11,12

Структурно-динамические свойства нанокомпозитов $LiNO_3 + AI_2O_3$

© М.М. Гафуров¹, К.Ш. Рабаданов¹, М.Б. Атаев¹, А.М. Амиров¹, З.Ю. Кубатаев¹, М.Г. Какагасанов^{1,2}

 ¹ Аналитический центр коллективного пользования ДагНЦ РАН, Махачкала, Россия
 ² Институт физики им. Х.И. Амирханова ДагНЦ РАН, Махачкала, Россия
 E-mail: malik52@mail.ru

(Поступила в Редакцию 12 февраля 2015 г.)

Методами комбинационного рассеяния, дифференциального термического анализа (ДТА) и ренттеновской дифракции (XRD) исследованы структурно-динамические свойства нитрата лития LiNO₃ и его гетерогенных композитов с наноразмерным порошком оксида алюминия Al_2O_3 при различных температурах, фазовых состояниях и концентрациях нанопорошка Al_2O_3 . Показано, что в композитах $(1 - x)LiNO_3 + xAl_2O_3$ образуется аморфная фаза (для $x \ge 0.5$), тепловой эффект которой регистрируется при 185°С. По результатам расчетов динамических характеристик колебаний нитрат-иона, а также с помощью методов ДТА и XRD нанокомпозит можно представить как некую сильно неупорядоченную "квазирешетку", в "узлах" которой расположены наночастицы с оболочкой из аморфного нитрата лития, а пространства между ними (условно "междоузлия") становятся каналами облегченного протекания ионного тока.

Работа выполнена на оборудовании Аналитического центра коллективного пользования ДагНЦ РАН при финансовой поддержке РФФИ (грант № 13-03-00384_а).

1. Введение

Исследования влияния инертных твердых добавок на физико-химические характеристики ионных конденсированных систем приобретают чрезвычайную актуальность ввиду того, что таким путем удается оптимизировать, в частности, их ион-проводящие свойства. Для ионных конденсированных систем это обстоятельство имеет важное прикладное значение с учетом их широкого использования в качестве электрохимических систем в различных устройствах. При этом эффект влияния твердого наполнителя на ион-проводящие свойства ионных конденсированных систем носит универсальный характер в том смысле, что изменения ион-проводящих свойств наблюдаются как в жидкофазных ионных растворах и расплавах [1-4], так и в ионных стеклах [5-7] и ионных кристаллах [8-10]. С момента опубликования работы Лианга [11], в которой впервые был обнаружен эффект увеличения ионной проводимости соли при гетерогенном наполнении инертным оксидом, в литературе появилось много работ, посвященных изучению этого явления. В основном в них в качестве твердого наполнителя использовались порошки оксидов металлов микроскопических размеров. Вместе с тем недавние исследования показали [8], что эффект гетерофазного наполнения ионных систем зависит от размера частиц твердого наполнителя, а в случае наноразмерных частиц оксида в силу особых поверхностных свойств наночастицы подобные нанокомпозитные системы приобретают особые свойства. Поэтому дальнейшие исследования нанокомпозиционных ионных систем имеют важное прикладное значение в связи с поиском новых твердых

электролитов для использования в различных электрохимических устройствах.

Ионный проводник — система, в которой перенос заряда осуществляется катионами, анионами или более сложными заряженными частицами. Совершенно очевидно, что перемещение заряженной частицы в ионной системе сопровождается структурными изменениями в ее локальном окружении вследствие нарушения компенсации электростатических сил взаимодействия с ближайшими соседями, т.е. микроструктура ионной системы непрерывно изменяется в результате трансляционных и ориентационных движений кинетических единиц. Поскольку эти движения в конденсированной среде осуществляются в пикосекундных временных интервалах, для изучения подобных процессов принципиально важно выбрать экспериментальные методы исследования, способные фиксировать динамические процессы, протекающие в указанных временных интервалах. С этих позиций наиболее информативным и в плане получения сведений о структурно-динамических свойствах и релаксационных процессах, протекающих в ионном проводнике, являются методы колебательной спектроскопии. Кроме того, структура и свойства частиц на границе раздела ионная соль-наночастица должны заметно отличаться от характерных для регулярного ионного кристалла, в том числе вследствие аморфизации ионной системы в межфазной области [8]. Поэтому создание динамической картины строения нанокомпозитных ионных систем требует проведения комплексных исследований с привлечением методов рентгенодифракционного (XRD) анализа, дифференциального термического анализа (ДТА) и колебательной спектроскопии.

