Люминесценция дефектов в кремниевых $p^+ - n$ -переходах

© Р.В. Кузьмин*[¶], Н.Т. Баграев*+, Л.Е. Клячкин*, А.М. Маляренко*

*Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

⁺ Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

(Получена 5 марта 2015 г. Принята к печати 13 марта 2015 г.)

Исследуются сверхмелкие p^+ -*n*-переходы, полученные в рамках кремниевой планарной технологии, основанной на кратковременной неравновесной диффузии бора из газовой фазы в подложки *n*-Si (100) после их предварительного окисления и вскрытия окон в SiO₂ с помощью электронной литографии и реактивного ионного травления. Измеренные спектры электро- и фотолюминесценции демонстрируют излучение в диапазоне 1–1.6 мкм, что свидетельствует о наличии большой концентрации дефектов, возникающих, вероятно, вследствие аморфизирующего действия ионов на стадии травления.

1. Введение

Получение эффективных источников излучения на основе полупроводниковых материалов остается актуальной задачей на протяжении последнего столетия, начиная с открытия электролюминесценции и до настоящего времени. В этот период благодаря интенсивным исследованиям были синтезированы основные материалы, используемые в современной оптоэлектронике, созданы светодиоды, обнаружено индуцированное излучение, экспериментально реализованы гетеропереходы, что привело к созданию эффективных светодиодов и лазеров. Все эти приборы производятся на основе прямозонных полупроводниковых систем, однако в последнее время возможности оптоэлектроники распространились также на материалы с непрямыми переходами [1]. Таким образом. появились реальные перспективы к реализации достаточно старой мечты, чтобы кремний стал не только основным материалом микроэлектроники, но и источником эффективного излучения. При этом создание полностью совместимого с планарной кремниевой технологией эффективного источника излучения позволило бы совершить большой скачок в развитии всей отрасли микро- и наноэлектроники, поскольку в этом случае была бы решена довольно острая проблема замены устаревших медных соединений в чипах процессоров на оптические волокна [2].

Поэтому люминесценция из кремния традиционно вызывает большой интерес [3]. Однако монокристаллический кремний является непрямозонным полупроводником и обычно считается непригодным для генерации оптического излучения из-за большого времени излучательной рекомбинации, которое на много порядков превышает время безызлучательной рекомбинации [1]. Одним из путей решения этой проблемы является введение в кремниевую полупроводниковую матрицу дефектов, которые способны образовывать оптически активные центры, излучающие в области 1.5 мкм [4,5]. Причем именно такая дефектная люминесценция привлекает к себе особое внимание, поскольку ее спектральный диапазон соответствует области минимальных потерь оптического волокна, что важно для интеграции источников излучения в оптические системы передачи данных.

Существуют различные способы введения оптически активных дефектов в кремниевую полупроводниковую матрицу. Основными из них являются деформация, ионная имплантация, перекристаллизация с помощью лазерного облучения, метод прямого сращивания двух кремниевых пластин [5–8]. Данные методы приводят к формированию протяженных или точечных дефектов с оптически активными центрами, которые проявляют себя через люминесценцию в спектральном диапазоне 1.2–1.7 мкм.

В предыдущих работах мы показали, что планарная кремниевая технология может быть использована для получения квантово-размерных кремниевых p^+ -*n*-гетеропереходов, излучающих в видимом и ближнем инфракрасном диапазонах [9,10]. В данной работе демонстрируется, как небольшое изменение технологии даже на стадии, предшествующей процессу легирования, способно привести к кардинальному изменению спектров люминесценции формируемых кремниевых структур.

2. Методика получения структур

Формирование квантово-размерных кремниевых p^+ —*n*-гетеропереходов, исследованных в работах [9,10], основано на процессах локального самоупорядочения первичных и вторичных дефектов, которые возникают вследствие анизотропии диффузии собственных атомов решетки, а также примесных атомов при их внедрении в полупроводниковую матрицу. Известно [11,12], что генерация избыточных потоков собственных дефектов процессе формирования последнего на поверхности монокристаллического кремния. При этом генерируемые потоки собственных межузельных атомов и вакансий имеют выделенное кристаллографическое направление

