от Экспериментальное определение положения потолка валентной зоны в *a*-Al₂O₃ и *y*-Al₂O₃

© М.А. Конюшенко, Е.О. Филатова, А.С. Конашук, А.В. Нелюбов, А.С. Шулаков

Санкт-Петербургский государственный университет E-mail: marinakony@yandex.ru

Поступило в Редакцию 6 мая 2015 г.

Представлено исследование методом рентгеновской фотоэлектронной спектроскопии энергетического распределения заполненных состояний валентной зоны и определение положения ее потолка в пленках a-Al₂O₃ и γ -Al₂O₃, синтезированных методом молекулярного наслаивания (MH) на кремниевой подложке. Установлен сдвиг потолка валентной зоны γ -Al₂O₃ на 0.8 eV в сторону больших энергий связи по отношению к аморфному Al₂O₃.

Главным направлением развития современной кремниевой технологии является уменьшение топологических размеров полупроводниковых элементов с целью достижения максимальной плотности упаковки, максимального быстродействия и минимальной потребляемой мощности. Долгое время ключевым подзатворным диэлектриком в МДП-транзисторах (металл-диэлектрик-полупроводник), составляющих основу интегральных микросхем, был термический оксид кремния SiO₂. Принципиальным ограничением на пути его дальнейшего использования стала низкая диэлектрическая проницаемость SiO₂ ($\varepsilon = 3.9$). Одним из перспективных претендентов на роль подзатворного диэлектрика в МДП-структурах оказался оксид алюминия Al₂O₃, что обусловлено: 1) его относительно высокой диэлектрической проницаемостью $(\varepsilon \approx 10)$ и в то же время большой шириной запрещенной зоны $(E_g = 5.1 - 8.8 \,\mathrm{eV})$ [1]; 2) термической стабильностью на границе с кремниевой подложкой [2]; 3) схожестью межфазовых границ Al₂O₃/Si и SiO₂/Si [3]; 4) существованием высоких потенциальных барьеров для электронов и дырок на границе диэлектрик/металл, которые определяют паразитные электронные и дырочные инжекционные токи [4].

8

Известно, что Al₂O₃ может существовать как в аморфном состоянии, так и в нескольких кристаллических модификациях. Все они отличаются соотношением тетраэдрических и октаэдрических координаций атомов металла [4]. Наиболее удобными для применения в технологии микроэлектроники являются аморфная фаза (*a*-Al₂O₃) и γ -фаза (γ -Al₂O₃). Каждая модификация характеризуется своей величиной запрещенной зоны: для γ -фазы запрещенная зона лежит в пределах 7.1–8.7 eV [5], для аморфной фазы — 5.1–7.1 eV [5]. Стоит отметить, что величина запрещенной зоны зависит от метода синтеза. Метод молекулярного наслаивания (MH) позволяет получать аморфные пленки с запрещенной зоной 6.2 eV [6], в то время как пленки *a*-Al₂O₃, выращенные методом химического осаждения из газовой фазы (CVD), имеют запрещенную зону 5.6 eV [7].

В настоящее время существуют противоречивые взгляды на механизм изменения запрещенной зоны при переходе от аморфной фазы к γ -Al₂O₃. Согласно работам [5,8], запрещенная зона изменяется преимущественно за счет подвижки дна зоны проводимости. Согласно расчетам, проведенным в [1], энергетическое положение дна зоны проводимости изменяется лишь на 0.5 eV, в то время как 80% изменений наблюдаются в подвижке потолка валентной зоны. В связи с этим целью данной работы стал сравнительный анализ энергетического распределения заполненных состояний и положения потолка валентной зоны в a-Al₂O₃ и γ -Al₂O₃. Все измерения методом рентгеновской фотоэлектронной спектроскопии (РФЭС) проводились в идентичных условиях, что позволяет предположить одинаковость вносимой ошибки при определении энергетического положения потолка валентной зоны в разных образцах.

