Сверхтонкие взаимодействия в кластерах Pb³⁺F₈⁻F_a в кристаллах флюорита

© В.И. Муравьев

НПП "Измеритель", 432008 Ульяновск, Россия

(Поступила в Редакцию 11 августа 2003 г.)

Рассмотрена интерпретация параметров сверхтонких взаимодействий (СТВ) в тетрагональных кластерах $Pb^{3+}F_8^-F_a^-$ в кристаллах MF₂ (M=Ca, Sr, Ba). В приближении слабой связи иона-компенсатора заряда F_a^- с кубическим фрагментом в тетрагональном кластере рассчитаны вклады от спиновой поляризации (СП) в параметры собственного СТВ и дополнительных (лигандных) СТВ (ДСТВ). Показано, что последовательный учет вкладов СП в лигандное изотропное СТВ (ИСТВ) на ионе F_a^- приводит к аномально высоким значениям параметра этого взаимодействия для ряда кристаллов MF₂, что согласуется с экспериментом.

При исследовании ЭПР $6s^1$ -йона Pb³⁺: MF₂ (M = Ca, Sr, Ba) в кристаллах флюорита при T < 100 К были обнаружены тетрагональные кластеры $Pb^{3+}F_8^-F_a^-$, где ион-компенсатор заряда F_a^- находится в междоузлии второй сферы, и установлены особенности сверхтонких взаимодействий (СТВ) в этих соединениях. В частности, оказалось [1], что измерение *q*-фактор, параметр собственного СТВ А и параметры дополнительных лигандных СТВ (ДСТВ) на ионах фтора кубического фрагмента тетрагонального кластера F_i^- (компоненты A^{F_i} -тензора) совпадают по значениям с этими величинами для кубического кластера $Pb^{3+}F_8^-$ [2], в то время как параметры ДСТВ на ионе F_a^- (компоненты A^{F_a} -тензора) превышают (в среднем для ряда кристаллов MF₂) в полтора раза значения компонент А^{*F_i*-тензора. С одной стороны,} эксперимент можно интерпретировать более близким расположением к иону Pb^{3+} иона F_a^- по сравнению с ионами F_i⁻[3], но, с другой стороны, наблюдаемая изотропия g-фактора и A, а также эквивалентность (в пределах точности эксперимента) ионов F_i^- относительно центра кубического фрагмента в тетрагональном кластере позволяют полагать, что ближайшее окружение иона Pb³⁺ — кубическое, а ион-компенсатор связан с кубическим фрагментом более слабой (по сравнению с внутрифрагментной) ковалентной связью $(Pb^{3+}F_8^{-}-F_a^{-}).$

Эксперимент показывает (табл. 1), что основными слагаемыми в параметрах ДСТВ, определяющими их поведение, являются изотропные части компонент A^{F_i} -и A^{F_a} -тензоров. В [4,5] обсуждалось влияние спиновой поляризации (СП) на параметры A и лигандных изотропных СТВ (ИСТВ) в кубических кластерах $Me^{n+}F_8^-$ ($Me^{n+} = ns^1$ -ион) в кристаллах флюорита. В настоящей работе в приближении слабой связи рассмотрено влияние СП на эти параметры для тетрагональных кластеров $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2 .

1. Энергетический спектр тетрагонального кластера может быть представлен в виде взаимодействующих систем уровней кубического фрагмента и иона F_a^- . Последовательность электронных оболочек, СП которых вносит ненулевые вклады в параметры A и лигандных ИСТВ, следующая (C_{4v} , S = I/2):

$$[a_1^b(2s_{\sigma}^i)]^2[a_1^b(2s_{\sigma}^a)]^2[a_1^b(2p_{\sigma}^i)]^2[a_1^b(2p_{\sigma}^a)]^2[a_1^*(6s)]^1 = {}^2A_1,$$
(1)

