09

Структура, фазовый состав и спектрально-люминесцентные свойства кристаллов ZrO₂-Y₂O₃-Er₂O₃

© П.А. Рябочкина¹, М.А. Борик², Е.Е. Ломонова², А.В. Кулебякин², Ф.О. Милович³, В.А. Мызина², Н.Ю. Табачкова³, Н.В. Сидорова¹, А.Н. Чабушкин¹

¹ Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева, Саранск, Россия

² Институт общей физики им. А.М. Прохорова РАН,

Москва, Россия

³ Национальный исследовательский технологический университет, "МИСиС",

Москва, Россия

E-mail: ryabochkina@freemail.mrsu.ru

(Поступила в Редакцию 13 января 2015 г.

В окончательной редакции 5 февраля 2015 г.)

Представлены результаты исследования структуры, фазового состава и спектральнолюминесцентных свойств кристаллов диоксида циркония с различным содержанием Y_2O_3 , легированных Er_2O_3 : 99.7 mol.% $ZrO_2-0.3$ mol.% Er_2O_3 , 97.2 mol.% $ZrO_2-1.0$ mol.% $Y_2O_3-1.8$ mol.% Er_2O_3 , 97.2 mol.% $ZrO_2-2.0$ mol.% $Y_2O_3-0.8$ mol.% Er_2O_3 , 97.2 mol.% $ZrO_2-2.5$ mol.% $Y_2O_3-0.3$ mol.% Er_2O_3 , 96.3 mol.% $ZrO_2-3.4$ mol.% $-Y_2O_3-0.3$ mol.% Er_2O_3 , 86 mol.% $ZrO_2-13.4$ mol.% $Y_2O_3-0.6$ mol.% Er_2O_3 .

Методом просвечивающей электронной микроскопии выявлено наличие двойников в кристаллах с моноклинной структурой 99.7 mol.% $ZrO_2-0.3$ mol.% Er_2O_3 и в кристаллах 97.2 mol.% $ZrO_2-2.5$ mol.% $Y_2O_3-0.3$ mol.% Er_2O_3 , 96.3 mol.% $ZrO_2-3.4$ mol.% $Y_2O_3-0.3$ mol.% Er_2O_3 с тетрагональной структурой. В кристаллах 86 mol.% $ZrO_2-13.4$ mol.% $Y_2O_3-0.6$ mol.% Er_2O_3 с кубической структурой двойников не обнаружено.

Методом рентгеновской дифракции исследован фазовый состав данных кристаллов. В результате данного исследования в кристаллах 97.2 mol.% $ZrO_2-1.0$ mol.% $Y_2O_3-1.8$ mol.% Er_2O_3 обнаружена только трансформируемая тетрагональная фаза (*t*), а в кристаллах 97.2 mol.% $ZrO_2-2.0$ mol.% $Y_2O_3-0.8$ mol.% Er_2O_3 , 97.2 mol.% $ZrO_2-2.5$ mol.% $Y_2O_3-0.3$ mol.% Er_2O_3 , 96.3 mol.% $ZrO_2-3.4$ mol.% $Y_2O_3-0.3$ mol.% Er_2O_3 обнаружены две тетрагональные фазы с различной степенью тетрагональности (c/a): трансформируемая (*t*) и нетрансформируемая (*t*').

Из результатов экспериментов по оптической спектроскопии кристаллов диоксида циркония с различной концентрацией стабилизирующих оксидов выявлены особенности образования в них оптических центров ионов Er³⁺.

Работа выполнена при финансовой поддержке гранта РФФИ офи_м, проект № 13-02-051, НИР в рамках проектной части государственного задания в сфере научной деятельности по заданию № 3.384.2014/К и государственного задания № 0708 0210059 611 ("Организация проведения научных исследований").

1. Введение

С развитием в середине 60-х годов двадцатого века методов синтеза особо тугоплавких материалов с температурами плавления выше 2000°С были получены монокристаллы твердых растворов на основе диоксида циркония, характеризующиеся уникальными физикохимическими свойствами. В настоящее время эти материалы находят применение в электронике, приборостроении, авиакосмической, химической и электротехнической промышленности, энергетике, медицине, а также имеют большие перспективы при создании объектов новой техники и технологий.