Тонкие пленки a-Al₂O₃ (12 nm) выращивались методом MH на кремниевой подложке Si(100) n-типа проводимости. Один цикл MH пленки Al₂O₃ состоял из двух реакций: в первой в качестве прекурсора использовался триметилалюминий (Al(CH₃)₃), а во второй — пары воды. Техника MH заключается в последовательном использовании самозавершающихся химических реакций газ-твердое тело [9]. Метод является поверхностно-контролируемым процессом, что позволяет выращивать слои веществ толщиной вплоть до монослоя, при этом пленки получаются однородными по составу и толщине [9]. γ -Al₂O₃ был получен в результате термического отжига a-Al₂O₃ при температуре 1000°C в атмосфере O₂ в течение 60 s. Исследования методом

дифракции рентгеновских лучей подтвердили кристаллическую структуру пленок *a*- и γ -Al₂O₃. Рентгенограммы образцов были получены в асимметричной геометрии скользящего падения. В качестве источника рентгеновских лучей использовалась рентгеновская трубка с медным анодом, измерения проводились на CuK_{a1} (0.154 nm).

Измерения валентной зоны пленок a-Al₂O₃ и γ -Al₂O₃ проводились методом РФЭС на спектрометре Thermo Scientific ESCALAB 250Xi X-ray. В качестве источника ионизирующего излучения использовалась рентгеновская трубка с излучением AlK_a (1486.6 eV). Энергетическое разрешение было не хуже, чем 0.5 eV. Все спектры записывались при использовании компенсации подзарядки поверхности образца, при этом реперная линия углерода Cls имела энергетическое положение 284.6 eV [10].

Первичный анализ обзорных фотоэлектронных спектров образцов показал наличие интенсивного пика углерода Cls в спектрах всех образцов, что свидетельствует о сильном загрязнении поверхности исследуемых пленок. Поскольку фотоэлектронная спектроскопия является поверхностно чувствительным методом и для энергий фотонов 1500 eV глубина анализа не превышает 3 nm, поверхности всех образцов подвергались очистке методом травления ионами Ar⁺. Были подобраны режимы, обеспечивающие удаление загрязнений и в то же время не разрушающие структуру исследуемых пленок. Очистка поверхности проводилась при ускоряющем напряжении 200 V и малых скользящих углах падения ионов аргона ($\sim 30^{\circ}$).

На рис. 1 приведены фотоэлектронные спектры C1s и их разложения для a-Al₂O₃ до и после очистки поверхности пленки ионами аргона. Аналогичные спектры были получены для γ -Al₂O₃ пленки. Разложение спектров проводилось с помощью специального программного обеспечения Casa 2.3.15. Фон рассеянных электронов убирался с использованием функции Ширли, а компоненты разложения определялись как суммы функций Гаусса (70%) и Лоренца (30%). Как видно из рис. 1, фотоэлектронная линия C1s может быть описана тремя симметричными пиками. Согласно [11], пики, наблюдаемые при энергиях связи 284.6, 285.6 и 289.4 eV, соответствуют связям –С–С, –С–О–С и О=С–О–Н. Видно, что после проведенного травления полностью избавиться от поверхностных загрязнений не удалось, но удалось существенно понизить их вклад. Фотоэлектронные спектры, записанные в области Ar2p-линии, показали отсутствие аргона в

Рис. 1. Фотоэлектронные спектры C1*s* и их разложение на составляющие для пленки a-Al₂O₃, измеренные до (*a*) и после (*b*) очистки поверхности пленки ионами Ar⁺ (масштаб одинаковый).

исследуемой структуре. В результате очистки поверхности контрастность линий Al2p и O1s возросла при сохранении их энергетического положения и полуширин на полувысоте. Это позволяет предположить, что очистка поверхности ионами аргона не изменила структуру пленки.

Согласно расчетам методом теории функционала плотности в работе [12,13], а также экспериментальным исследованиям РФЭС [14] валентная зона Al₂O₃ состоит из двух подзон, разделенных ионной щелью. Нижняя валентная подзона, расположенная в области энергий 20–28 eV, сформирована 2*s*-орбиталями кислорода с примесью 3*s*-, 3*p*-орбиталей алюминия. Верхняя валентная подзона, расположенная в области энергий 3–14 eV, сформирована 2*p*-орбиталями кислорода с примесью 3*s*-, 3*p*-, 3*d*-орбиталей алюминия. Поскольку данная работа нацелена на определение положения потолка валентной зоны аморфной и гамма-фаз Al₂O₃, далее будут рассмотрены только спектры верхней валентной подзоны.

