Рентгенофлуоресцентный анализ стекол $Ge_{1-x}Se_x$, $As_{1-x}Se_x$ и $Ge_{1-x-y}As_ySe_x$ с использованием электронного возбуждения

© Е.И. Теруков⁺, П.П. Серегин^{*¶}, А.В. Марченко^{*}, Д.В. Жилина⁺, К.У. Бобохужаев[•]

⁺ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Российский государственный педагогический университет им. А.И. Герцена,

191186 Санкт-Петербург, Россия

• Национальный университет Узбекистана,

100174 Ташкент, Узбекистан

(Получена 19 февраля 2015 г. Принята к печати 25 февраля 2015 г.)

Метод рентгенофлуоресцентного анализа с возбуждением флуоресценции пучком электронов с энергией 30 кВ применен для определения содержания германия, мышьяка и селена в стеклообразных сплавах $Ge_{1-x}Se_x$, $As_{1-x}Se_x$ и $Ge_{1-x-y}As_ySe_x$. С использованием калибровочных зависимостей количественный состав стекол определен с точностью ± 0.0002 по параметрам x и y в поверхностном слое глубиной ~ 0.1 мкм.

1. Введение

Отсутствие дальнего порядка в структуре халькогенидных стеклообразных полупроводников не позволяет для определения состава стекол использовать рентгенофазовый анализ, тогда как наличие в большинстве стекол мышьяка создает проблемы применения для этих целей методов аналитической химии. Как было показано [1-4], перспективным в этом отношении является метод рентгенофлуоресцентной спектроскопии — анализ характеристического рентгеновского излучения мишени, возбуждаемого тормозным излучением рентгеновской трубки, позволяет с высокой точностью определять количественный состав мишени, причем, учитывая большую глубину проникновения рентгеновского излучения $(\sim 1 \text{ мм})$, получаемые данные относятся к объемной части материала. Однако число работ, относящихся к применению рентгенофлуоресцентной спектроскопии для определения количественного состава халькогенидных стекол, невелико, причем во всех работах характеристическое рентгеновское излучение мишени возбуждалось только тормозным рентгеновским излучением [1-4].

В настоящей работе приведены экспериментальные результаты по определению количественного состава стеклообразных сплавов $Ge_{1-x}Se_x$, $As_{1-x}Se_x$ и $Ge_{1-x-y}As_ySe_x$ методом рентгенофлуоресцентной спектроскопии, причем сравниваются возможности методик с использованием возбуждения как тормозным рентгеновским излучением (с максимальной энергией 30 кэВ), так и пучком моноэнергетических (30 кэВ) электронов.

2. Методика эксперимента

Стеклообразные сплавы $Ge_{1-x}Se_x$ ($Ge_{0.1}Se_{0.9}$, $Ge_{0.2}Se_{0.8}$, $Ge_{0.333}Se_{0.667}$, $Ge_{0.4}Ge_{0.6}$), $As_{1-x}Se_x$ ($As_{0.02}Se_{0.98}$, $As_{0.1}Se_{0.9}$, $As_{0.4}Se_{0.66}$, $As_{0.417}Se_{0.583}$,

As_{0.5}Se_{0.5}, $As_{0.6}Se_{0.4}),$ И $Ge_{1-x-y}As_ySe_x$ $(Ge_{0.048}As_{0.476}Se_{0.476}, Ge_{0.1}As_{0.4}Se_{0.5}, Ge_{0.138}As_{0.345}Se_{0.517},$ $Ge_{0.167}As_{0.2}Se_{0.633}$, $Ge_{0.167}As_{0.333}Se_{0.5}$, $Ge_{0.2}As_{0.4}Se_{0.4}$, Ge_{0.25}As_{0.111}Se_{0.639}, Ge_{0.3}As_{0.25}Se_{0.45}) синтезировались из элементарных веществ в тонкостенных кварцевых ампулах при температуре 950°С с последующей закалкой расплава (~ 1 г) в воду. Стеклообразные "корольки" массой ~ 1 г представляли собой монолитные слитки, верх ампул не содержал следов возгонки. Критериями стеклообразного состояния служили раковистый излом, отсутствие линий на дебаеграммах, отсутствие включений и неоднородностей при просмотре полированных поверхностей в металлмикроскопе МИМ-7 и инфракрасном микроскопе МИК-1. Образцы для рентгенофлуоресцентного анализа не подвергались специальной механической обработке (шлифованию, полированию и др.). Составы сплавов приведены составу исходной шихты, определенной по с погрешностью ±0.001, за исключением сплавов As_{0.4}Se_{0.6}, Ge_{0.3333}S_{0.6667} и Ge_{0.3333}As_{0.3333}Se_{0.3333}, состав которых был определен с погрешностью ±0.0002.

