Зонная структура и диэлектрическая проницаемость соединения TIGaTe₂

© Э.М. Годжаев, Г.С. Оруджев, Д.М. Кафарова

Азербайджанский технический университет, Az1073 Баку, Азербайджан E-mail: Dilara-22@mail.ru

(Поступила в Редакцию 17 июля 2003 г.)

Приведены результаты расчета зонной структуры TIGaTe₂ методом псевдопотенциала. Определена спектральная зависимость мнимой и вещественной частей комплексной диэлектрической проницаемости при поляризации, параллельной и перпендикулярной оптической оси кристалла.

Тройное соединение TlGaTe₂ принадлежит к полупроводникам типа TlSe. Это наименее изученный представитель тройных аналогов селенида таллия, кристаллизующийся в его структуре, т.е. в структуре с тетрагональной объемно центрированной решеткой и группой симметрии $D_{4h}^{18}(I4/mcm)$. Ширины запрещенной зоны TlGaTe₂, определенные в работах [1,2] с помощью электрических измерений, сильно различаются: 1.2 [2] и 2.3 eV [1]. В [1] получен также температурный коэффициент ширины запрещенной зоны ($-3.14 \cdot 10^{-4}$ eV/K).

Общим для всех соединений указанного выше типа является то обстоятельноство, что они представляются как соединения одновалентного Tl^+ с соответствующими анионными радикалами и состоят из трехвалентных металлов и халькогенов: $Tl^+(M^{3+}X_2^2)$. Для $TlGaTe_2$ атомы Ga и их ближайшее окружение — 4 атома Te — образуют цепи вдоль тетрагональной оси c. Тетрагональная ось является оптической осью. Одновалентные атомы Tl^+ имеют октаэдрическое окружение из восьми атомов Te. Рассматриваемые соединения являются полупроводниками, их полупроводниковые свойства объясняются на основе модели химической связи Мозера и Пирсона [3].

Зонная структура TlGaTe₂ впервые рассчитана в [4] методом эмпирического псевдопотенциала. Формфакторы атомных псевдопотенциалов были вычислены с использованием аналитического выражения, предложенного в работе [5]. Расчеты показали, что потолок валентной зоны расположен в высокосимметричной точке T (0, $2\pi/a$, 0) на границе зоны Бриллюэна (3Б), а дно зоны проводимости — на линии D (π/a , π/a , k) также на границе 3Б. Авторы пришли к выводу, что для соединения TlGaTe₂ прямой переход является запрещенным согласно правилам отбора.

Таблицы характеров неприводимых и двузначных неприводимых представлений групп волновых векторов пространственной группы $D_{4h}^{18}(I4/mcm)$ получены в работе [6]. Здесь же приводятся условия совместности неприводимых представлений простых групп и двузначных групп D_{4h}^{18} , а также вид ЗБ для объемно центрированной тетрагональной решетки (с отношением осей c/a < 1) (рис. 1).

Нами проведен расчет зонной структуры соединения TlGaTe₂ методом псевдопотенциала. Нелокальные ионные псевдопотенциалы в конфигурационном пространстве строились по схеме, предложенной в работе [7]. При расчете зонной структуры данного соединения экранирование ионного заряда, а также обменно-корреляционные эффекты учитывались в рамках диэлектического формализма по модели Хаббарда-Шэма с некоторым выборочным распределением раряда вокруг каждого иона. Использовано около 1800 плоских волн в разложении волновой функции. При этом максимальная кинетическая энергия учитываемых плоских волн составляла 16 Ry.

Параметры решетки a = 8.429(6) Å, c = 6.865(4) Å и параметр халькогена x = 0.170 взяты из работы [8].

На основании данных рис. 2, где представлена зонная структура TlGaTe₂, можно сделать следующие основные выводы.

1) Потолок валентной зоны находится в высокосимметричной точке T на поверхности ЗБ и соответствует неприводимому представлению T_3 , а дно зоны проводимости расположено на линии D посередине между

Рис. 1. Зона Бриллюэна объемно центрированной тетрагональной решетки TlGaTe₂.

Рис. 2. Зонная структура соединения TlGaTe₂.

точками $P(\pi/a, \pi/a, \pi/c)$ и $N(\pi/a, \pi/a, 0)$, что отвечает неприводимому предствалению D_1 . Наименьший по энергии прямой переход осуществляется между состояниями T_3 и T_4 и запрещен в дипольном приближении. Ширина запрещенной зоны, полученной на основе расчетов, составляет 0.86 eV.