На рис. 2 приведены фотоэлектронные спектры верхней валентной подзоны a-Al₂O₃ и γ -Al₂O₃ пленок, измеренные до и после травления ионами Ar⁺. Видно, что формы верхней валентной подзоны до и после травления различаются в спектрах обеих пленок. После травления спектры становятся более структурированными: наблюдается отчетливое разделение деталей структуры A и B. Кроме того, исчезает деталь структуры α в области энергий $\sim 13-16$ eV. Естественно связать данную деталь с присутствием загрязнений на поверхности пленок. Данное предположение хорошо согласуется с результатами исследований в работе [15], где показано, что дополнительная структура, появляющаяся в области 5–8 и 13–15 eV, связана с загрязнениями на поверхности пленки.

Обратимся к рассмотрению спектров верхней валентной подзоны *a*-Al₂O₃ и γ -Al₂O₃ после травления. В спектрах обеих пленок четко выделяются полосы *A* и *B*, энергетическое положение и интенсивность которых зависят от кристаллической фазы пленки. Согласно расчетам [16], вершина валентной зоны (низкоэнергетическая полоса *A*) сформирована преимущественно несвязующими $2p_{\pi}$ -состояниями кислорода. Полоса *B*, характеризуемая большей энергией связи, отображает связывающие $2p_{\sigma}$ -состояния кислорода, смешанные с 3s-, 3p-, 3d-состояниями алюминия, находящегося в октаэдрических положениях. $2p_{\sigma}$ -состояния кислорода, смешанные с яниями алюминия, находящегося в тетраэдрических положениях,

Рис. 2. Фотоэлектронные спектры верхней валентной подзоны для a-Al₂O₃ и γ -Al₂O₃, измеренные до (a) и после (b) травления ионами Ar⁺. Нуль энергии соответствует уровню Ферми (масштаб одинаковый).

формируют структуру валентной зоны между низкоэнергетическим Aи высокоэнергетическим B пиками [16]. Согласно работе [17], кристаллическая структура γ -A₂O₃ построена приблизительно на 70% из октаэдров AlO₆ и на 30% из тетраэдров AlO₄. В то же время в a-Al₂O₃ количество тетраэдров существенно превалирует [18]. Поскольку полоса B отображает состояния Al, находящегося в октаэдрических координациях атомов кислорода, учитывая соотношение октаэдрических и тетраэдрических координаций в рассматриваемых фазах, становится понятным большая интенсивность полосы B в спектре γ -Al₂O₃.

Анализ энергетического расстояния E_{A-B} между полосами A и B дает значения ~ 2.80 и ~ 3.14 eV для a-Al₂O₃ и γ -Al₂O₃ соответственно. Как следует из x_{α} -расчетов [19], по мере уменьшения длины связи Al–O высокоэнергетический пик B сдвигается в сторону больших энергий связи и энергетическое расстояние E_{A-B} увеличивается. Согласно [19], длина связи Al–O в октаэдрическом кластере AlO₆ составляет 1.709 Å. В случае тетраэдрического кластера AlO₄ длина связи Al–O несколько больше — 1.975 Å [19]. Разумно предположить, что количество "длинных" связей Al–O в аморфной фазе, где количество тетраэдрических координаций превалирует, больше по сравнению с γ -Al₂O₃, и, как следствие, естественно ожидать уменьшения величины расщепления E_{A-B} в аморфном Al₂O₃. Именно такая тенденция прослеживается в измеренных в данной работе спектрах.

Традиционно энергетическое положение потолка валентной зоны (ПВЗ) определяется через линейную экстраполяцию спектра к нулю [20]. Линейная экстраполяция спектров *a*-Al₂O₃ и γ -AL₂O₃ к нулю указывает на то, что ПВЗ *a*-Al₂O₃ находится при 3.61 eV, а γ -Al₂O₃ — при 4.41 eV в шкале энергии связи. Таким образом, относительная подвижка потолка валентной зоны при кристаллизации аморфной фазы Al₂O₃ в γ -фазу составляет 0.80 \pm 0.05 eV.