Спектры рентгеновской флуоресценции при их возбуждении моноэнергетическими электронами измерялись на растровом электронном микроскопе Zeiss EVO 40 с датчиком рентгеновского микроанализа INCA X-act. Энергия первичного пучка электронов составляла 30 кэВ, ток не превышал 300 пА, диаметр анализируемой площади составлял \sim 30 нм. Для исключения зарядки поверхности образцы предварительно покрывались пленкой углерода толщиной \sim 20 нм. Спектры рентгеновской флуоресценции при их возбуждении тормозным рентгеновским излучением измерялись на спектрометре X-Art M с Si(Li)-блоком детектирования при значении анодного напряжения 30 кВ, размер анализируемой площади составлял $\sim 1 \text{мм}^2$.

Спектры характеристического рентгеновского излучения стеклообразных сплавов содержали все линии *К*-серий германия, мышьяка и селена. Поскольку наи-

[¶] E-mail: ppseregin@mail.ru

более интенсивные и хорошо разрешенные линии представляли собой суперпозицию компонент $K_{\alpha 1}$ и $K_{\alpha 2}$, далее мы ограничимся рассмотрением только этих $K_{\alpha 1,2}$ -линий.

Для каждого образца спектр измерялся 5 раз в фиксированной точке его поверхности. При этом режим спектрометра поддерживался постоянным. Определялись площади под $K_{\alpha 1,2}$ -линиями германия, S_{Ge} , мышьяка, S_{As}, и селена, S_{Se}, а далее с помощью соотношений $x_{\text{RFA}} = S_{\text{Se}}/(S_{\text{As}} + S_{\text{Se}})$ (для сплавов $\text{As}_{1-x}\text{Se}_x$), $x_{\text{RFA}} = S_{\text{Se}}/(S_{\text{Ge}} + S_{\text{Se}})$ (для сплавов $\text{Ge}_{1-x}\text{Se}_x$), $x_{\text{RFA}} =$ $S_{Se}/(S_{Ge} + S_{As} + S_{Se}), y_{RFA} = S_{As}/(S_{Ge} + S_{As} + S_{Se})$ и $z_{\text{RFA}} = S_{\text{Se}}/(S_{\text{Ge}} + S_{\text{Se}})$ (для сплавов $\text{Ge}_{1-x-y}\text{As}_{y}\text{Se}_{x}$, или, в другом варианте записи, $As_v(Ge_{1-z}Se_z)_{1-v})$ вычислялись относительные площади спектральных линий германия, мышьяка и селена. Индекс "RFA" означает, что значения x, y и z определены из данных рентгенофлуоресцентного анализа. Значения среднеквадратичных отклонений величин x_{RFA}, y_{RFA} и z_{RFA} в таких сериях измерений не превышали 0.0002.

Экспериментальные результаты и их обсуждения

Если мишень $A_{1-x}B_x$ облучается первичным монохроматическим рентгеновским или электронным излучением, то для случая "толстого" анализируемого образца, т. е.

$$\left(rac{lpha_0}{\cos heta}+rac{lpha_{
m A}}{\cos arphi}
ight) d < 1, \quad \left(rac{lpha_0}{\cos heta}+rac{lpha_{
m B}}{\cos arphi}
ight) d < 1,$$