Высокотемпературные фазы ZrO₂, имеющие важное практическое применение, можно стабилизировать, получая его твердые растворы с оксидами второй и третьей групп Периодической системы [1–4]. Широко распространенным стабилизатором диоксида циркония является оксид иттрия Y₂O₃. В зависимости от количества стабилизирующего оксида в твердом растворе ZrO₂-Y₂O₃

можно получать либо кристаллы стабилизированного диоксида циркония со структурой флюорита, либо кристаллы частично стабилизированного диоксида циркония с тетрагональной структурой. Кристаллы стабилизированного диоксида циркония, активированные редкоземельными (P3) ионами, с концентрацией стабилизирующего оксида 12–14 mol.% представляют интерес в лазерной физике для создания перестраиваемых лазеров с диодной накачкой. При концентрации стабилизирующего оксида 2–5 mol.% получают монокристаллы частично стабилизированного диоксида циркония (ЧСДЦ), которые находят применение в качестве конструкционных и триботехнических материалов.

В настоящее время в научной литературе имеется значительное количество работ по исследованию структуры, фазового состава материалов на основе диоксида циркония с различным содержанием Y_2O_3 [5–13]. Ряд публикаций посвящен исследованию кристаллов ZrO₂ с различным содержанием стабилизирующего оксида Y_2O_3 , легированных РЗ-ионами (Eu³⁺,

N₂	Состав исследованных кристаллов	Обозначения кристалла
1	86 mol.% ZrO ₂ -13.4 mol.% Y ₂ O ₃ -0.6 mol.% Er ₂ O ₃	0.6Er-13.4Y-86Zr
2	$97.2 \text{ mol.}\% \text{ ZrO}_2 - 1.0 \text{ mol.}\% \text{ Y}_2\text{O}_3 - 1.8 \text{ mol.}\% \text{Er}_2\text{O}_3$	1.8Er-1.0Y-97.2Zr
3	97.2 mol.% ZrO ₂ -2.0 mol.% Y ₂ O ₃ -0.8 mol.% Er ₂ O ₃	0.8Er-2.0Y-97.2Zr
4	97.2 mol.% ZrO ₂ -2.5 mol.% Y ₂ O ₃ -0.3 mol.% Er ₂ O ₃	0.3Er-2.5Y-97.2Zr
5	96.3 mol.% ZrO ₂ -3.4 mol.% Y ₂ O ₃ -0.3 mol.% Er ₂ O ₃	0.3Er-3.4Y-96.3Zr
6	99.7 mol.% ZrO ₂ -0.3 mol.% Er ₂ O ₃	0.3Er-99.7Zr

Таблица 1. Состав исследованных кристаллов и соответствующие им обозначения

 $Yb^{3+},\,Nd^{3+})$ [15–17]. В то же время научный и практический интерес представляют также кристаллы на основе диоксида циркония, легированные ионами Er^{3+} [17,18]. Однако к настоящему времени кристаллы ZrO_2 с различным содержанием Y_2O_3 , легированные ионами Er^{3+} , исследованы недостаточно.

В соответствии с этим обстоятельством, целью настоящей работы являлось исследование структуры, фазового состава и спектрально-люминесцентных свойств кристаллов диоксида циркония с различным содержанием Y_2O_3 , легированных ионами Er^{3+} , а также выявление взаимосвязи между особенностями структуры, фазового состава и спектрально-люминесцентными свойствами этих кристаллов.

2. Характеристика объектов и методов исследования

В качестве объектов исследования в настоящей работе были выбраны: кристалл стабилизированного диоксида циркония $86 \text{ mol.}\% \text{ ZrO}_2 - 13.4 \text{ mol.}\% \text{ Y}_2 \text{O}_3 -$ ЧСДЦ $0.6 \text{ mol.}\% \text{ Er}_2 \text{O}_3$, кристаллы составов 97.2 mol.% $ZrO_2 - 1.0 \text{ mol.}$ % $Y_2O_3 - 1.8 \text{ mol.}$ % Er_2O_3 , 97.2 mol.% $ZrO_2-2.0$ mol.% $Y_2O_3-0.8$ mol.% Er_2O_3 , 97.2 mol.% ZrO₂-2.5 mol.% Y₂O₃-0.3 mol.% Er₂O₃ и 96.3 mol.% $ZrO_2-3.4$ mol.% $Y_2O_3-0.3$ mol.% Er_2O_3 , также кристалл с моноклинной структурой 99.7 mol.% ZrO₂-0.3 mol.% Er₂O₃. Составы исследованных кристаллов и соответствующие им обозначения, используемые в дальнейшем в работе, представлены в табл. 1.

Рост данных кристаллов осуществлялся на установке "Кристалл-407" методом направленной кристаллизации расплава с использованием прямого индуцированного нагрева в холодном тигле диаметром 130 mm при скорости роста 10 mm/h. Рабочей атмосферой являлся воздух. В качестве исходных материалов использовали оксиды циркония, иттрия, эрбия квалификации "ОСЧ".