[¶] E-mail: roman.kuzmin@mail.ioffe.ru

соответственно вдоль осей (111) и (100) [13]. Это обстоятельство приводит к тому, что вблизи границы раздела кремний-окисел формируется наноструктурированный слой, состоящий из микродефектов с минимальным размером ~ 2 нм, содержащих межузельные атомы кремния [10]. После предварительного окисления, а также процессов фотолитографии и травления в рамках кремниевой планарной технологии имеется возможность реализовать режим ускоренной диффузии легирующей примеси из газовой фазы, стимулируя обменное взаимодействие примесного атома с собственным межузельным атомом или вакансией в условиях дополнительной подпитки кислородом [13]. Особый интерес представляет реализация режима резкого торможения примесной диффузии в случае полной аннигиляции собственных дефектов, имеющем место при паритете kick-out и вакансионного механизмов диффузии [13]. Именно в условиях данного режима осуществлялась кратковременная диффузия бора, обеспечивающая пассивацию оборванных связей и формирование квантоворазмерных кремниевых p^+ -*n*-гетеропереходов [11,13].

Для создания квантово-размерных кремниевых p^+ -*n*-гетеропереходов, а также кремниевых структур, исследуемых в данной работе, использовались подложки *n*-Si (100) толщиной 350 мкм с удельным сопротивлением 20 Ом · см, которые окислялись при температуре 1150°C в атмосфере сухого кислорода, содержащей пары CCl₄. Для проведения кратковременной диффузии бора в слое окисла с помощью фотолитографии химическим способом вытравливались окна. Диффузия проводилась из газовой фазы при температуре 900°C, которая обеспечивает паритет между различными механизмами диффузии и соответственно минимизацию глубины диффузионного профиля (~ 10 нм) [11,13].

Как было показано, прямое смещение, прикладываемое к квантово-размерным кремниевым p^+ -*n*-гетеропереходам, приводит к интенсивному излучению в видимом и ближнем инфракрасном спектральных диапазонах [9,10]. Причем излучение возникает в области диффузионного профиля глубиной не более 10 нм.

Методика получения кремниевых p^+ -*n*-переходов, исследованных в настоящей работе, была полностью идентична описанной выше за исключением одной детали. Процесс фотолитографии и последующего химического травления окон в окисленных пластинах кремния (100) *n*-типа проводимости был заменен электронной литографией с последующим реактивным ионным травлением.

3. Результаты и их обсуждение

Как известно [14], реактивное ионное травление обладает многими преимуществами по сравнению с химическим травлением, как например высокая анизотропность. Однако ионы, обладающие большой энергией, способны проникать не только в область, подвергаемую травле-

Рис. 1. Спектр ЭЛ кремниевых p^+ -*n*-переходов, измеренный при температуре 77 К и величине прямого тока 150 мА. На вставке — спектр ЭЛ квантово-размерных кремниевых p^+ -*n*-гетеропереходов при T = 77 К.

нию, но и в прилегающие к ней, тем самым аморфизируя верхние несколько десятков нанометров структуры.

Варьируя параметры плазмы, можно изменить скорость травления и уменьшить негативное воздействие ионов. Однако в случае реактивного ионного травления кремниевого окисла в рамках технологии получения квантово-размерных кремниевых *p*⁺-*n*-гетеропереходов это является трудно осуществимым вследствие очень малой толщины наноструктурированного слоя на поверхности кремния, значительно сильнее подверженного внешним воздействиям. Как результат, ионы с легкостью аморфизирует слой, находящийся непосредственно под окислом. Так как именно этот наноструктурированный слой, пассивированный бором, вносит основной вклад в формирование спектров электролюминесценции (ЭЛ) квантово-размерных кремниевых p^+ -*n*-гетеропереходов, результат реактивного ионного травления непосредственно проявляется в резком изменении спектра электролюминесценции (рис. 1). Для сравнения спектр ЭЛ квантово-размерных кремниевых *p*⁺-*n*-гетеропереходов, полученных в условиях фотолитографии и последующего химического травления, показан на вставке к рис. 1.

Как видно из рисунка, излучение кремниевых структур, полученных с помощью электронной литографии и последующего реактивного ионного травления, характеризуется очень широкой полосой ЭЛ в спектральном диапазоне 1–1.6 мкм. Полоса имеет сильно асимметричную форму. Провал в области 1.39 мкм связан с поглощением излучения парами воды, содержащимися в воздухе, и не имеет отношения к излучению самой структуры.