(где d — толщина анализируемого поверхностного слоя мишени, θ — угол падения первичного рентгеновского или электронного пучка на мишень, φ — угол выхода характеристического рентгеновского излучения из мишени, α_A — линейный коэффициент поглощения $K_{\alpha 1,2}$ -линии веществом А мишени, α_B — линейный коэффициент поглощения $K_{\alpha 1,2}$ -линии веществом В мишени), отношения интенсивностей $K_{\alpha 1,2}$ -линий атомов А и В определяются как

$$r = \frac{\omega_{\rm A} \gamma_{\rm A} \sigma_{\rm A}}{\omega_{\rm B} \gamma_{\rm B} \sigma_{\rm B}} \frac{1 - x}{x} \left(\frac{\alpha_0 / \cos \theta + \alpha_{\rm B} / \cos \varphi}{\alpha_0 / \cos \theta + \alpha_{\rm A} / \cos \varphi} \right), \quad (1)$$

где γ_A и γ_B — эффективности регистрации детектором $K_{\alpha 1,2}$ -излучения атомов A и B соответственно, ω_A и ω_B — выходы флуоресценции в линию возбужденных атомов A и B соответственно, σ_{0A} и σ_{0B} — сечения поглощения первичного излучения атомами A и B соответственно, α_0 — линейный коэффициент поглощения первичного излучения веществом мишени.

Используя табличные данные по величинам выхода флуоресценции, сечений ионизации атомов мышьяка, германия и селена [5,6] и рассчитанные для них линейные коэффициенты поглощения первичного излучения и $K_{\alpha1,2}$ -линий этих атомов веществом мишени,

Рис. 1. Калибровочные зависимости $x = f(x_{\text{RFA}})$, полученные при облучении мишеней электронами (*a*) и тормозным рентгеновским излучением (*b*) для стекол $As_{1-x}Se_x$ (сплошные линии), построенные по трем точкам (*I*) и аппроксимированные полиномами: $x = -0.0029x_{\text{RFA}}^2 + 1.0029x_{\text{RFA}}$ (*a*) и $x = -0.0431x_{\text{RFA}}^2 + 1.0431x_{\text{RFA}}$ (*b*). 2 — значения x_{RFA} и *x* для стекол $As_{1-x}Se_x$.

мы оценили, что для всех исследованных сплавов при облучении их тормозным рентгеновским излучением с максимальной энергией ~ 30 кэВ глубина анализируемого слоя составляет $d \sim 0.1$ мм, тогда как при облучении этих сплавов электронным пучком с энергией 30 кэВ $d \sim 0.1$ мкм.

Поскольку отношение интенсивностей Ка1,2-линий для исследованных образцов зависит от многих факторов, практически невозможно непосредственное использование соотношения (1), и поэтому для определения концентраций германия, мышьяка и селена в бинарных сплавах мы использовали метод стандарта. С этой целью строились калибровочные зависимости $x = f(x_{RFA})$ по трем точкам — для селена ($x_{RFA} = 0, x = 0$), для стандарта Ge_{0.3333}Se_{0.6667} ($x_{\text{RFA}} = 0.3542, x = 0.3333$) или $As_{0.4}Se_{0.6}$ ($x_{RFA} = 0.4007$, x = 0.4) и для германия или мышьяка $x_{\text{RFA}} = 1$, x = 1). На рис. 1 представлены указанные зависимости для сплавов $As_{1-x}Se_x$, а на рис. 2 для сплавов $Ge_{1-x}Se_x$. Все зависимости на рис. 1 и 2 аппроксимированы полиномами второй степени вида $x = x_{\text{RFA}} + a x_{\text{RFA}} (1 - x_{\text{RFA}})$. Выбор соединений GeSe₂ и As₂Se₃ в качестве стандартов объясняется тем, что они являются надежно установленными соединениями в системах $Ge_{1-x}Se_x$, $As_{1-x}Se_x$ и могут быть получены в стеклообразном состоянии с высокой точностью определения количественного состава по составу шихты методом сплавления исходных компонент. Коэффициент а

определялся путем подстановки значений x_{RFA} и x для стандарта в уравнение интерполяционного полинома. Эти полиномы служат градуировочными соотношениями для определения состава мишеней (параметра x) по полученному из рентгенофлуоресцентных спектров значению x_{RFA} .

Для демонстрации такой возможности на рисунках приведены экспериментальные значения x_{RFA} и x для стеклообразных сплавов $As_{1-x}Se_x$ (с x = 0.02, 0.1, 0.286,0.4, 0.417, 0.5, 0.6) (рис. 1) и $Ge_{1-x}Se_x$ (с x = 0.1,0.2, 0.3333, 0.4) (рис. 2). Видно, что для всех образцов экспериментальные данные хорошо укладываются на градуировочные соотношения между величинами x и x_{RFA} . Отклонение экспериментальных точек от градуировочных кривых вызваны отличием состава образцов от состава шихты.

