05;14

Влияние низкотемпературной термообработки на магнитные свойства наночастиц ферригидрита биогенного происхождения

© Д.А. Балаев^{1,2}, А.А. Красиков², А.А. Дубровский¹, О.А. Баюков¹, С.В. Столяр^{1,2}, Р.С. Исхаков¹, В.П. Ладыгина³, Р.Н. Ярославцев²

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск
² Сибирский федеральный университет, Красноярск
³ Красноярский научный центр СО РАН, Красноярск
E-mail: dabalaev@iph.krasn.ru

Поступило в Редакцию 13 февраля 2015 г.

Представлены результаты исследования магнитных свойств суперпарамагнитных наночастиц биогенного ферригидрита, подвергнутых низкотемпературной термообработке. Обнаружено, что в результате такой термообработки возрастают температура блокировки и магнитная восприимчивость, однако при помещении уже отожженного золя в водную среду магнитные свойства образцов остаются постоянными. Характер изменения магнитных свойств исследованных образцов свидетельствует о том, что низкотемпературная термообработка позволяет целенаправленно изменять размеры наночастиц в сторону увеличения.

Среди многообразия магнитных наночастиц есть целый класс частиц биогенного происхождения, которые продуцируются в результате жизнедеятельности организмов или бактерий. Наиболее известным и изученным является ферритин [1–4], представляющий собой ферригидрит, расположенный внутри белковой оболочки. Ферригидрит обладает антиферромагнитным (AF) упорядочением, однако благодаря дефектной структуре и малому размеру частиц ферригидрита (~ 5–8 nm) [4,5] в них возникает нескомпенсированный магнитный момент μ_{unc} , значение которого может достигать нескольких сотен магнетонов Бора. Последнее приводит к характерному суперпарамагнитному (SP) поведению частиц ферригидрита. Это открывает возможности практических приложений таких частиц, например, в качестве носителя

88

лекарственных средств в организме. Предыдущие исследования [5–7] показали, что наноразмерные частицы ферригидрита, получаемые в результате жизнедеятельности бактерий Klebsiella oxitoca, проявляют схожее поведение с ферритином, а именно: наличие μ_{unc} , SP-поведение, температура блокировки T_B , гистерезисные кривые намагничивания при $T < T_B$. В работе [7] было обнаружено, что термообработка исходного золя частиц ферригидрита при сравнительно низкой температуре (140–1500°С) в течение 3 h приводит к двукратному увеличению T_B . На основании классического соотношения

$$kT_B = kV/\ln(\tau/\tau_0) \approx KV/25,\tag{1}$$

в котором K — константа магнитной анизотропии, V — объем частицы, $\tau \sim 10^2$, $\tau_0 \sim 10^{-9} - 10^{-10}$ s — характерные времена измерения и релаксации частицы, а также из анализа кривых намагничивания M(H) при $T > T_B$ было установлено, что в процессе отжига происходит укрупнение частиц. Цель данной работы — изучить изменение температуры блокировки, от времени такой термообработки, проведенной до 240 h, а также выяснить возможное влияние на величину T_B гидратации образцов, уже прошедших отжиг.

Процедура приготовления наночастиц в виде золя описана в предыдущих работах [8,9]. Образцы дополнительно проходили термообработку в воздушной атмосфере при температуре 150°C в течение различного времени, при этом обнаружено, что золь теряет в массе до 25% (отжиг при 240 h), что авторы связывают с потерей воды (в номинальной формуле ферригидрита Fe₂O₃ · 9H₂O содержание воды может меняться). Далее образцы обозначены как FH-X, где *X* суммарное количество часов отжига. После отжига часть образцов в течении 3 суток выдерживалась в насыщенных парах воды при комнатной температуре (после этого масса образца увеличивается на ~ 15–20%), эти образцы обозначены как FH-X-H.

Мессбауэровские спектры образцов измерены на спектрометре MC-1104Em с источником ⁵⁷Co(Cr) при комнатной температуре. Магнитные свойства измерены на вибрационном магнетометре. Температурные зависимости магнитного момента M(T) измерены в режимах охлаждения без поля (ZFC) и во внешнем поле (FC). Данные по температурному поведению M(T) во внешнем поле H = 1 кОе пересчитаны в магнитную восприимчивость $\chi(T) = M(T)/H$.

Рис. 1. Мессбауэровские спектры (*a*) при комнатной температуре и распределение квадрупольных расщеплений QS (*b*).

90

Мессбауэровские спектры представляют собой уширенные квадрупольные дублеты (рис 1, a), химические изомерные сдвиги которых соответствуют катионам Fe³⁺. Анализ распределения вероятности квадрупольных расщеплений (рис. 1, b, таблица) свидетельствует о наличии в образцах ряда неэквивалентных позиций железа. В исходном образце (FH-0) идентифицируются три позиции железа [10], две из которых, Fe1 и Fe2, отнесены к областям ферригидрита с преимущественно кубической и гексагональной упаковкой лигандов соответственно, а третья позиция Fe3 — к катионам железа, располагающихся в межслойных позициях ферригидрита.