Целью настоящей работы является исследование структурных и динамических особенностей нитрата лития, "наполненного" порошком оксида алюминия: (1 - x)LiNO₃ + xAl₂O₃, направленное на получение детальной информации о микроструктуре, характере межчастичных динамических взаимодействий и релаксационных процессах в таких системах при различных температурах нанокомпозиционного твердого электролита в широком интервале концентраций x нанопорошка Al₂O₃.

Нитрат лития LiNO₃ имеет ромбоэдрическую структуру кальцита [12]. Температура плавления составляет 255°С. Как было показано в [13], проводимость чистого нитрата лития σ_0 изменяется от 10^{-14} до 10^{-5} S/cm в области температур 50–230°С. Допирование нитрата лития оксидом алюминия сопровождается резким возрастанием проводимости. Относительное увеличение проводимости в зависимости от концентрации в максимуме $\sigma/\sigma_0 = 2 \cdot 10^4$ и $1 \cdot 10^8$ при 140 и 70°С соответственно.

2. Эксперимент

Для синтеза композиционных электролитов на основе нитрата лития были взяты нанокристаллические оксиды алюминия с величиной удельной поверхности $120 \text{ m}^2/\text{g}$ и размером $\sim 15-25 \text{ nm}$. Синтез исследуемых образцов проводился по керамической методике [13]. Дегидратированный при 350°С нитрат лития тщательно перемешивался с оксидной добавкой в инертной атмосфере. Оксид алюминия также прогревался при 300°С в течение 2 h. Далее полученные смеси спекались при 350°С в течение 30 min, быстро охлаждались и запаивались в ампулы из пирекса.

Кривые ДТА измерялись на приборе синхронного термического анализа STA 449 F3 Jupiter ("NETZSCH") при скорости 10 К/тіп в атмосфере аргона и в алундовых тиглях. Обработка данных и интегрирование пиков проводились с помощью встроенных прикладных программ фирмы "NETZSCH". Абсолютные температуры и тепловые эффекты калибровались по стандартным веществам In и Pb.

Рентгеновские дифрактограммы образцов измерялись на дифрактометре XRD-7000 фирмы Shimadzu (Япония).

Образцы представляли собой мелкозернистый порошок, дополнительное истирание пробы не проводилось. Готовая проба в виде порошка помещалась в температурную приставку Anton-Paar TTK-450, где сначала в постоянном вакууме форвакуумного насоса она нагревалась до температуры 150°С и выдерживалась в течение часа для дополнительной дегидратации образцов, а затем после охлаждения до комнатной температуры проводились измерения.

Дифрактограммы записывались при следующих параметрах: схема фокусировки лучей стандартная (по Брэггу–Брентано), напряжение на трубке 30 kV, ток 30 mA, длина волны рентгеновского излучения $\lambda_{CuK_{\alpha}} = 1.5406$ Å; использовался никелевый фильтр на первичном пучке; осуществлялось сканирование в режиме $\theta - 2\theta$, диапазон 15–75°, шаг сканирования 0.01°, время экспозиции на одну точку 20 s.

Спектры комбинационного рассеяния (КР) чистой соли и композиционных систем измерялись на конфокальном КР-микроскопе Senterra при лазерном возбуждении ($\lambda = 785$ nm, мощность лазера 100 mW), апертура 50 × 1000 μ m, спектральный диапазон 75–1530 cm⁻¹ с разрешением 3–5 cm⁻¹, используемый объектив микроскопа 10×, число сканов 20, время интегрирования каждого скана 20 s. Для разделения сложных контуров КР на компоненты использовался программный пакет OPUS 6.0 фирмы Brukeroptics.

Температурные измерения проводились с использованием специальной нагревательной ячейки в диапазоне температур от 20 до 350°С.

3. Результаты и обсуждение

3.1. X R D - а н а л и з. На рис. 1 представлены порошковые дифрактограммы композитов (1 - x)LiNO₃ + xAl₂O₃ при x = 0.5 (*a*) и 0.7 (*b*), в которых были обнаружены наборы линий, соответствующих как фазе LiNO₃, так и фазе наноразмерного наполнителя Al₂O₃.

Из сводного графика видно, что с ростом концентрации порошка Al₂O₃ увеличивается значение фона, происходит увеличение полуширин пиков, падают разрешение и абсолютные значения интенсивностей пиков, увеличивается степень аморфности образцов.