Значения x_{RFA} в серии последовательных измерений рентгенофлуоресцентного спектра при фиксированных условиях воспроизводились с точностью $2 \cdot 10^{-4}$. Эта величина служит оценкой для погрешности определения *x* из рентгенофлуоресцентных спектров. Величины погрешности существенно ниже, чем при определении состава стеклообразных сплавов методами химического анализа, и рентгенофлуоресцентный анализ, повидимому, по точности не имеет конкурентов среди других неразрушающих методов определения состава аморфных материалов. Максимальное отклонение *x* от градуировочной кривой, вызванное отличием состава образцов от состава шихты, составляет ± 0.02 , и эта

Рис. 2. Калибровочные зависимости $x = f(x_{\text{RFA}})$, полученные при облучении мишеней электронами (*a*) и тормозным рентгеновским излучением (*b*) для стекол $\text{Ge}_{1-x}\text{Se}_x$ (сплошные линии), построенные по трем точкам (*I*) и аппроксимированные полиномами: $x = -0.0908x_{\text{RFA}}^2 + 1.0908x_{\text{RFA}}$ (*a*), $x = -0.7915x_{\text{RFA}}^2 + 1.7915x_{\text{RFA}}$ (*b*). 2 — значения x_{RFA} и x для стекол $\text{Ge}_{1-x}\text{Se}_x$.

Физика и техника полупроводников, 2015, том 49, вып. 10

величина может служить верхней оценкой для реальной погрешности в составе при синтезе стекол (существенно большей декларируемой погрешности определения состава шихты ±0.001).

Учитывая, что германий, мышьяк и селен являются соседними элементами в таблице Д.И. Менделеева, следовало ожидать, что величины, входящие в соотношение (1) и относящиеся к германию, мышьяку и селену, будут близкими между собой и градуировочные графики $x = f(x_{RFA})$ для систем $Ge_{1-x}Se_x$ и $As_{1-x}Se_x$ будут близки к линейным зависимостям. Именно это и наблюдается для системы $As_{1-x}Se_x$ при использовании как рентгеновского тормозного излучения, так и моноэнергетических электронов (рис. 1, *a*, *b*).

Однако для системы $Ge_{1-x}Se_x$ при использовании тормозного рентгеновского излучения имеет место явное отклонение зависимости $x = f(x_{\text{RFA}})$ от линейной (рис. 2, b). Объясняется это тем, что флуоресцентное излучение более тяжелой компоненты (селен) поглощается более легкой (германий) и вызывает вторичную флуоресценцию последней, что ведет к увеличению относительной интенсивности линии более легкой компоненты, особенно, если К-край поглощения легкой компоненты совпадает или немного меньше энергии Ка1.2-излучения тяжелой компоненты (энергия K_{a1,2}-излучения Se составляет 11.2 кэВ, а энергия К-края поглощения германия ~ 11.1 кэВ). Естественно, эффект вторичной флуоресценции может наблюдаться только для физически толстых мишеней (толщиной > 0.1 мм) и, как результат, он реализуется только для случая, когда первичная флуоресценция вызывается тормозным рентгеновским излучением, для которого $d \ge 0.1$ мм (рис. 2, *b*). Для физически тонких мишеней (толщиной « 0.1 мм) вторичная флуоресценция должна отсутствовать, и это иллюстрируется практически линейной зависимостью $x = f(x_{\text{RFA}})$ для системы $\text{Ge}_{1-x}\text{Se}_x$, когда первичная флуоресценция вызывается электронами (рис. 2, a).

Как и в случае бинарных сплавов, для определения концентраций германия, мышьяка и селена в трехкомпонентных сплавах $Ge_{1-x-y}As_ySe_x$ мы использовали метод стандарта, для чего строились калибровочные зависимости $x = f(x_{RFA})$ и $y = f(y_{RFA})$ с использованием стандартного сплава $Ge_{0.3333}As_{0.3333}Se_{0.3333}$. Выбор сплава состава $Ge_{0.3333}As_{0.3333}Se_{0.3333}$ в качестве стандарта объясняется тем, что он является надежно установленным соединением в системе $Ge_{1-x-y}As_ySe_x$ и может быть получен в стеклообразном состоянии с высокой точностью определения количественного состава по составу шихты методом сплавления исходных компонент.