Полученные экспериментальные данные свидетельствуют о том, что потенциальный барьер для дырок выше в случае контакта γ -Al₂O₃/затвор по сравнению с a-Al₂O₃/затвор и в большей степени подтверждают результаты теоретического анализа, выполненного в работе [1].

Работа выполнена в рамках проекта СПБГУ 11.37.656.2013. Авторы благодарят сотрудников ресурсных центров "Физические методы исследования поверхности" и "Рентгенодифракционные методы исследования" за помощь в проведении исследований.

Список литературы

- Afanas'ev V.V., Houssa M., Stesmans A., Merckling C., Schram T. et al. // Appl. Phys. Lett. 2011. V. 99. P. 072 103
- [2] Gusev E.P., Cartier E., Buchanan D.A., Gribelyuk M., Copel M., Okorn-Schmidt H., D'Emic C. // Microelectron. Eng. 2001. V. 59. P. 341–349.
- [3] Filatova E.O., Taracheva E.Yu., Sokolov A.A., Bukin S.V., Shulakov A.S., Jonnard P., André J.-M., Drozd V.E. // X-Ray Spectrom. 2006. V. 35. P. 359–364.
 [4] Перевалов Т.В., Гриценко В.А. // УФН. 2010. Т. 180. № 6. Р. 588–603.
- [4] Перевилов Т.Б., Гриценко Б.А. // УФП. 2010. 1. 180. № 0. Р. 386-00
- [5] Toyoda S., Shinohara T., Kumigashira H., Oshima M., Kato Y. // Appl. Phys. Lett. 2012. V. 101. P. 231 607.
- [6] Afanas'ev V.V., Houssa M., Stesmans A., Heyns M.M. // J. Appl. Phys. 2002.
 V. 91. P. 3079.
- [7] Aguilar-Frutis M., Garcia M., Falcony C. // Appl. Phys. Lett. 1998. V. 72. P. 1700.
- [8] Momida H., Hamada T., Takagi Y., Yamamoto T., Uda T., Ohno T. // Phys. Rev. B. 2006. V. 73. P. 054 108.
- [9] *Puurunen R.L.* Doctoral diss. "Preparation by Atomic Layer Deposition and characterization of catalyst supports surfaced with aluminum nitride". 2002.
- [10] NIST X-ray Photoelectron Spectroscopy Database, http://srdata.nist.gov
- [11] Edy R., Huang X., Guo Y., Zhang J., Shi J. // Nanoscale Res. Lett. 2013. V. 8. P. 79.
- [12] Перевалов Т.П., Шапошников А.В., Гриценко В.А., Вонг Х., Хан Ж.Х., Ким Ч.В. // Письма в ЖЭТФ. 2007. Т. 85. Р. 197–201.
- [13] Xu Y.-N., Ching W.Y. // Phys. Rev. B. 1991. V. 43. N 5. P. 4461–4472.
- [14] Snijder P.C., Jeurgens L.P.H., Sloof W.G. // Surf. Sci. 2002. V. 496. P. 97-109.
- [15] Jung R., Noh T.-W., So Y.-W., Oh S.-J., Lee J.C., Shin H.-J. // Appl. Phys. Lett. 2003. V. 83. N 25. P. 5226–5228.
- [16] Rider A.N., Lamb R.N., Koch M.H. // Surf. Interface Anal. 2001. V. 31. P. 302– 312.
- [17] Lee M.-H., Cheng C.-F., Heine V., Klinowski J. // Chem. Phys. Lett. 1997. V. 265. P. 673–676.
- [18] Davis S., Gutierrez G. // J. Phys.: Condens. Matter. 2011. V. 23. P. 495 401– 495 409.
- [19] Thomas S., Sherwood P.M.A. // Anal. Chem. 1992. V. 64. P. 2488-2495.
- [20] Chambers S.A., Droubay T., Kaspar T.C., Gutowski M., van Schilfgaarde M. // Surf. Sci. 2004. V. 554. P. 81–89.