Нанокомпозиты, судя по форме некоторых пиков и уровню фона, имеют определенную долю аморфности. Кроме того, уширение пиков во всем диапазоне измеренных углов указывает на уменьшение размера зерен в исследуемых порошках при добавлении значительного количества оксида алюминия. По-видимому, происходит дополнительное измельчение зерен порошка LiNO₃ при механическом перетирании его с наноразмерным Al₂O₃.

Из дифрактограммы, представленной на рис. 1, b, можно сделать вывод, что, несмотря на высокую концентрацию нанопорошка Al₂O₃ и высокую степень аморфности в образце с x = 0.7, в нем все же в небольшом количестве присутствует кристаллическая фаза LiNO₃.

Уменьшение интегральных интенсивностей пиков $LiNO_3$ с увеличением доли нанопорошка Al_2O_3 указывает на уменьшение объемной доли кристаллической фазы $LiNO_3$ по отношению к общей доле нитрата лития в составе композита.

Для этих композитов была оценена степень кристалличности (или степень аморфности образцов). Степень кристалличности для композита с x = 0.5 составила менее 60%, а для образца с x = 0.7 — менее 40%. Также были оценены размеры кристаллитов LiNO₃ в обоих образцах методом Дебая—Шеррера [14]. Для композита с x = 0.5 оценочные размеры микрокристаллитов составили 110–140 nm, для состава с x = 0.7 — 50–70 nm.

Рис. 1. Порошковые дифрактограммы нанокомпозитов (1 - x)LiNO₃ – xAl₂O₃ при x = 0.5 (*a*) и 0.7 (*b*) с наложением пиков LiNO₃ и Al₂O₃, взятых из базы ICDD PDF4+. 1 — пики LiNO₃, соответствующие карте PDF 04-010-5519, 2 — пики Al₂O₃, соответствующие карте PDF 00-056-0457.

3.2. Термический анализ. На рис. 2 представлены кривые ДТА для композитов (1 - x)LiNO₃ + xAl₂O₃ (x = 0, 0.15, 0.5, 0.7).

Температура фазового перехода нитрата лития, связанная с плавлением, практически не зависит от x и остается постоянной. В отличие от температуры соответствующая энтальпия фазового перехода (пропорциональная площади пика) резко уменьшается с ростом x. При $x \ge 0.7$ на кривой ДТА не наблюдается тепловой эффект, указывающий на присутствие в композите кристаллического нитрата лития. Вместе с тем параллельно с уменьшением энтальпии плавления кристаллического LiNO₃ на кривых ДТА появляется новый сильно уширен-

Рис. 2. Кривые ДТА композитов (1 - x)LiNO₃ – xAl₂O₃. x = 0 (1), 0.15 (2), 0.5 (3) и 0.7 (4).

ный пик в области 185°С, который может быть приписан аморфной фазе нитрата лития.

Таким образом, результаты термического анализа (так же как и рентгенодифракционные исследования) указывают на то, что в композитах LiNO₃-Al₂O₃ образуется аморфная фаза (для $x \ge 0.5$). Что касается теплового эффекта при 185°С, то он, скорее всего, связан с динамическими изменениями в аморфной фазе, обволакивающей наночастицу, а именно с замораживанием подвижности ион-ассоциированных комплексов, локализованных вблизи поверхности частиц твердого наполнителя. Отметим, что аналогичное явление наблюдалось в гетерофазных нитратных стеклах [6,15] в области температур, отвечающих переходу из переохлажденного в стеклообразное состояние.

3.3. Колебательная спектроскопия. Молекулярный анион NO_3^- (симметрия D_{3h}) характеризуется следующими колебаниями: $v_1(A)$ — валентное полносимметричное колебание (~ 1070 cm⁻¹), $\nu_2(B)$ – валентное асимметричное колебание ($\sim 820 \, \mathrm{cm}^{-1}$), $v_3(E)$ — дважды вырожденное колебание (~ 1300 cm⁻¹), $v_4(E)$ — дважды вырожденное колебание (~ 720 cm⁻¹). Нитраты одновалентных металлов имеют относительно низкую температуру плавления и сохраняют стабильное состояние в широком интервале температур. Точечная группа симметрии нитрат-иона зависит от симметрии окружающих его полей. В настоящей работе мы детально проанализировали форму контура $v_1(A)$ в спектре КР исследуемых систем. Выбор этой линии не случаен, она соответствует полносимметричному колебанию аниона NO₃⁻, обладает наиболее узкой зоной колебательных состояний из всех внутримолекулярных колебаний и потому наиболее чувствительна к изменениям силовых полей, возмущающих нитрат-ион в композиционных системах. Более того, указанная линия в спектре КР