Для случая, когда флуоресценция для сплавов $Ge_{1-x-y}As_ySe_x$ вызывается электронным пучком, зависимости $x = f(x_{RFA})$ и $y = f(y_{RFA})$, аппроксимированные полиномами второй степени, представлены на рис. 3, *a* и 4, *a*. Они могут служить градуировочными соотношениями для определения состава мишеней по полученным из рентгенофлуоресцентных спектров значений x_{RFA} и y_{RFA} .

Рис. 3. Калибровочные зависимости $x = f(x_{\text{RFA}})$, полученные при облучении мишеней электронами (*a*) и тормозным рентгеновским излучением (*b*) для стекол $\text{Ge}_{1-x-y}\text{As}_y\text{Se}_x$ (сплошные линии), построенные по трем точкам (*I*) и аппроксимированные полиномами: $x = -0.1286x_{\text{RFA}}^2 + 1.1286x_{\text{RFA}}$ (*a*), $x = -0.6035x_{\text{RFA}}^2 + 1.6035x_{\text{RFA}}$ (*b*). 2 — значения x_{RFA} и x для стекол $\text{Ge}_{1-x}\text{Se}_x$, $\text{As}_{1-x}\text{Se}_x$ и $\text{Ge}_{1-x-y}\text{As}_y\text{Se}_x$.

Рис. 4. Калибровочные зависимости $y = f(y_{RFA})$, полученные при облучении мишеней электронами (*a*) и тормозным рентгеновским излучением (*b*) для стекол $\text{Ge}_{1-x-y}\text{Asy}\text{Se}_x$ (сплошные линии), построенные по трем точкам (*I*) и аппроксимированные полиномами: $y = -0.0236y_{RFA}^2 + 1.0236y_{RFA}$ (*a*), $y = -0.0355y_{RFA}^2 + 1.0355y_{RFA}$ (*b*). 2 — значения y_{RFA} и у для стекол $\text{As}_{1-x}\text{Se}_x$ и $\text{Ge}_{1-x-y}\text{Asy}\text{Se}_x$.

Для демонстрации такой возможности на рис. 3, *a* и 4, *a* нанесены экспериментальные значения x_{RFA} , y_{RFA} , *x* и *y* как для бинарных, так и для тройных стекол. Видно, что для всех образцов экспериментальные данные хорошо укладываются на градуировочные соотношения между величинами *x* и x_{RFA} , *y* и y_{RFA} .

случая, флуоресценция Лля когда сплавов $Ge_{1-x-y}As_ySe_x$ вызывается тормозным рентгеновским излучением, зависимости $x = f(x_{RFA})$ и $y = f(y_{RFA})$, аппроксимированные полиномами второй степени, представлены на рис. 3, b и 4, b. На них нанесены экспериментальные значения x_{RFA}, y_{RFA}, x и y как для бинарных, так и тройных стекол и видно, что в случае зависимости $y = f(y_{RFA})$ для всех образцов экспериментальные данные хорошо укладываются на градуировочные соотношения между величинами у и у_{RFA} (рис. 4, b), однако наблюдается значительный разброс экспериментальных точек относительно градуировочной зависимости $x = f(x_{RFA})$ (рис. 3, *b*). Это связано с тем, что К-излучение селена вызывает вторичную флуоресценцию германия, что ведет к росту относительной интенсивности его линии. Замена селена на мышьяк в составе стекла при фиксированном содержании германия ведет к уменьшению вторичной флуоресценции и уменьшению общей интенсивности линии германия. В итоге это приводит к разбросу экспериментальных точек на калибровочных зависимостях $x = f(x_{RFA})$.