Эксперименты по изучению структуры кристаллов ZrO₂ с различным содержанием Y₂O₃, активированных ионами ${\rm Er}^{3+}$, были выполнены методом просвечивающей электронной микроскопии с помощью микроскопа JEM-2100, при ускоряющем напряжении 200 kV. Для подготовки исследуемых образцов из кристаллов были вырезаны пластины толщиной 200 μ m, с последующим

формированием лунки и утонением с помощью ионного травления.

Исследования фазового состава и структуры кристаллов выполнены на кристаллических образцах с помощью рентгенодифрактометрического анализа на установке Bruker D8. Для исследования были изготовлены образцы, ориентированные по плоскости (100). Подробное описание методики приведено в работе [19].

Образцы для спектроскопических исследований представляли собой отполированные пластинки толщиной 1.5 mm для кристаллов 0.3Er-99.7Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-2.5Y-97.2Zr и толщиной 1 mm для кристаллов 1.8Er-1.0Y-97.2Zr, 0.6Er-13.4Y-86Zr.

Регистрация спектров поглощения при T = 77 К осуществлялась с помощью установки на базе монохроматора МДР-23. Для регистрации спектров люминесценции ионов Er^{3+} на переходе ${}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$ при T = 77 К использовалось возбуждение на уровни ${}^{4}\text{S}_{3/2}$ и ${}^{4}\text{F}_{7/2}$ этих ионов.

Для возбуждения спектров люминесценции с уровня ${}^{4}S_{3/2}$ ионов ${\rm Er}^{3+}$, зарегистрированных в различных участках кинетики затухания люминесценции, использовалась вторая гармоника лазера $Y_{3}Al_{5}O_{12}$: Nd с длиной волны излучения 532 nm. Длительность импульса возбуждения составляла 10 ns. Временная задержка и временное окно регистрации спектров люминесценции выставлялись с помощью бокскар-интегратора SR-250. Значения временной задержки выставлялись равными 2 и 300 μ s соответственно. Временное окно регистрации составило 15 μ s.

В качестве фотоприемника при регистрации спектров люминесценции использовался фотоумножитель ФЭУ-79.

3. Экспериментальные результаты и их обсуждение

Исследование кристаллов методом просвечивающей электронной микроскопии показало наличие в образцах составов 0.3Er-99.7Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr, развитой двойниковой структуры (рис. 1 a, b, c). В то же время для кристалла стабилизированного диоксида циркония 0.6Er-13.4Y-86Zr двойниковая структура отсутствует (рис. 1, d). Для данного кристалла обнаружены лишь отдельные дислокации (рис. 1, d).

Рис. 1. Изображения структуры кристаллов, полученные методом просвечивающей электронной микроскопии (ПЭМ). На врезках приведены электронограммы соответствующих кристаллов: *a*) 0.3Er-99.7Zr, *b*) 0.3Er-2.5Y-97.2Zr, *c*) 0.3Er-3.4Y-96.3Zr, *d*) 0.6Er-13.4Y-86Zr.

Сравнительный анализ структуры образцов 0.3Er-2.5Y-97.2Zr и 0.3Er-3.4Y-96.3Zr показал, что увеличение суммарной концентрации стабилизирующих оксидов (оксид эрбия является стабилизирующим так же, как и оксид иттрия) приводит к более однородному характеру морфологии двойниковой структуры (рис. 1, *b*, *c*). Размеры двойников при увеличении суммарной концентрации стабилизирующих оксидов уменьшаются. В работе [20] сообщается, что аналогичное изменение морфологии двойниковой структуры характерно для кристаллов $\text{ZrO}_2 - \text{Y}_2\text{O}_3$ при увеличении концентрации стабилизирующего оксида Y_2O_3 от 2.5 до 5 mol.%. Аналогичный характер изменения двойниковой структуры мы выявили

при исследовании структуры кристаллов ЧСДЦ, легированных ионами $Nd^{3+}(ZrO_2-Y_2O_3-Nd_2O_3)$. В этих кристаллах двойниковая структура становится более однородной и дисперсной при увеличении результирующей концентрации оксидов Y_2O_3 и Nd_2O_3 от 2.8 до 4.04 mol.% [21].