_	-						
x (Al ₂ O ₃)	t, °C	ν , cm ⁻¹	δ , cm ⁻²	τ_{v} , ps	τ_c , ps	$\delta_h, \mathrm{cm}^{-1}$	$\delta_i,\mathrm{cm}^{-1}$
0	25	1071.83	4.74	2.39	0.19	3.34	2.51
	150	1070.2	6.28	1.83	0.145	5.1	2.78
	280	1063.2	25.8	0.5	0.045	19.8	9.37
0.5	25	1071.23 1063.23	5.5 22	2.07 0.59	0.165 0.055	4.3 16.1	2.57 9.55
	150	1070 1063.3	6.78 23.3	1.71 0.55	0.135 0.045	5.54 20	3.0 4.2
	260	1064.4 1062.5	24.2 26.6	0.58 0.51	0.075 0.045	14.9 18.17	12.25 10.2
0.7	25	1071.5 1063.2	9.45 26	1.37 0.6	0.095	5.46 0	5.87 26
	160	1070 1062.2	8.85 27.11	1.31 0.57	0.1	7.81 0	3.11 27.1
	260	1063 1061.1	23.3 28.56	0.67 0.51	 0.07	0 16.8	23.28 14.4

Спектральные и релаксационные характеристики колебания $v_1(A'_1)$ нитрат-иона в композитах $(1 - x)LiNO_3 - xAl_2O_3$

является резкополяризованной, и форма его контура всецело определяется процессами колебательной релаксации NO_3^- .

При этом мы исходили из того, что композиционные твердые электролиты — неупорядоченные системы с достаточно развитой ориентационной и трансляционной подвижностью кинетических единиц, и потому причины, обусловливающие релаксацию колебательных возбуждений молекулярного иона, в них близки к таковым в жидкой фазе. Поэтому при расчетах релаксационных характеристик мы сочли возможным применить к исследуемым объектам известные выводы теории ширины колебательных полос в спектрах жидких систем.

Из теории известно, что описание динамики релаксационных процессов в конденсированных средах проводится с использованием временны́х корреляционных функций (ВКФ), обозначаемых $G_i(t)$ [16]. Колебательная ВКФ $G_{vib}(t)$ может быть представлена как Фурье-образ нормированных компонент изотропного контура $I_{iso}(v)$ в следующем виде [17]:

$$G_{\rm vib}(t) = \frac{1}{I_{\rm int}} \int_{-\infty}^{+\infty} I_{\rm iso}(\nu) \exp(2\pi i c \nu t) d\nu.$$
(1)

Из формулы (1) мы можем определить время колебательной релаксации как $au_{
u} = \int_{0}^{+\infty} G_{
u}(t) dt.$

Получение информации о процессах колебательной релаксации в ионных системах основывается на анализе изотропных компонент поляризованных линий, соответствующих полносимметричным колебаниям молекулярных ионов. При этом форма изотропного контура в спектре КР связана как с адиабатическими процессами, приводящими только к дефазировке колебаний, так и с неадиабатическими взаимодействиями, при которых энергия колебательного возбуждения молекулярного иона передается ближайшим соседям в результате соударений и столкновений. Поскольку в ионных системах ближайшими соседями молекулярного аниона являются катионы, очевидно, вероятность резонансного обмена энергией колебательного возбуждения между анионами ничтожно мала, и потому можно считать, что основной причиной релаксации колебательных возбуждений NO₃⁻ является колебательная дефазировка.

Дефазировка колебаний молекулярного иона в ионной системе может произойти по двум главным причинам: 1) вследствие упругих столкновений с ближайшими соседями за счет случайных изменений расстояний и углов между частицами при неизменном характере самого локального окружения: 2) в результате диффузионного перехода молекулярного иона в "новое" локальное положение. Эти процессы в ионных конденсированных системах протекают с различными скоростями, обусловливая однородное и неоднородное уширение изотропных полос спектра КР [16]. Полная ВКФ с учетом однородного и неоднородного уширения может быть записана в следующем виде:

гле

$$G_{\rm vib}(t) = F_h(t)F_i(t), \qquad (2)$$

$$F_{h}(t) = \exp\left\{-\Delta\omega_{h}^{2}[\tau_{c}^{2}(e^{-t/\tau_{c}}-1)+\tau_{c}t]\right\},$$
 (3)

$$F_i(t) = \exp\left\{-\frac{1}{2}\Delta\omega_i^2 t^2\right\}.$$
(4)

Функции $F_h(t)$ и $F_i(t)$ характеризуют скорости фазовой модуляции частоты; $\Delta \omega_h^2$ и $\Delta \omega_i^2$ — средние квадраты флуктуации частоты, вызванные указанными выше процессами, τ_c — время корреляции. Из уравнений (2)–(4) с использованием экспериментально найденных значе-

Рис. 3. Спектры КР композитов (1 - x)LiNO₃-xAl₂O₃ в области полносимметричного валентного колебания нитрат-иона и результаты их разложения на компоненты с частотами $v_1 \sim 1070$ (1) и ~ 1065 cm⁻¹ (2). T, °C: a - 254, b - 150, c - 260.

ний $G_{\rm vib}(t)$, а также с учетом того, что второй спектральный момент изотропного контура $M_{\rm vib}(2) = \Delta \omega_h^2 + \Delta \omega_i^2$, были оценены значения $\Delta \omega_h^2$, $\Delta \omega_i^2$ и τ_c путем подбора параметров (2)–(4) методом наименьших квадратов. Исходя из значений величин $\Delta \omega_h^2$ и $\Delta \omega_i^2$ были оценены вклады однородного $\delta_h = 4\pi c \Delta \omega_h^2 \tau_c$ и неоднородного $\delta_i = 2(2\ln 2)^{1/2} \Delta \omega_i$ уширения линии $\nu_1(A)$ в спектре КР композитов нитрата лития различного состава при разных температурах и фазовых состояниях.

Переходя к анализу результатов спектроскопического эксперимента, прежде всего отметим явно выраженное сложное строение контура полосы $\nu_1(A)$ в спектрах КР композита (рис. 3).

Это подверждает высказанное выше предположение о формировании в структуре композита аморфной фазы. Поэтому низкочастотную компоненту $v_1 \sim 1065 \text{ cm}^{-1}$, интенсивность которой сильно увеличивается с ростом концентрации наночастиц оксида алюминия, мы приписываем колебаниям нитрат ионов, локализованных в приповерхностной области частиц наполнителя. Кроме того, для композитов с x = 0.7 на температурных зависимостях частот и полуширин линии $v_1(A'_1)$ в окрестности температуры 185° С заметен небольшой излом (рис. 4), что также согласуется с высказанным выше предположением о возможных динамических изменениях аморфной подсистемы композита при этих температурах. Результаты расчетов, полученные на основе анализа соответствующих ВКФ колебательной релаксации компонент моды $v_1(A'_1)$ в спектрах КР композитов различного состава, систематизированы в таблице.

Как видно из таблицы, для чистого нитрата лития в релаксацию колебательных возбуждений молекулярного аниона (в твердой и жидкой фазе) одновременно вносятся вклады, связанные с "быстрой" и "медленной" модуляцией соответствующей частоты колебания. Иными словами, контур полосы формируется как за счет динамических взаимодействий NO₃⁻ с ближайшими соседями (однородное уширение), так и в результате крупномасштабных структурных корреляций, обусловленных переходом молекулярного аниона из одного локального состояния в другое (неоднородное уширение контура колебательной полосы). Что касается композитов, наночастицы твердого наполнителя вносят существенные изменения в картину динамических взаимодействий в них. Особенно это заметно для композита состава с x = 0.7, в спектре КР которого низкочастотная компонента имеет чисто гауссову форму.

Это означает, что релаксация колебательных возбуждений соответствующей компоненты в основном осуществляется в результате относительно медленных

Рис. 4. Зависимости частот ν и полуширин δ компонент $\nu_1 \sim 1070 \text{ cm}^{-1}$ (*a*) и $\sim 1065 \text{ cm}^{-1}$ (*b*) в композитах (1 - x)LiNO₃ – *x*Al₂O₃ от температуры.

изменений микроструктуры аморфной фазы. Логично предположить, что причиной сбоя фазы колебательной моды $v_1(A)$ нитрат-иона в приповерхностной области наночастицы являются, в том числе, динамические взаимодействия аниона с самой наночастицей.