где в круглых скобках записан характер молекулярной орбитали (МО) электронов соответствующей оболочки (характер оболочки), индекс * относится к разрыхляющему (связывающему) состоянию. МО тетрагонального кластера представлен суперпозицией МО кубического фрагмента и атомной орбитали (АО) иона F_a^- . В раскрытой форме МО имеют следующий вид (в методе МО ЛКАО $2p_{\sigma}$ - и $2s_{\sigma}$ -АО ионов фтора смешиваются в нулевом приближении):

$$a_{1}^{*}(6s) = \{x_{0}(6s) - x_{1}(2p_{\sigma}^{i}) - x_{2}(2s_{\sigma}^{i})\}_{cub} \\ - x_{3}(2p_{\sigma}^{a}) - x_{4}(2s_{\sigma}^{a}), \\ a_{1}^{b}(2p_{\sigma}^{a}) = \{v_{0}(6s) - v_{1}(2p_{\sigma}^{i}) - v_{2}(2s_{\sigma}^{i})\}_{cub} \\ + v_{3}(2p_{\sigma}^{a}) - v_{4}(2s_{\sigma}^{a}), \\ a_{1}^{b}(2p_{\sigma}^{i}) = \{y_{0}(6s) + y_{1}(2p_{\sigma}^{i}) - y_{2}(2s_{\sigma}^{i})\}_{cub} \\ + y_{3}(2p_{\sigma}^{a}) - y_{4}(2s_{\sigma}^{a}), \\ a_{1}^{b}(2s_{\sigma}^{a}) = \{w_{0}(6s) + w_{1}(2p_{\sigma}^{i}) - w_{2}(2s_{\sigma}^{i})\}_{cub} \\ + w_{3}(2p_{\sigma}^{a}) + w_{4}(2s_{\sigma}^{a}), \\ a_{1}^{b}(2s_{\sigma}^{i}) = \{z_{0}(6s) + z_{1}(2p_{\sigma}^{i}) + z_{2}(2s_{\sigma}^{i})\}_{cub} \\ + z_{3}(2p_{\sigma}^{a}) + z_{4}(2s_{\sigma}^{a}),$$
(2)

где МО кубического фрагмента заключены в фигурные скобки; x, y, z, v, w — коэффициенты разложения МО по базису ЛКАО (коэффициенты МО); знаковые комбинации коэффициентов МО соответствуют (I); $a_1^*(6s)$ — МО основного состояния (неспаренный электрон).

2. Рассмотрим кубический фрагмент тетрагонального кластера. Выражения для параметров СТВ и ДСТВ в случае куба $Me^{n+}F_8^-$ ($Me^{n+}=Zn^+$, Cd^+ , Pb^{3+} , O_h , S = 1/2) с учетом СП оболочки с $2p_\sigma^i$ -характе-

Кристалл	A, GHz	$A_{\parallel}^{F_i}, \mathrm{Gs}$	$A_{\perp}^{F_i}, \mathrm{Gs}$	A_i, Gs	B_i , Gs	$A_{\parallel}^{F_a}, \mathrm{Gs}$	$A_{\perp}^{F_a}, \mathrm{Gs}$	A_a, Gs	B_a, Gs
GaF ₂	52.85	+200	+69	+112.7	+43.7	+340	(+188.8)	(+239.2)	(+50.4)
SrF_2 BaF ₂	51.7 49.6	+190 +171	$+60 \\ +50$	+103.3 +90.3	$^{+43.3}_{+40.3}$	$^{+290}_{+220}$	(+138.8) +68.8	(+189.2) +119.2	(+50.4) +50.4

Таблица 1. Экспериментальные данные по ЭПР кластеров $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2 [1]*

* В круглых скобках — предполагаемые значения параметров ДСТВ на ионе F_a^- , определенные по аналогии с $B_i \approx$ const в ряде кристаллов MF₂.