Характерной особенностью кристаллов ЧСДЦ является наличие двух тетрагональных фаз с разной степенью тетрагональности [12,13,20]. Первая тетрагональная фаза (t) является "трансформируемой", т.е. при воздействии механических напряжений может подвергаться мартенситному переходу в моноклинную фазу. Вторая тетрагональная фаза (t') является "нетрансформируе-

Рис. 2. Участок дифрактограмм в области отражений (006) и (600) для кристаллов при использовании Cu*K*_a-излучения: *a*) 1.8Er-1.0Y-97.2Zr, *b*) 0.8Er-2.0Y-97.2Zr, *c*) 0.3Er-2.5Y-97.2Zr, *d*) 0.3Er-3.4Y-96.3Zr.

мой". Фаза t' не превращается в моноклинную фазу даже при интенсивном механическом воздействии на образец.

Определение фазового состава кристаллов ЧСДЦ является важной задачей, так как количественное соотношение фаз t и t' и их структурные особенности определяют многие физико-химические свойства этого материала, в том числе и механические [11,13].

На рис. 2, a-d представлены участки дифрактограмм в области рефлексов от плоскостей (006) и (600) в Cu K_{α} -излучении для кристаллов ЧСДЦ составов 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr. Наличие на дифрактограмме одновременно отражений от плоскостей (001) и (100) связано с наличием двойников в этих кристаллах. Из дифрактограммы, приведенной на рис. 2, *a*, видно, что в кристаллах 1.8Er-1.0Y-97.2Zr присутствует только трансформируемая тетрагональная фаза *t*. В то же время, дифрактограммы, показанные на рис. 2, *b*, *c*, *d*, однозначно свидетельствуют о присутствии в кристаллах 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr как трансформируемой *t*, так и нетрансформируемой *t'* тетрагональных фаз.

Сравнение фазового состава кристаллов ЧСДЦ, легированных оксидом эрбия и оксидом неодима [21], показывает, что при одних и тех же концентрациях иттрия и легирующих примесей эрбия и неодима, фазовые составы кристаллов могут существенно отличаться (табл. 2).

Из табл. 2 видно, что влияние дополнительного количества оксидов РЗЭ на фазовый состав, структуру и свойства кристаллов частично стабилизированного оксидом иттрия диоксида циркония зависит от ви-

Состав, mol.%			Фазовый состав	Ссылки
Y_2O_3	$\mathrm{Er}_{2}\mathrm{O}_{3}$	Nd_2O_3		COLUMN
1	1.8	_	t	Настоящая
2	0.8	_	t + t'	работа
2.5	0.3	-	t + t'	_
3.4	0.3	-	t + t'	
13.4	0.6		с	
2.8	_	_	t + t'	[20]
1	_	1.8	t + m	[21]
2	—	0.8	t	[21]
2.5		0.3	t + t'	[21]

Таблица 2. Фазовый состав кристаллов ЧСДЦ

Примечание. m — моноклинная фаза, t — трансформируемая тетрагональная; t' — нетрансформируемая тетрагональная; c — кубическая.

да и концентрации редкоземельных элементов. Так, в кристаллах ЧСДЦ ZrO2-1 mol.% Y2O3 дополнительное введение 1.8 mol.% Er_2O_3 позволяет стабилизировать трансформируемую фазу — t, а при введении оксида неодима в том же количестве в кристаллах сохранялась моноклинная фаза. При содержании оксида иттрия 2 mol.% добавление 0.8 mol.% оксида эрбия позволяет получить, как и в случае содержания только оксида иттрия 2.8 mol.%, смесь t- и t'-фаз. Аналогичное добавление к $2 \mod 1\%$ Y₂O₃ $0.8 \mod 1\%$ Nd₂O₃ обеспечивает стабилизацию одной трансформируемой *t*-фазы, при этом t'-фаза отсутствует. Таким образом, замена в кристаллах $ZrO_2 - 2.8 mol.\% Y_2O_3$ части оксида иттрия на оксид редкоземельного элемента не приводит к аналогичному фазовому составу кристаллов, а зависит от концентрации оксида иттрия и вида РЗЭ. Только для кристаллов 0.8Er-2.0Y-97.2Zr фазовый состав аналогичен составу кристалла ZrO₂-2.8 mol.% Y₂O₃. При увеличении концентрации оксида иттрия до 2.5 mol.% дополнительное легирование оксидами эрбия и неодима (0.3 mol.%) также позволяет получить в кристалле t- и t'-фазы.

В работах [21,22], применяя методику, основанную на сравнении результатов оптической спектроскопии кристаллов ЧСДЦ и стабилизированного диоксида циркония, легированных редкоземельными ионами, а также учете данных дифрактометрического анализа этих кристаллов, мы выявили особенности вхождения ионов Nd³⁺ в нетрансформируемую t', и трансформируемую t тетрагональные фазы в кристаллах $ZrO_2-Y_2O_3-Nd_2O_3$ и $ZrO_2-Y_2O_3-CeO_2-Nd_2O_3$ в зависимости от содержания в них Nd₂O₃. В настоящей работе, применяя ту же методику, мы изучили закономерности образования оптических центров ионов Er^{3+} в кристаллах 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr, 0.6Er-13.4Y-86Zr.