Рис. 5. Калибровочные зависимости $z = f(z_{\text{RFA}})$, полученные при облучении мишеней электронами (*a*) и тормозным рентгеновским излучением (*b*) для стекол $\text{As}_y(\text{Ge}_{1-z}\text{Se}_z)_{1-y}$ (сплошные линии), построенные по трем точкам (*1*) и аппроксимированные полиномами: $z = -0.1798z_{\text{RFA}}^2 + 1.1798z_{\text{RFA}}$ (*a*), $z = -0.7295z_{\text{RFA}}^2 + 1.7295z_{\text{RFA}}$ (*b*). 2 —значения z_{RFA} и *z* для стекол $\text{Ge}_{1-x}\text{Se}_x$ и $\text{As}_y(\text{Ge}_{1-z}\text{Se}_z)_{1-y}$.

Физика и техника полупроводников, 2015, том 49, вып. 10

Однако возможен способ записи состава стекол, при котором описанный выше эффект будет исключен. В частности, состав стекол можно представить в псевдобинарном виде $As_v(Ge_{1-z}Se_z)_{1-v}$ (т.е. представить в виде двух бинарных систем $Ge_{1-z}Se_z$ и As_vR_{1-v} , где $R = \operatorname{Ge}_{1-z}\operatorname{Se}_z)$ с параметрами состава у и z, и тогда зависимости относительных площадей спектральных линий германия и мышьяка от параметров у и х оказываются однозначными. На рис. 5 представлены калибровочные зависимости $z_{RFA} = f(z)$ для случаев, когда флуоресценция вызывается электронами (рис. 5, a) и тормозным рентгеновским излучением (рис. 5, b), которые аппроксимированы полиномами второй степени, и вместе с полиномами на рис. 4 они служат соотношениями для определения состава сплавов по полученным из спектров значениям x_{RFA} , y_{RFA} и z_{RFA} .

Для демонстрации такой возможности на рис. 5 нанесены экспериментальные значения z_{RFA} как для бинарных, так и для тройных стекол. Видно, что для всех образцов экспериментальные данные хорошо укладываются на градуировочные соотношения между величинами у и y_{RFA} .

4. Заключение

Для определения количественного содержания мышьяка, германия и селена в стеклообразных сплавах $Ge_{1-x}Se_x$, $As_{1-x}Se_x$ и $Ge_{1-x-y}As_ySe_x$ методом рентгенофлуоресцентного анализа с использованием возбуждения электронным пучком реализован метод стандарта строились зависимости $x = f(x_{RFA})$ и $y = f(y_{RFA})$, которые позволяют определить параметры x и y с точностью ±0.0002 в поверхностном слое глубиной до 0.1 мкм.

Авторы выражают признательность проф. Ф.С. Насрединову за полезное обсуждение и доц. В.П. Пронину за помощь при измерении спектров.

Список литературы

- [1] Г.А. Бордовский, А.В. Марченко, П.П. Серегин, Н.Н. Смирнова, Е.И. Теруков. Письма ЖТФ, **35**, 15 (2009).
- [2] Г.А. Бордовский, А.В. Марченко, П.П. Серегин, Н.Н. Смирнова, Е.И. Теруков. ФТП, **44**, 26 (2010).
- [3] Г.А. Бордовский, П.В. Гладких, И.В. Еремин, А.В. Марченко, П.П. Серегин, Н.Н. Смирнова, Е.И. Теруков. Письма ЖТФ, 37, 15 (2011).
- [4] Г.А. Бордовский, А.В. Марченко, А.В. Николаева, П.П. Серегин, Е.И. Теруков. ФТП, 48, 272 (2014).
- [5] М.А. Блохин, И.Г. Швейцер. Рентгеноспектральный справочник (М., Наука, 1982).
- [6] Л.А. Вайнштейн, И.И. Собельман, Е.А. Юков. Возбуждение атомов и уширение спектральных линий (М., Наука, 1979).

Редактор Л.В. Шаронова

X-ray fluorescence analysis of $Ge_{1-x}Se_x$, As_{1-x}S_x and $Ge_{1-x-y}As_ySe_z$ glasses at electron excitation

E.I. Terukov⁺, P.P. Seregin^{*}, A.V. Marchenko^{*}, D.V. Zhilina ⁺, K.U. Bobokhuzhaev[•]

⁺ loffe Institute,

- 194021 St. Petersburg, Russia
- * Herzen State Pedagogical University

191186 St. Petersburg, Russia

- National University of Uzbekistan
- named after M.Ulugbek,

100174 Tashkent, Uzbekistan