{-3} \end{array}$	162.63 265.42	$\begin{array}{c} 20.236\cdot 10^{-3} \\ 11.257\cdot 10^{-3} \end{array}$	201.89 262.14	0.1762 0.1023	99.63 487.53

Значения удельного магнитного момента ms и коэрцитивной силы Hc для соединений внедрения Co_{0.15}Bi₂Te₃ и Co_{0.15}Bi₂Se₃

ям и вакансий халькогена на плоскости (0001) Bi₂Te₃ или Bi₂Se₃. Атомы интеркалянта, двигаясь под действием "тянущего" электрического поля в межслоевом пространстве слоистого кристалла, соприкасаясь с первичным зародышем на месте вакансии халькогена, прилипают к нему, формируя нановключения примеси, для которых характерна доменная структура. Наложение магнитного поля в сочетании с приложенным к образцам электрическим полем при интеркалировании халькогенидов висмута кобальтом влияет на диффузию интеркалянта, кинетические процессы формирования и роста нановключений Со, а также на ферромагнитное упорядочение последних. Также следует отметить, что наличие магнитного поля в процессе интеркалирования и образования нановключений атомов 3d-переходных металлов (в частности, Со) в слоистых кристаллах может приводить к возникновению магнитного обменного взаимодействия между нановключениями интеркалянта — так называемого коллективного ферромагнетизма магнитных кластеров внедряемой примеси.

Самоорганизация нановключений на ван-дер-ваальсовских плоскостях различных слоистых кристаллов зависит от электронной структуры этих плоскостей [24] и наличия на них дефектов. В соединениях Bi2Te3 энергетически выгодно образование антиструктурных дефектов, обусловленных переходом атомов Ві на позиции Те. Для монокристаллов Bi₂Se₃ характерно наличие донорных дефектов, при которых атомы Ві размещены в междоузлиях. Вероятно, образование антиструктурных дефектов, обусловленных переходом атомов Ві в позиции Se в решетке, затруднено вследствие сильного отличия в размерах атомов. С этим могут быть связаны различия в магнитных свойствах, которые наблюдаются для слоистых кристаллов Bi2Te3 и Bi2Se3, интеркалированных ионами Co²⁺ в магнитном поле при одинаковых режимах (рис. 3).

Заключение

При электрохимическом интеркалировании слоистых кристаллов $A_2^5B_3^6$ атомами кобальта структура сложных слоев-квинтетов не изменяется, структурный тип полученных интеркалатов $Co_{0.15}Bi_2Te_3$ и $Co_{0.15}Bi_2Se_3$ остается без изменений. Установлено, что интеркалирование Bi_2Te_3 и Bi_2Se_3 кобальтом приводит к уменьшению

параметров кристаллической решетки интеркалатов по сравнению с исходными кристаллами, а величина изменения кристаллографических параметров зависит от наличия магнитного поля в процессе интеркалирования. Данное изменение параметров решетки в полученных интеркалатах обусловлено гибридизацией 3*d*-орбиталей Со с *P*-состояниями халькогена (Te, Se).

Внедрение кобальта в Bi₂Te₃ (Bi₂Se₃) вызывает появление в интеркалатах Co_{0.15}Bi₂Te₃ (Co_{0.15}Bi₂Se₃) магнитных свойств, которые проявляются в зависимости магнитного момента от напряженности магнитного поля, имеющего форму петель гистерезиса. Предполагается, что данный факт обусловлен образованием нановключений (кластеров) Со в месте вакансий Te (Se) на поверхности (0001) Bi₂Te₃ (Bi₂Se₃). Наложение магнитного поля в процессе интеркалирования соединений $A_2^5B_3^6$ кобальтом влияет на процессы формирования и роста нановключений Со и приводит к возникновению магнитного обменного взаимодействия между ними (коллективный ферромагнетизм магнитных кластеров внедряемой примеси).