На рис. 3 представлены спектры поглощения для перехода $^4I_{15/2} \rightarrow ^4I_{13/2}$ ионов Er^{3+} для кристаллов 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-

97.2Zr, 0.3Er-3.4Y-96.3Zr, 0.6Er-13.4Y-86Zr при T = 77 K. Из рис. 3 видно, что контуры спектров поглощения кристаллов 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr с одинаковой суммарной концентрацией стабилизирующих оксидов Y₂O₃ и Er₂O₃, равной 2.8 mol.%, имеют похожий вид, но в то же время выявляют и некоторые отличия. В спектре поглощения кристалла 1.8Er-1.0Y-97.2Zr по сравнению с кристаллами 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr изменяется относительная интенсивность линий с длинами волн 541 и 542.4 nm соответственно. В кристалле 0.3Er-2.5Y-97.2Zr происходит перераспределение относительных интенсивностей линий с длинами волн 544, 545 nm по сравнению с кристаллами 1.8Er-1.0Y-97.2Zr.

Форма контура спектра поглощения для кристалла 0.3Er-3.4Y-96.3Zr в целом аналогична контурам спектров поглощения кристаллов 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr. Отличие заключается в том, что для данного кристалла по сравнению с кристаллами ЧСДЦ с суммарной концентрацией стабилизирующих оксидов 2.8 mol.% наблюдается перераспределение относительных интенсивностей линий с длинами волн 542 и 543 nm.

В спектре поглощения кристалла 0.6Er-13.4Y-86Zr контур линии с длиной волны 541 nm по форме совпадает с контуром аналогичной линии в спектрах поглощения кристаллов 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr. В спектральном диапазоне 542-555 nm контур спектра поглощения кристалла 0.6Er-13.4Y-86Zr отличается от соответствующих контуров кристаллов ЧСДЦ, легированных ионами Er³⁺.

Наблюдаемые различия в спектрах поглощения исследованных в работе кристаллов можно объяснить

Рис. 3. Спектры поглощения для перехода ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ ионов Er^{3+} кристаллов 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr, 0.6Er-13.4Y-86Zr, T = 77 K.

Рис. 4. Спектры люминесценции для перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ при возбуждении на уровень ${}^{4}S_{3/2}$ ионов Er^{3+} с временной задержкой $t_1 = 2\,\mu\mathrm{s}, t_2 = 300\,\mu\mathrm{s}$ и соответствующие спектры поглощения для перехода ${}^{4}I_{15/2} \rightarrow {}^{4}S_{3/2}$ ионов Er^{3+} для кристаллов *a*) 1.8Er-1.0Y-97.2Zr, *b*) 0.8Er-2.0Y-97.2Zr, *c*) 0.3Er-2.5Y-97.2Zr, *d*) 0.3Er-3.4Y-96.3Zr, *e*) 0.6Er-13.4Y-86Zr, $T = 77\,\mathrm{K}$.

наличием в них оптических центров Er^{3+} с различным кристаллическим окружением. Для выявления основных типов оптических центров Er^{3+} в кристаллах 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr, 0.6Er-13.4Y-86Zr были

зарегистрированы их спектры люминесценции для перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ при возбуждении на уровень ${}^{4}S_{3/2}$ ионов Er^{3+} второй гармоникой YAG : Nd-лазера с $\lambda_{\mathrm{em}} = 532$ nm с различными значениями временной задержки, равными 2 и 300 μ s при T = 77 К. Полученные

Рис. 5. Спектры люминесценции на переходе ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3} при селективном лазерном возбуждении на уровень ${}^{4}F_{7/2}$, T = 77 К. λ_{em} , nm: a - 440, b - 445.

спектры люминесценции и соответствующие спектры поглощения для всех исследованных кристаллов представлены на рис. 4, *a*-*e*.

Из рис. 4, a-d отчетливо видна трансформация спектров люминесценции всех исследованных кристаллов ЧСДЦ, зарегистрированных при различных значениях временной задержки. Из сравнения контуров спектров люминесценции этих кристаллов, зарегистрированных при значениях времени задержки 2 и 300 μ s, следует, что при увеличении времени задержки уменьшается относительная интенсивность, и трансформируются контуры спектральных линий в области 546—550 nm, а также уменьшается ширина полосы в области 560—570 nm.