Таблица 2. Параметры ковалентности кубических фрагментов кластеров $Pb^{3+}F_{8}^{-}F_{a}^{-}$ в кристаллах MF₂

Кристалл	x_{0}^{2}	x_{1}^{2}	x_{2}^{2}	y_{0}^{2}	y_{1}^{2}	y_{2}^{2}	z_{0}^{2}	z_{1}^{2}	z_{2}^{2}
CaF ₂	0.73	0.56	0.05	0.44	0.69	0.01	0.01	$egin{array}{c} \sim 0 \ \sim 0 \ \sim 0 \ \sim 0 \end{array}$	0.96
SrF ₂	0.72	0.55	0.04	0.33	0.51	0.01	0.03		0.94
BaF ₂	0.72	0.52	0.04	0.30	0.52	0.04	0.04		0.93

ром получены в [5]. Учитывая также СП оболочки с $2s_{\sigma}^{i}$ -характером и используя МО (2), получаем для параметров СТВ и ДСТВ в пренебрежении влиянием иона F_{a}^{-} и в одноцентровом приближении следующие выражения:

$$A = A_0 x_0^2 (1 + \delta), (3)$$

$$A_{\parallel}^{F_i} = A_i + 2B_i; \quad A_{\perp}^{F_i} = A_i - B_i,$$
 (4)

где изотропные (A_i) и анизотропные (B_i) части компонент A^{F_i} -тензора определены формулами (9) из [5], а параметр лигандного ИСТВ есть

$$A_{s_i} = A_{0_i} f_{s_i} (1 + \delta_i).$$
⁽⁵⁾

В (3) и (5) $A_{0_{(i)}}$ — параметр ИСТВ свободного иона; $f_{s_i} = (x_2/\sqrt{8})^2$ — спиновая плотность на $3s_{\sigma}^i$ -АО в основном состоянии; $\delta_{(i)}$ — поляризационная поправка, выражение которой для иона F_i^- представляется в следующем виде (для иона Pb³⁺ аналогично):

$$\delta_i = \alpha_i x_0^2 + \beta_i x_1^2 + \gamma_i x_2^2, \tag{6}$$

где

$$\begin{aligned} \alpha_i &= 2K(6s, 6s) \left(\frac{x_0}{x_2}\right) \left(\frac{y_0 y_2}{\Delta_{p_i}} - \frac{z_0 z_2}{\Delta_{s_i}}\right),\\ \beta_i &= -\frac{1}{4} K(2p_\sigma, 2p_\sigma) \left(\frac{x_1}{x_2}\right) \left(\frac{y_1 y_2}{\Delta_{p_i}} - \frac{z_1 z_2}{\Delta_{s_i}}\right),\\ \gamma_i &= \frac{1}{4} K(2s_\sigma, 2s_\sigma) \left(\frac{y_2^2}{\Delta_{p_i}} + \frac{z_2^2}{\Delta_{s_i}}\right). \end{aligned}$$
(7)

Здесь K(j, j) — обменные интегралы, $\Delta_{p(s)_i}$ — интервалы переходов $b \to *$. В (3) первое слагаемое соответствует ИСТВ 6*s*-электрона, локализованного на ионе Pb³⁺ в основном состоянии, с собственным ядром, а в (5) первое слагаемое — делокализационный вклад. Из (6) следует, что поправка δ_i обязана СП ковалентной связи Pb³⁺-F_i⁻ неспаренным электроном, локализованным на 6*s*-, $2p_{\sigma}^i$ -и $2s_{\sigma}^i$ -АО, соответственно; коэффи-

Физика твердого тела, 2004, том 46, вып. 5

циенты α_i , β_i и γ_i отражают обменное взаимодействие неспаренного электрона с α -электронами на оболочках $[a_{1g}^b(2p_{\sigma}^i)]^2$ и $[a_{1g}^b(2s_{\sigma}^i)]^2$, что относится к первому и второму слагаемым в (7) соответственно.