Интенсивность электролюминесценции данной полосы более чем на порядок меньше интенсивности ЭЛ квантово-размерных кремниевых p^+ -*n*-гетеропереходов. Кроме того, в отличие от последних, электролюминесценция структур, исследованных в данной работе,

Рис. 2. Спектр ФЛ кремниевых p^+ —*n*-переходов, измеренный при температуре 77 К.

не обладает линейной поляризацией, а также испытывает большое температурное тушение, что приводит к полному отсутствию излучения при комнатной температуре.

Похожие спектры люминесценции неоднократно наблюдались ранее, например, для слоев аморфного кремния [15] или кремниевых светодиодов, полученных с помощью ионной имплантации [16]. Во всех описанных случаях возникновение широкой спектральной полосы связывалось с появлением большого количества энергетических уровней в запрещенной зоне кремния, связанных со структурными дефектами, создаваемыми в результате различных воздействий.

Помимо этого, в процессе кратковременной диффузии бора, осуществляемой после травления окисла, покрывающего поверхность кремния (100), и проводимой при температуре 900°С, возможна частичная перекристаллизация аморфизированного слоя, сопровождающаяся формированием нанокристаллов кремния. Пространственное ограничение носителей в таких нанокристаллах, возможно, объясняет наличие в наблюдаемой электролюминесценции излучения с энергиями, превышающими ширину запрещенной зоны кремния, 1.12 эВ (рис. 1).

Важным наблюдением является отсутствие излучения из исследуемых в данной работе кремниевых структур в видимом диапазоне длин волн. Это может быть связано как с наличием большого числа центров безызлучательной рекомбинации в аморфизированном слое, так и с полным или частичным нарушением механизма формирования квантово-размерных кремниевых p^+ -*n*-гетеропереходов, вызванным разрушающим действием ионов на стадии травления окисла.

Интересным дополнением к полученным спектрам электролюминесценции является спектр фотолюминесценции (ФЛ), представленный на рис. 2. В спектре присутствует линия излучения в области 1.5 мкм, напоминающая излучение из деформированного кремния [7,17]. Данный спектр ФЛ получен при возбуждении полупроводниковым лазером с излучением на длине волны 980 нм, которое способно глубоко проникать в объем кремния. По этой причине наблюдение фотолюминесценции в области 1.5 мкм может свидетельствовать в пользу того, что в процессе получения структур, изучаемых в настоящей работе, помимо аморфизированного верхнего слоя, возможно также формирование протяженных дефектов в более глубоких слоях. Причем образование дислокаций в образцах, подвергнутых ионной имплантации, наблюдалось и ранее [6]. Тем не менее природа центров, ответственных за возникновение электро- и фотолюминесценции в исследованных в настоящей работе кремниевых структурах, несомненно, требует дальнейшего изучения.

4. Заключение

Таким образом, мы изучили электро- и фотолюминесценцию из кремниевых структур, полученных по технологии, аналогичной использованной ранее для создания квантово-размерных кремниевых *p*⁺-*n*-гетеропереходов, но с изменением способа литографии и травления. Было обнаружено, что наноструктурированный слой, находящийся непосредственно под окислом и отвечающий за формирование ЭЛ кремниевых *p*⁺-*n*-гетеропереходов при его последующей пассивации бором, может быть легко разрушен при использовании реактивного ионного травления предварительно окисленных кремниевых пластин (100) п-типа проводимости. Как результат формируются кремниевые p^+ -*n*-переходы, спектры люминесценции которых в отличие от спектров квантово-размерных кремниевых *p*⁺-*n*-гетеропереходов, исследованных в работах [9,10], характеризуются наличием широкой полосы ЭЛ дефектов в диапазоне 1-1.6 мкм, а также полосы ФЛ в области 1.5 мкм. Полученные результаты показывают важность соблюдения технологии изготовления квантово-размерных кремниевых p^+ -*n*-гетеропереходов, а также, возможно, могут быть интересны с точки зрения создания источников излучения с широким спектральным диапазоном в рамках кремниевой планарной технологии.