2) Валентные зоны условно можно разделить на три группы. Самая нижняя, состоящая из четырех зон группа около -11 eV своим происхождением обязана 5s-состояниям Те. Другая группа из четырех зон в области -(4-6) eV в основном обусловлена 6s-состояниями атомов Tl и 4s-состояниями атомов Ga. Верхняя группа из десяти зон в области 0-4 eV в основном образована из 5p-состояний атомов Te, 6p-состояний атомов Tl и 4p-состояний атомов Ga. Наши данные о происхождении зон согласуются с результатами работы [9], где изучены фотоэмиссионные спектры, а также медотом присоединенных плоских волн рассчитана зонная структура TlGaTe₂. Однако в этой зонной картине реализуется перекрытие валентной зоны с зонной проводимости, что противоречит экспериментальным фактам.

Теоретический вывод работы [4] о том, что в верхней части валентной зоны полупроводникового соединения TlGaTe₂ имеется изолированная группа из двух зон, в настоящей работе, а также в работе [9] не подвержден. По-видимому, это связано с некорректным учетом экранирования пвевдопотенциала, присущим эмпирическому методу.

Оптические свойства TlGaTe₂ изучены недостаточно. В связи с этим нашей целью являлось теоретическое исследование некоторых оптических свойств данного соединения. Для этого нами были проведены расчеты мнимой и вещественной частей комплексной диэлектрической проницаемости, а также эффективного числа валентных электронов при поляризации, параллельной и перпендикулярной оптической оси.

При определении частотной зависимости мнимой части комплексной диэлекрической проницаемости мы использовали соотношение [10]

$$\varepsilon_{i}(\omega) = \frac{4\pi^{2}e^{2}}{m_{e}^{2}\omega^{2}} \sum_{v_{i}c} \int_{zB} \frac{2d^{3}k}{(2\pi)^{3}} |\mathbf{e}\mathbf{M}_{cv}(\mathbf{k})^{2}| \delta(E_{c}(\mathbf{k}) - E_{v}(\mathbf{k})\hbar\omega).$$
(1)

Здесь

$$\begin{split} \mathbf{e}\mathbf{M}_{cv}(\mathbf{k}) &= \langle \psi_{c\mathbf{k}}(\mathbf{r}) \big| \mathbf{e}\mathbf{p} \big| \psi_{v\mathbf{k}}(\mathbf{r}) \rangle \\ &= \mathbf{e} \int \psi_{c\mathbf{k}}^*(\mathbf{r}) (-i\hbar\nabla) \psi_{v\mathbf{k}}(\mathbf{r}) d^3r, \end{split}$$

где интеграл в правой части обозначает матричный элемент оператора импульса $\mathbf{p} = -i\hbar\nabla$; индексы v и c нумеруют состояния валентной зоны и зоны проводимости соответственно; \mathbf{k} — волновой вектор; \mathbf{e} — единичный вектор поляризации. Интегрирование проводится по объему элементарной ячейки кристалла.

В (1) интегрирование по ЗБ мы заменили суммированием в элементарной ячейке обратной решетки. При этом элементарная ячейка была разделена на восемь равных по объему частей; в них случайным образом выбирались точки **k**. Всего взято 1280 точек, в результате чего получилась плавная гистограмма. Затем эта гистограмма нормировалась по формуле

$$\int_{0}^{\infty} \omega \varepsilon_i(\omega) d\omega = \frac{\pi}{2} \, \omega_p^2 = \frac{\pi}{2} \, \frac{4\pi n_e e^2}{m_e},$$

где ω_p — плазменная частота для электронов, m_e — масса электрона, n_e — средняя плотность электронов в кристалле. Расчет показывает, что $\hbar \omega_p = 14.25$ eV.

Гистограмма строилась с шагом $\approx 0.2 \text{ eV.}$ Рассматривались все переходы $v \to c$ с энергией до 15 eV. В окрестности 15 eV зависимость $\varepsilon_i(\omega)$ экстраполировалась известной формулой $\varepsilon_i(\omega)|_{\omega\to\infty} \sim \frac{1}{\omega^3}$.

Вещественная часть диэлектриеской проницаемости вычислена из интегрального диспенсионного соотношения Крамерса–Кронига

$$\varepsilon_r(\omega) = 1 + \frac{2}{\pi} P \int_0^\infty \omega' \varepsilon_2(\omega') \frac{d\omega'}{\omega'^2 - \omega^2}.$$
 (2)

Здесь символом *P* обозначен интеграл в смысле главного значения.