Спектры люминесценции, зарегистрированные для кристалла стабилизированного диоксида циркония 0.6Er-13.4Y-86Zr (рис. 4, *e*) при обоих значениях временной задержки менее структурированы по сравнению с соответствующими спектрами кристаллов ЧСДЦ, легированных ионами Er^{3+} . Максимумы линий в спектре люминесценции кристалла 0.6Er-13.4Y-86Zr незначительно смещаются в длинноволновую область спектра. При увеличении времени задержки от 2 до $300 \, \mu$ s увеличивается относительная интенсивность линий в коротковолновой области спектра и уменышается относительная интенсивность линий в длинноволновой области спектра люминесценции кристалла стабилизированного диоксида циркония.

Из рис. 4, a-e следует, что по мере увеличения концентрации стабилизирующего оксида в исследованных кристаллах трансформация спектральных линий в области 546—549 nm их спектров проявляется в большей степени. Этот факт можно объяснить, если предположить, что линии в области длин волн 546—550 nm соответствуют оптическим центрам ионов Er^{3+} , имеющим дефекты структуры в ближайшем координационном окружении с симметрией локального окружения ниже тетрагональной. Относительная концентрация таких центров будет увеличиваться по мере увеличения суммарной концентрации стабилизирующих оксидов Y₂O₃ и Er₂O₃ и связанных с ними анионных вакансий.

Относительная интенсивность спектральных линий с длинами волн 541, 542.4, 542.8, 544.6 nm при различных значениях временной задержки в исследованных кристаллах ЧСДЦ, легированных ионами Er^{3+} , либо не изменяется, либо изменяется в меньшей степени по сравнению с линиями в спектральной области 546–550 nm. На основании этого сделано предположение о том, что соответствующие спектральные линии в спектрах поминесценции этих кристаллов соответствуют оптическим центрам Er^{3+} , в ближайшем окружении которых отсутствуют структурные дефекты (анионные вакансии или ассоциаты из ионов Er^{3+}), вследствие чего кристаллическое поле этих центров искажено в меньшей степени.

О том, что ассоциаты из РЗ-ионов в ближайшем координационном окружении иона Er^{3+} могут приводить к возникновению оптических центров Er^{3+} с более низкой симметрией локального окружения, свидетельствует следующий факт. В спектре люминесценции кристалла $1.8\mathrm{Er}-1.0\mathrm{Y}-97.2\mathrm{Zr}$, содержащем наибольшее количество $\mathrm{Er}_2\mathrm{O}_3$, зарегистрированным при времени задержки 2μ s, относительная интенсивность линии с длиной волны 542.8 nm выше по сравнению с аналогичной линией в спектре люминесценции этого кристалла, зарегистрированного при времени задержки $300\,\mu$ s. В кристаллах ЧСДЦ с меньшим содержанием $\mathrm{Er}_2\mathrm{O}_3$ этого явления не наблюдается.

Спектры люминесценции на переходе $^4S_{3/2} \rightarrow ^4I_{15/2}$ более симметричных оптических центров Er^{3+} в исследованных кристаллах преимущественно возбуждаются при селективном лазерном возбуждении на уровень $^4F_{7/2}$ с длиной волны излучения $\lambda_{em}=440\,\text{nm}$

(рис. 5, *a*). При селективном лазерном возбуждении с $\lambda_{\rm em} = 445$ nm (рис. 5, *b*) этих кристаллов в спектрах люминесценции отчетливо проявляются линии, соответствующие низкосимметричным оптическим центрам ${\rm Er}^{3+}$, для которых характерны структурные дефекты в ближайших координационных сферах.

Из представленных выше результатов следует, что для кристаллов ЧСДЦ составов 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr с одинаковой суммарной концентрацией стабилизирующих оксидов Y₂O₃ и Er₂O₃ и одинаковым содержанием связанных с ними анионных вакансий, наблюдаются некоторые различия, как в спектрах поглощения (рис. 3), так и спектрах люминесценции (рис. 4,5). Эти различия могут быть обусловлены следующими факторами. Во-первых, кристаллы 1.8Er-1.0Y-97.2Zr содержат только трансформируемую (t) тетрагональную фазу, поэтому ионы Er³⁺ в этих кристаллах занимают позиции только в этой фазе. В кристаллах 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr выявлены как трансформируемая (t), так и нетрансформируемая (t') тетрагональные фазы. Так как эти две фазы содержат различное количество У2О3, а, следовательно, и различное количество анионных вакансий [20], то оптические центры Er³⁺, входящие в каждую из этих фаз, могут иметь различное ближайшее кристаллическое окружение. Во-вторых, как было отмечено выше, большее количество Er2O3 в кристаллах 1.8Er-1.0Y-97.2Zr по сравнению с кристаллами 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr может приводить к возникновению оптических центров Er³⁺, в окружении которых образуются структурные дефекты, представляющие собой ассоциаты из ионов Er³⁺.