Необходимые для расчета вкладов в параметры СТВ и ДСТВ коэффициенты МО вычисляем по экспериментальным данным (табл. 1), используя выражения (3)-(5), дополнив их условиями ортонормированности МО и не принимая во внимание орбитальные вклады (вторые слагаемые) в формулах (9) из [5]; значения обменных интегралов и интегралов перекрывания рассчитываем с АО из [6,7]; значения $\Delta_{p(s)_i}$ варьируем в интервале (0.1-1) at.un.; атомные параметры — из [8]. Значения квадратов коэффициентов МО (параметров ковалентности) приведены в табл. 2. При расчете используем различные знаковые комбинации параметров ДСТВ, знаковая комбинация в табл. 1 выбрана в соответствии со структурой делокализованных связей из табл. 2. На различных оболочках электронная плотность распределена по-разному: если на оболочках $[a_{1s}^*(6s)]^1$ и $[a_{1g}^b(2p_{\sigma}^i)]^2$ она заметно перераспределена между ионами Pb³⁺ и F_i⁻ и на лиганде локализована в основном на $2p_{\sigma}^{i}$ -АО, то на оболочке $[a_{1\sigma}^{b}(2s_{\sigma}^{i})]^{2}$ электронная плотность смещена на лиганд и на ~ 100% локализована на $2s_{\sigma}^{i}$ -АО ионов фтора. Расчет показывает, что орбитальные вклады в А_i и В_i составляют не более трех процентов экспериментальных значений компонент A^{F_i} -тензора, так что $A_i = A_{s_i}$, а основной вклад в B_i обязан дипольному взаимодействию неспаренного электрона, локализованного на $2p_{\sigma}^{i}$ -АО ионов фтора, с ядром лиганда.

В табл. З приведены значения поляризационных поправок, и они разделены на вклады от оболочек с $2p_{\sigma}^{i}$ и $2s_{\sigma}^{i}$ -характером в соответствии с первым и вторым слагаемыми в формулах (7); их значения отмечают преобладание СП оболочки $[a_{1g}^{b}(2p_{\sigma}^{i})]^{2}$. Характер и масштаб изменения теоретических значений A и $A_{s_{i}}$ с учетом поляризационных поправок соответствует

Кристалл	δ_p	δ_s	$\delta = \delta_p + \delta_s$	A, GHz	δ_{p_i}	δ_{s_i}	$\delta_i = \delta_{p_i} + \delta_{s_i}$	A_{s_i}, Gs
CaF ₂	-0.11	+0.01	-0.10	+53.6	-0.05	+0.01	-0.04	+108.7
SrF_2	-0.12	~ 0	-0.12	+52.2	-0.13	+0.03	-0.10	+93.4
BaF_2	-0.14	-0.01	-0.15	+49.7	-0.23	-0.03	-0.26	+70.0

Таблица 3. Поляризационные поправки, параметры СТВ A и параметры лигандных ИСТВ A_{s_i} кубических фрагментов кластеров $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2

Таблица 4. Параметры ковалентности основного состояния, поляризационные поправки и параметры A_{s_a} лигандных ИСТВ на ионе F_a^- для кластеров $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2

Кристалл	x_{0}^{2}	x_{1}^{2}	x_{2}^{2}	x_{3}^{2}	x_{4}^{2}	δ_{p_a}	δ_{s_a}	$\delta_a = \delta_{p_a} + \delta_{s_a}$	A_{s_a}, Gs
CaF_2 SrF ₂ BaF ₂	0.70 0.65 0.66	0.56 0.55 0.52	0.05 0.04 0.04	0.08 0.08 0.08	0.01 0.01 0.01	$-0.05 \\ -0.13 \\ -0.23$	+0.09 +0.15 +0.23	+0.04 +0.02 0	+255.1 +192.5 +113.5