Эффективное число валентных электронов на атом, участвующих в переходах с энегией $E \leq \hbar \omega$, определено как

$$n_{\rm eff} = \frac{m_e}{2\pi^2 e^2} \frac{1}{n_a} \int_0^\omega \varepsilon_i(\omega') \omega' d\omega', \qquad (3)$$

где n_a — плотность атомов в кристалле.

Рис. 3. Спектральная зависимость мнимой ε_i (1) и вещественной ε_r (2) частей диэлектрической проницаемости, а также эффективного числа валентных электронов на атом n_{eff} (3) соединения TIGaTe₂ для поляризаций **e** || **c** (*a*) и **e** \perp **c** (*b*).

Результаты расчетов указанных выше оптических функций в области энергий 0-12 eV приведены на рис. 3. Максимум основного пика в спектре $\varepsilon_r(\omega)$ при поляризации $\mathbf{e} \parallel \mathbf{c}$ находится при энергии $\approx 2.72 \text{ eV}$, при $\mathbf{e} \perp \mathbf{c}$ — при энергии $\approx 2.50 \text{ eV}$, а в спектре $\varepsilon_i(\omega)$ при $\mathbf{e} \parallel \mathbf{c}$ максимум соответствует $\approx 1.85 \text{ eV}$, при $\mathbf{e} \perp \mathbf{c} \approx 1.19 \text{ eV}$. В спектре $\varepsilon_i(\omega)$ при поляризации $\mathbf{e} \perp \mathbf{c}$ имеются еще два пика с энергиями $\approx 1.63 \text{ eV}$ и $\approx 3.37 \text{ eV}$. При поляризации $\mathbf{e} \parallel \mathbf{c}$ эти дополнительные пики расположены при энергиях $\approx 2.28 \text{ eV}$ и $\approx 3.81 \text{ eV}$, но они слабо выражены. Эффективное число n_{eff} валентных электронов, участвующих в переходах с энергией меньше 12 eV, равно 3 при обеих поляризациях. При больших энергиях оно, как и следовало ожидать, стремится к 4.5.

Максимальное значение ε_i при поляризации **е** || **с** \approx 25.29, а при **е** \perp **с** \approx 15.40. Такое различие характерно для цепочечных кристаллов с сильной анизотропией. $\varepsilon_r(0) = 12.59$ при поляризации **е** || **с** и $\varepsilon_r(0) = 13.14$ при **е** \perp **с**.

Наши теоретические результаты нашли качественное согласие с экспериментальными данными по оптическим свойствам для TISe [11].

Авторы благодарят Ф.М. Гашимзаде за постоянное внимание и полезные советы.

Список литературы

 G.D. Guseinov, G.B. Abdullaev, S.M. Bidzinova, F.M. Seidov, M.Z. Ismailov, A.M. Pashaev. Phys. Lett. A 33, 27, 421 (1970).

- [2] G.D. Guseinov, A.M. Ramazanzade, E.M. Kerimova, H.Z. Ismailov. Phys. Stat. Sol. 22, 2, k117 (1967).
- [3] E. Mooser, W.B. Pearson. J. Electron. 1, 6, 629 (1956).
- [4] Ф.М. Гашимзаде, Г.С. Оруджев. Докл. АН АЗССР XXXVI, 12, 18 (1980).
- [5] О.В. Константинов, Ш.К. Насибуллаев, М.М. Панахов. ФТП 11, 5, 881 (1977).
- [6] Ф.М. Гашимзаде. ФТТ **2**, *12*, 3040 (1960).
- [7] G.B. Bachelet, D.R. Hamann, M. Schluter. Phys. Rev. B 26, 8, 4199 (1982).
- [8] D. Muller, G. Eulenberger, H. Hahn. Z. Anorg. Allg. Chem. 398, 207 (1973).
- [9] K. Okazaki, K. Tanaka, J. Matsuno, A. Fujimori, L.F. Mattheiss, S. Iida, E. Kerimova, N. Mamedov. Phys. Rev. B 64, 045 210 (2001).
- [10] Ю.И. Уханов. Оптические свойства полупроводников. Наука, М. (1977). 366 с.
- [11] Л.Л. Януленис, Г.А. Бабонас, М.А. Низаметдинова, Г.С. Оруджев, А.Ю. Шилейка. Литов. физ. сб. XXII, 3, 63 (1982).