Работа выполнена при поддержке программы фундаментальных исследований президиума РАН "Квантовые мезоскопические и неупорядоченные системы" (проект 10.4), 7-й Европейской рамочной программы (Marie Curie Actions PIRSES-GA-2009-246784 project SPINMET), а также в рамках государственного задания 2014 года СПбГПУ по теме "Методы взаимодействия гибридной инфраструктуры защищенных облачных вычислений и телематических систем киберобъектов" (код проекта 1963).

Список литературы

- [1] N. Daldosso, L. Pavesi. Laser & Photon. Rev., 3, 509 (2009).
- [2] L. Pavesi. J. Phys.: Condens. Matter, 15, R1169 (2003).
- [3] J.M. Shainline, J. Xu. Laser & Photon. Rev., 1 (4), 334 (2007).

- [4] H. Przybylinska, W. Jantsch, Yu. Suprun-Belevitch, M. Stepikhova, L. Palmetshofer, G. Hendorfer, A. Kozanecki, R.J. Wilson, B.J. Sealy. Phys. Rev. B, 4, 2532 (1996).
- [5] V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, W. Schröter. Appl. Phys. Lett., 84, 2106 (2004).
- [6] Н.А. Соболев, А.М. Емельянов, В.И. Сахаров, И.Т. Серенков, Е.И. Шек, Д.И. Тетельбаум. ФТП, 41, 555 (2007).
- [7] E.Ö. Sveinbjornsson, J. Weber. Appl. Phys. Lett. 69, 2686 (1996).
- [8] M. Kittler, M. Reiche, T. Arguirov, W. Seifert, X. Yu. Phys. Status Solidi A, 203, 802 (2006).
- [9] Н.Т. Баграев, Л.Е. Клячкин, Р.В. Кузьмин, А.М. Маляренко, В.А. Машков. ФТП, 46, 289 (2012).
- [10] Н.Т. Баграев, Л.Е. Клячкин, Р.В. Кузьмин, А.М. Маляренко, В.А. Машков. ФТП, 47, 1530 (2013).
- [11] N.T. Bagraev, W. Gehlhoff, L.E. Klyachkin, A. Naser. Def. Dif. Forum, 143–147, 1003 (1997).
- [12] W. Frank, U. Gosele, H. Mehrer, A. Seeger. *Diffusion in Crystalline Solids*, ed. by G.E. Murch, A.S. Nowick (Academic Press, N.Y., 1984).
- [13] N.T. Bagraev, E.I. Chaikina, L.E. Klyachkin, I.I. Markov, W. Gehlhoff. Superlat. Microstruct., 28, 337 (1998).
- [14] R.J. Shul, S.J. Pearton. Handbook of Advanced Plasma Processing Techniques (Springer, Berlin, 2000).
- [15] Sun Hong-Cheng, Xu Jun, Liu Yu, Mu Wei-Wei, Xu Wei, Li Wei, Chen Kun-Ji. Chinese Phys. Lett., 28, 067 802 (2011).
- [16] Н.А. Соболев, А.М. Емельянов, Е.И. Шек, В.И. Вдовин. ФТТ, 46, 39 (2004).
- [17] A.A. Shklyaev, Y. Nakamura, F.N. Dultsev, M. Ichikawa. J. Appl. Phys., 105, 063 513 (2009).

Редактор Т.А. Полянская

Defect related luminescence in silicon p^+ -*n*-junctions

*R.V. Kuzmin**, *N.T. Bagraev*+*, *L.E. Klyachkin**, *A.M. Malyarenko**

* Ioffe Physicotechnical Institute, Russian Academy of Sciences,
194021 St. Petersburg, Russia
+ St. Petersburg State Polytechnical University,
195251 St. Petersburg, Russia

Abstract Silicon p^+-n -junctions are prepared within frameworks of the silicon planar technology based on non-equilibrium short-time boron diffusion from the gas phase into the *n*-Si (100) wafers after preliminary oxidation, electron beam lithography and reactive ion etching inside the windows in SiO₂. The measured spectra of electro- and photoluminescence reveal the emission in the $1-1.6 \mu m$ spectral range and indicate the presence of a large concentration of defects in the silicon p^+-n -junctions. These defects seem to be caused by amorphization effect of ion etching.