На рис. 6 приведены кинетики затухания люминесценции с уровня ${}^{4}S_{3/2}$ ионов Er^{3+} для кристалла 0.3Er-2.5Y-97.2Zr, зарегистрированные при T = 77 K

Рис. 6. Кинетики затухания люминесценции с уровня ${}^{4}S_{3/2}$ ионов Er^{3+} в кристалле 0.3Er-2.5Y-97.2Zr. $\lambda_{ex} = 532$ nm, λ_{reg} , nm: a - 545, b - 549.

Рис. 7. Спектр люминесценции для перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} для кристалла 0.3Er-99.7Zr. T = 77 K, λ_{ex} . = 532 nm.

при возбуждении второй гармоникой лазера YAG : Nd с длиной волны излучения 532 nm, при регистрации на длинах волн 545 и 549 nm соответственно.

При возбуждении излучением с $\lambda_{ex} = 532 \text{ nm}$ и регистрации кинетики затухания люминесценции на длине волны $\lambda_{reg} = 545 \text{ nm}$ на начальном участке кривой распада затухание в *e* раз наблюдается за $80 \,\mu\text{s}$. Во втором случае, при возбуждении с $\lambda_{ex} = 532 \text{ nm}$ и регистрации кинетики с $\lambda_{reg} = 549 \text{ nm}$ на начальном участке кривой распада затухание в *e* раз наблюдалось за $55 \,\mu\text{s}$. Этот факт является подтверждением того, что спектральная линия с 549 nm соответствует более низкосимметричным центрам ионов Er^{3+} .

Следует заметить, что в исследованных кристаллах 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr, 0.6Er-13.4Y-86Zr нами не обнаружено присутствие моноклинной фазы. Спектр люминесценции, зарегистрированный для перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} при T = 77 K для кристаллов 0.3Er-99.7Zr с моноклинной структурой, имеет особую форму контура, которая приведена на рис. 7.

Полученные в работах [21,22] результаты исследования кристаллов ЧСДЦ, легированных ионами Nd³⁺, а также ионами Nd³⁺ и Ce³⁺, свидетельствуют о том, что спектроскопическим методом можно выделить оптические центры ионов Nd³⁺, преимущественно занимающие либо нетрансформируемую (t'), либо трансформируемую (t) тетрагональные фазы в кристаллах ZrO₂-Y₂O₃-Nd₂O₃ и ZrO₂-Y₂O₃-Nd₂O₃ сеO₂ различного состава. Результаты, полученные в настоящей работе, свидетельствуют о том, что в исследованных кристаллах ЧСДЦ, легированных ионами Er³⁺, в которых присутствуют и трансформируемая (t) и нетрансформируемая (t') тетрагональные фазы, не представляется возможным выявить оптические центры ионов Er³⁺,

преимущественно занимающие кристаллические позиции в одной из этих фаз. Результаты исследований, выполненных в настоящей работе, свидетельствуют о том, что доминирующим фактором, влияющим на формирование оптических центров ионов Er^{3+} во всех исследованных кристаллах, является наличие или, наоборот отсутствие структурных дефектов в окружении редкоземельного иона.

4. Заключение

Таким образом, в настоящей работе методом ПЭМ исследована структура кристаллов 0.3Er-99.7Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr и 0.6Er-13.4Y-86Zr В кристаллах 0.3Er-99.7Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr выявлена развитая двойниковая структура. В кристаллах стабилизированного диоксида циркония 0.6Er-13.4Y-86Zr двойниковая структура не обнаружена.

При исследовании кристаллов ЧСДЦ состава 1.8Er-1.0Y-97.2Zr методом рентгеновской дифракции обнаружено присутствие трансформируемой (t) фазы, а в кристаллах 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr выявлены как трансформируемая (t), так и нетрансформируемая (t') фазы.