В рамках выявленных выше структурно-динамических особенностей нанокомпозитов нитрата лития удается объяснить наблюдавшееся в эксперименте [8] увеличение ионной проводимости в них. На самом деле частицы твердого наполнителя в какой-то степени "связывают" анионную подсистему, обволакивая себя аморфной оболочкой. Это обстоятельство способствует разрушению имеющихся в ионной системе ион-ассоциированных комплексов и росту концентрации катионов, участвующих в переносе заряда. Иными словами, нанокомпозит можно представить как некую сильно неупорядоченную "квазирешетку", в "узлах" которой расположены наночастицы с облочкой из аморфного нитрата лития, а пространства между ними (условно "междоузлия") становятся каналами облегченного протекания ионного тока. Следует отметить различие причин, обусловливающих рост электропроводности в нанокомпозитах и гетерофазных ионных системах (системы, наполненные частицами микроскопических размеров). Оно заключается в том, что в гетерофазных системах межфазная область с поверхностью микрочастицы становится зоной

облегченного переноса анионов [6], в то время как в нанокомпозитах наночастицы "замораживают" анионную подсистему. При этом в обоих случаях анионы, локализованные на поверхности частиц оксида алюминия, создают дополнительный градиент электрического поля для трансляционных перескоков катионов.

4. Заключение

Таким образом, показано, что композитах в (1-x)LiNO₃ + xAl₂O₃ образуется аморфная фаза (для $x \ge 0.5$), тепловой эффект которой регистрируется при 185°С. В спектре КР гетерогенной системы дополнительная обнаруживается компонента с максимумом при $\nu_1 \sim 1065 \,\mathrm{cm}^{-1}$, которая соответствует колебаниям нитрат-ионов, локализованных в приповерхностной области частиц наполнителя. По результатам расчетов молекулярно-релаксационных характеристик колебания $v_1(A'_1)$ нитрат-иона можно сделать вывод, что частицы твердого наполнителя в какой-то степени "связывают" анионную подсистему, обволакивая себя аморфной оболочкой. Это обстоятельство способствует разрушению имеющихся в ионной системе ионассоциированных комплексов и росту концентрации катионов, участвующих в переносе заряда.

Список литературы

- [1] A.J. Bhattacharyya, J. Maier. Adv. Mater. 16, 811 (2004).
- [2] M. Mizuhata, S. Inagaki, Sh. Deki. ECS Trans. 2, 31 (2007).
- [3] C. Pfaffenhuber, M. Gobel, J. Popovic, J. Maier. Phys. Chem. Chem. Phys. 15, 18 318 (2013).
- [4] М.М. Гафуров, К.Ш. Рабаданов, М.Б. Атаев, А.М. Амиров. ЖПС 80, 78 (2013).
- [5] В.Д. Присяжный, Ю.В. Косов, Г.Г. Яремчук. Укр. хим. журн. 53, 1143 (1987).
- [6] М.М. Гафуров, К.Ш. Рабаданов. ЖСХ 50, 262 (2009).
- [7] М.М. Гафуров, К.Ш. Рабаданов. ЖПС 76,176 (2009).
- [8] Н.Ф. Уваров, А.С. Улихин, Ю.Г. Матейшина. Химия в интересах устойчивого развития. **20**, 95 (2012).
- [9] М.М. Гафуров, К.Ш. Рабаданов, М.Б. Атаев, А.Р. Алиев, А.М. Амиров, З.Ю. Кубатаев. ЖСХ 56, 481 (2015).
- [10] P.S. Anantha, K. Hariharan. J. Phys. Chem. Solids 64, 1131 (2003).
- [11] C.C. Liang. J. Electrochem. Soc. 120, 1289 (1973).
- [12] А.И. Ефимов, Л.П. Белорукова, И.В. Василькова, В.П. Чечев. Свойства неорганических соединений. Справочник. Химия, Л. (1983). 392 с.
- [13] N.F. Uvarov, E.F. Hairetdinov, I.V. Skobelev. Solid State Ionics 86–88, 577 (1996).
- [14] W.W. Beeman, P. Kaesberg, J. W. Anderegg, M.B. Webb. In: Encyclopedia of physics. V. 32 / Ed. S. Flugge. Springer-Verlag (1957). P. 321.
- [15] M.M. Gafurov, A.R. Aliev, M.B. Ataev, K.Sh. Rabadanov. Spectrochim. Acta A 114, 563 (2013).
- [16] В.Е. Погорелов, А.И. Лизенгевич, И.И. Кондиленко. УФН 127, 683 (1979).
- [17] T. Kato, T. Takenaka. Mol. Phys. 46, 257 (1982).