Список литературы

- [1] Алиев С.А., Зульфугаров Э.И. Термомагнитные и термоэлектрические явления в науке и технике. Баку, ЭЛМ: 2009. 325 с.
- [2] Гольцман Б.М., Кудинов В.А., Смирнов И.А. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃. М.: Наука, 1972. 320 с.
- [3] Park Y.D., Hanbicki A.T., Erwin S.C., Hellberg C.S., Sullivan J.M., Mattson J.E., Ambrose T.F., Wilson A., Spanos G., Jonker B.T. // Science. 2002. Vol. 295. N 5555. P. 651–654.
- [4] Cho S., Kim Y., Choi S., Hong S.C., Kim B.J., Jung J.H., Kim Y.S., Ketterson J.B. // Phys. Rev. B. 2002. Vol. 66. P. 033 303.
- [5] Ковалюк З.Д., Боледзюк В.Б., Шевчик В.В., Каминский В.М., Шевченко А.Д. // ФТП. 2012. Т. 46. Вып. 8. С. 995–998.
- [6] Kulbachinskii V.A., Kaminskii A.Yu., Kindo K., Marumi Y., Suga K., Lostak P., Svanda P. // Phys. B: Phys. Cond. Matt. Vol. 311, N 3-4. P. 292–297.
- [7] Моргунов Р.Б., Дмитриев А.И. // ФТТ. 2009. Т. 51. Вып. 10. С. 1873–1889.
- [8] Ферт А. // УФН. 2008. Т. 178. № 12. С. 1336–1348.
- [9] Кусраев Ю.Г. // УФН. 2010. Т. 180. № 7. С. 759–773.

- [10] Чижиков Д.М., Счастливый В.П. Селен и селениды. М.: Наука, 1964. 320 с.
- [11] Григорчак И.И., Ковалюк З.Д., Юрценюк С.П. // Изв. АН СССР. Сер. Неорган. матер. 1981. Т. 17. № 3. С. 412–415.
- [12] Магнетизм наносистем на основе редкоземельных и 3dпереходных металлов / Хрестоматия под ред. В.О. Васьковского. Екатеринбург. Изд-во Урал. ун-та, 2007. 265 с.
- [13] Боледзюк В.Б., Шевченко А.Д., Кудринський З.Р. // Журнал нано- та електронної фізики. 2012. Т. 4. № 3. С. 03017(1)-03017(4).
- [14] Куранов А.В., Плещев В.Г., Титов А.Н., Баранов Н.В., Красавин Л.С. // ФТТ. 2000. Т. 42. Вып. 11. С. 2029–2032.
- [15] Плещев В.Г., Титов А.Н., Титова С.Г. // ФТТ. 2003. Т.5. Вып. 3. С. 409-412.
- [16] *Кахраманов С.Ш.* // Неорган. матер. 2008. Т. 44, № 1, С. 17-25.
- [17] Алескеров Ф.К., Кахраманов С.Ш. // Неорган. матер. 2009. Т. 45. № 9. С. 1049–1054.
- [18] Покладок Н.Т., Григорчак И.И., Бужук Я.М. // ЖТФ. 2010. Т. 80. Вып. 2. С. 77-82.
- [19] Бахтинов А.П., Боледзюк В.Б., Ковалюк З.Д., Кудринський З.Р., Литвин О.С., Шевченко А.Д. // ФТТ. 2013. Т. 55. Вып. 6. С. 1063–1070.
- [20] Вонсовский С.В. Магнетизм. М.: Наука, 1971. 1032 с.
- [21] Кульбачинский В.А., Гурин П.В., Тарасов П.М., Давыдов А.Б., Данилов Ю.А., Вихрова О.В. // Физика низких температур. 2007. Т. 33. № 2/3. С. 239–255.
- [22] Товстюк К.Д. Полупроводниковое материаловедение. Киев: Наукова думка. 1984. 264 с.
- [23] Стахира И.М., Товстюк Н.К., Фоменко В.Л., Цмоць В.М., Щупляк А.Н. // ФТП. 2011. Т. 45. Вып. 10. С. 1308–1313.
- [24] Jaegermann W., Klein A., Pettenkofer C. Electron spectroscopies applied to low-dimentional materials: physics and chemistry of materials with low-dimentional structures / Ed. by H.P. Hughes, H.I. Starnberg. Kluwer Academic Publ., 2002. P. 317.