Методом оптической спектроскопии в кристаллах ЧСДЦ 1.8Er-1.0Y-97.2Zr, 0.8Er-2.0Y-97.2Zr, 0.3Er-2.5Y-97.2Zr, 0.3Er-3.4Y-96.3Zr и кристаллах стабилизированного диоксида циркония 0.6Er-13.4Y-86Zr выявлены два основных типа оптических центров ионов Er³⁺:

1) оптические центры ионов Er³⁺, не имеющие структурных дефектов в ближних координационных сферах, их кристаллическое поле искажено в меньшей степени;

2) оптические центры ионов Er³⁺, имеющие структурные дефекты в ближних координационных сферах, их симметрия локального окружения будет низкой.

Список литературы

- [1] O. Ruff, F. Ebert. Annorg. Allgem. Chem. 180, 19 (1929).
- [2] D.K. Smith, C.P. Cline. J. Am. Ceram. Soc. **45**, *5*, 2-W-250 (1962).
- [3] G.M. Wollten. J. Am. Ceram. Soc. 46, 9, 418 (1963).
- [4] M. Foex. Sei. Cerem. 4, 217 (1968).
- [5] V.I. Aleksandrov, V.V. Osiko, A.M. Prochorov, V.M. Tatarintsev. Current Topics Mater. Sci. 1, 421 (1978).
- [6] В.И. Александров, В.В. Осико, А.М. Прохоров, В.М. Татаринцев. Успехи химии 3, 385 (1978).
- [7] М.А. Борик, Е.Е. Ломонова, В.В. Осико, А.М. Прохоров. Проблемы кристаллографии / Под ред. Б.К. Вайнштейна. Наука, М. (1987). 362 с.
- [8] D. Baither, B. Baufeld, U. Messerschmidt, A.H. Foitzik, M. Ruhle. J. Am. Ceram. Soc. 80, 7, 1691 (1997).
- [9] T. Sakuma. J. Jpn. Inst. Met. 29, 879 (1988).

- [10] V.V. Alisin, M.A. Borik, E.E. Lomonova, A.F. Melshanov, G.V. Moskvitin, V.V. Osiko, V.A. Panov, V.G. Pavlov, M.A. Vishnyakova. Mater. Sci. Eng. 25, 577 (2005).
- [11] М.А. Борик, В.Т. Бублик, А.В. Кулебякин, Е.Е. Ломонова, Ф.О. Милович, В.А. Мызина, В.В. Осико, С.В. Серяков, Н.Ю. Табачкова. ФТТ 55, 8, 1578 (2013).
- [12] R.H.J. Hannink, P.V. Kelly, B.C. Muddle. J. Am. Ceram. Soc. 83, 3, 461 (2000).
- [13] A.H. Heuer. J. Am. Ceram. Soc. 70, 10, 689 (1987).
- [14] Ю.К. Воронько, Н.А. Зуфаров, А.А. Соболь, Л.И. Цымбал. Оптика и спектроскопия 81, 5, 814 (1996).
- [15] Ю.К. Воронько, Е.Е. Ломонова, М.А. Вишнякова, Е.Е. Ломонова, А.В. Попов, А.А. Соболь, С.Н. Ушаков, В.Е. Шукшин. Неорг. материалы 40, 5, 585 (2004).
- [16] Ю.К. Воронько, Е.Е. Ломонова, А.В. Попов, А.А. Соболь, С.Н. Ушаков. Неорган. материалы 41, 8, 955 (2005).
- [17] R.I. Merino, V.M. Orera, R. Cases, M.A. Chamarro. Phys. Cond. Matter. 3, 8491 (1991).
- [18] П.А. Рябочкина, Н.В. Сидорова, С.Н. Ушаков, Е.Е. Ломонова. Квантовая электрон. **44**, *2*, 135 (2014).
- [19] М.А. Борик, В.Т. Бублик, А.В. Кулебякин, Е.Е. Ломонова, В.А. Мызина, Ф.О. Милович, Н.Ю. Табачкова. Завод. лаб. Диагностика материалов 78, 7, 6 (2012).
- [20] Ф.О. Милович. Автореф. канд. дис. ФГОУ ВПО НИТУ "МИСиС", М. (2013). 24 с.
- [21] M.A. Borik, T.V. Volkova, A.V. Kulebyakin, E.E. Lomonova, F.O. Milovich, V.A. Myzina, V.V. Osiko, P.A. Ryabochkina, N.Yu. Tabachkova, M.A. Uslamina, S.N. Ushakov, A.N. Chabushkin. J. Alloys Comp. **621**, 295–300 (2015).
- [22] М.А. Борик, Т.В. Волкова, А.Н. Кулебякин, Е.Е. Ломонова, Ф.О. Милович, В.А. Мызина, П.А. Рябочкина, Н.Ю. Табачкова, А.Н. Чабушкин. Оптика и спектроскопия **118**, 6 (2015).