эксперименту (табл. 1).¹ Вклад от СП составляет в А \approx 10%, а в A_{s_i} он достигает 30%. Неэффективность СП оболочки $[a_{1g}^{b}(2s_{\sigma}^{i})]^{2}$ связана как с незначительной локализацией спиновой плотности на 2sⁱ_σ-AO ионов фтора в основном состоянии, так и с $\Delta_{s_i} > \Delta_{p_i}$ (в свободном атоме фтора интервал $\Delta E(2s, 2p) =$ $= 220 \times 10^3 \,\mathrm{cm}^{-I}$ [9]). Вклад первого слагаемого в (6) невелик вследствие $K(6s, 6s) \approx$ ≈ 0.1 at.un. $\langle K(2p_{\sigma}, 2p_{\sigma}) \approx K(2s_{\sigma}, 2s_{\sigma}) \approx I$ at.un.. Основной вклад в (6) вносит второе слагаемое и в "хорошем" приближении $\delta_i = \beta_i x_1^2$, где в (7) для β_i следует учесть вклад с Δ_{p_i} . Таким образом, несмотря на слабую примесь $2s_{\sigma}^{i}$ -АО в МО электронов оболочки с $2p_{\sigma}^{i}$ -характером, поведение А_{si} зависит от СП именно этой оболочки, что является следствием значительной локализации спиновой плотности на $2p_{\sigma}^{i}$ -АО ионов фтора в основном состоянии.

3. Рассмотрим тетрагональный кластер. Выражения для параметров ДСТВ на ионе F_a^- совпадает (замена $i \rightarrow a$) с формулами (4) и (5); поляризационная поправка δ_a с учетом СП оболочек с $2p_{\sigma}^a$ - и $2s_{\sigma}^a$ -характером записывается соотношением

$$\delta_a = (\alpha_a x_0^2 + \beta_a x_3^2 + \gamma_a x_4^2) + (\varepsilon_a x_1^2 + \omega_a x_2^2), \quad (8)$$

где первое слагаемое в скобках — аналог (6) с коэффициентами (7), а второе слагаемое — дополнительный вклад, обязанный СП оболочек спиновой плотностью на $2p_{\sigma}^{i}$ - и $2s_{\sigma}^{i}$ -АО ионов фтора в основном состоянии; коэффициенты ε_{a} и ω_{a} равны

$$\varepsilon_{a} = \frac{1}{4} K(2p_{\sigma}, 2p_{\sigma}) \left(\frac{x_{1}}{x_{4}}\right) \left(\frac{v_{1}v_{4}}{\Delta_{p_{a}}} + \frac{w_{1}w_{4}}{\Delta_{s_{a}}}\right),$$

$$\omega_{a} = \frac{1}{4} K(2s_{\sigma}, 2s_{\sigma}) \left(\frac{x_{2}}{x_{4}}\right) \left(\frac{v_{2}v_{4}}{\Delta_{p_{a}}} - \frac{w_{2}w_{4}}{\Delta_{s_{a}}}\right). \tag{9}$$

МО электронов поляризующихся оболочек представляем в следующей форме:

$$a_{1}^{b}(2p_{\sigma}^{a}) \approx v_{0}(6s) + v_{3}(2p_{\sigma}^{a}) - v_{4}(2s_{\sigma}^{a}),$$

$$a_{1}^{b}(2s_{\sigma}^{a}) \approx w_{0}(6s) + w_{1}(2p_{\sigma}^{i}) + w_{4}(2s_{\sigma}^{a}).$$
(10)

Параметры ковалентности основного состояния тетрагонального кластера (табл. 4) вычислены по экспериментальным значениям параметров ДСТВ с использованием условия нормированности МО $a_1^*(6s)$. Неспаренный электрон в тетрагональном кластере заметно локализован на кубическом фрагменте; на связах $Pb^{3+}-F_{a,i}^{-}$ основная часть спиновой плотности на лигандах находится на $2p_{\sigma}^{a,i}$ -АО ионов фтора. С использованием (10) первое слагаемое в (8) представляем в виде: $\delta_{p_a} = \beta_a x_3^2$, где выражение для β_a следует из аналогичной (7) формулы при $w_3 = 0$ и учитывает СП оболочки с $2p_{\sigma}^a$ -характером. Из (9) и (10) получаем: $\omega_a = 0$ и второе слагаемое в (8) есть $\delta_{s_a} = \varepsilon_a x_1^2$, где выражение для ε_a следует из (9) при $v_1 = 0$ и учитывает СП оболочки с $2s_{\sigma}^a$ -характером. Поскольку $\beta_a < 0$ и $\varepsilon_a > 0$, для $\delta_a = \delta_{p_a} = \delta_{s_a}$ имеет место взаимная компенсация вкладов. При оценке значений поправок выбираем $\delta_{p_a} \approx \delta_{p_i}$, что следует из совпадения характеров делокализации спиновой плотности на связях $Pb^{3+}-F_{a,i}^-$; значения δ_{s_a} оцениваем в предположении, что $w_0^2 \approx z_0^2$ и доля $2p_\sigma^i$ -АО в МО $a_{1}^{b}(2s_{\sigma}^{a})$ порядка одного процента. Расчет показывает совпадение масштабов δ_{p_a} и δ_{s_a} , поэтому компенсация вкладов в δ_a от СП оболочек с $2p_{\sigma}^a$ - и $2s_{\sigma}^a$ -характером соответственно приводит к значениям $A_{s_a} > A_{s_i}$ (ср. данные табл. 3 и 4). Поскольку второе слагаемое в (9) из [5] мало (меньше трех процентов), то $A_a = A_{s_a}$, и аномальные значения изотропных частей компонент A^{F_a} -тензора следует объяснить влиянием на параметр лигандного ИСТВ дополнительного вклада в (8), т.е. СП оболочки с $2s_{\sigma}^{a}$ -характером спиновой плотности, локализованной на $2p_{\sigma}^{i}$ -АО ионов F_{i}^{-} в основном состоянии тетрагонального кластера. Вполне возможно, что

¹ Выводы настоящей работы совпадают с качественными результатами [4,5].

и анизотропные части компонент $A^{F_{a,i}}$ -тензоров помимо дипольных содержат вклады от СП, влияние которых объясняет поведение B_a и B_i .

В заключение отметим, что в кластерах $Pb^{3+}F_8^-F_a^-$ СП имеет отчетливо выраженный лигандный характер — следствие специфики электронного строения кластеров *ns*¹-ионов, так как и основным, и поляризующимися состояниями являются ковалентные σ -состояния, что способствует значительному обменному взаимодействию на лигандах.

Список литературы

- [1] Ю.А. Михеев, В.Г. Степанов. ФТТ, **27**, 1, 253 (1985); **27**, *10*, 3177 (1985).
- [2] В.Ф. Крутиков, Н.И. Силкин, В.Г. Степанов. Парамагнитный резонанс. КГУ, Казань (1978). В. 10. С. 113; В. 13. С. 79.
- [3] Ю.А. Михеев. Автореф. канд. дис. КГУ, Казань (1987).
- [4] В.И. Муравьев, В.Г. Степанов. ФТТ, **25**, *II*, 3495 (1983).
- [5] В.И. Муравьев. ФТТ, **29**, *2*, 567 (1987).
- [6] A.A. Misetich, R.E. Watson. Phys. Rev. 43, 2, 335 (1966).
- [7] E. Clementy, D.L. Raumondi, W.P. Reinhard, J. Chem. Phys. 47, 4, 1300 (1967).
- [8] J.R. Morton, K.F. Preston. J. Magn. Res. 30, 2, 577 (1978).
- [9] И.Б. Берсукер. Строение и свойства координационных соединений. Химия, Л. (1971). С. 89.