В результате 24-h отжига (FH-24) происходит изменение кристаллохимической структуры наночастиц. Заселенность позиций Fe1 возрастает за счет уменьшения числа позиций Fe2 с гексагональной упаковкой лигандов. При этом возникают новые позиции с меньшей и большей степенью искажения локального окружения (частичная аморфизация материала), что видно по уширению распределения P(QS). Нахождение в насыщенных парах воды (образец FH-24-H) приводит к дальнейшей аморфизации материала, при которой число позиций Fe1 уменьшается. Вероятно, наноразмерность частиц ферригидрита способствует аморфизации. После длительного отжига (FH-240) заселенность основных позиций ферригидрита (Fe1, Fe2 и Fe3) возрастает, вероятно, за счет формирования крупных частиц, что видно по сужению распределения P(QS). Нахождение в парах воды (образец FH-240-H) способствует этому процессу, но при этом увеличиваются области в основном с гексагональной упаковкой лигандов.

Температурные зависимости $\chi(T)$, измеренные в режимах ZFC и FC, приведенные на рис. 2, демонстрируют характерное SP-поведение. Имеется максимум зависимости $\chi(T)_{ZFC}$, в окрестности которого наблюдается расхождение с зависимостью $\chi(T)_{FC}$. Видно, что при отжиге в течение 240 h увеличивается температура блокировки $T_{\rm B}$ (максимум зависимости $\chi(T)_{ZFC}$) от ≈ 23 до ≈ 82 K, а также величина магнитного момента при H = 1 kOe. При $T < T_B$ зависимости M(H) демонстрируют гистерезис (см. вставку рис. 2). Отожженные образцы имеют большее значение коэрцитивной силы H_C , чем исходный образец FH-0. Аналогичное поведение проявляет и магнитная воспри-имчивость χ образцов: значение $\chi(300 \, {\rm K})$ увеличивается в результате отжига.

Рис. 2. Зависимости $\chi(T)$, измеренные в режимах FC (верхние кривые) и ZFC (нижние кривые) в поле H = 1 kOe для образцов FH-0 (1), FH-3 (2), FH-24 (3), FH-24-H (4), FH-240 (5). Указаны SP-температуры блокировки. На вставке: зависимости M(H) указанных образцов при T = 4.2 K.

Согласно модели Стонера-Вольфарта [11] для невзаимодействующих однодоменных частиц: $H_C \approx (K/M_S)[1 - (T/T_B)^{1/2}]$, где намагниченность насыщения частицы $M_S = \mu_{unc}/V$. Пренебрегая слабой зависимостью $[1 - (T/T_B)^{1/2}]$, (для T = 4.2 K), получаем $H_C \sim KV/\mu_{unc}$. Для нескомпенсированного магнитного момента μ_{unc} малой АF-частицы обычно выполняется соотношение $\mu_{unc} \sim V^n$, где n для разных случаев может принимать значения 2/3 (нечетное количество плоскостей при AF-упорядочении) либо $1/2 \leq n \leq 1/3$ (наличие дефектов в объеме частицы или на ее поверхности) [4], причем для ферритина и ферригидрита значение п близко 1/2 [1,4,6,7]. Следовательно, можно приближенно считать, что $H_C \sim KV^{1/2}$.

Значение χ также зависит от величины μ_{unc} , поскольку при $T > T_B$ кривая намагничивания определяется функцией Ланжевена, разложение

Рис. 3. Зависимости температуры блокировки (a), магнитной восприимчивости при 300 К (b) и коэрцитивной силы при 4.2 К (c) от времени отжига.

которой в ряд дает линейную функцию $\chi(\mu_{unc}) \sim \mu_{unc}/kT$, что в итоге приводит к зависимости $\chi \sim V^{1/2}$.

В то же время из выражения (1) следует, что $T_B \sim V$. Указанные соотношения не учитывают распределение частиц по размерам, возможные поверхностные эффекты, в которых константа магнитной анизотропии *K* также зависит от размера частицы, тем не менее

Sample	<i>IS</i> (±0.005 mm/s)	$QS \ (\pm 0.01 \text{ mm/s})$	W (±0.01 mm/s)	(± 0.03)	Позиция
FH-0	0.334	0.45	0.24	0.24	Fe1-кубическая
	0.334	0.69	0.28	0.41	Fe2-гексагональная
	0.320	1.00	0.40	0.35	Fe3-межблочная
FH-24	0.323	0.33	0.28	0.11	
	0.335	0.63	0.33	0.37	Fe1
	0.332	0.95	0.31	0.28	Fe2
	0.325	1.29	0.30	0.16	Fe3
	0.324	1.67	0.33	0.08	
FH-24-H	0.313	0.31	0.30	0.09	
	0.338	0.54	0.28	0.27	Fe1
	0.337	0.80	0.27	0.26	Fe2
	0.332	1.07	0.29	0.23	
	0.327	1.38	0.28	0.11	Fe3
	0.325	1.75	0.31	0.04	
FH-240	0.300	0.25	0.27	0.09	
	0.328	0.55	0.32	0.32	Fe1
	0.328	0.84	0.29	0.28	Fe2
	0.328	1.12	0.27	0.16	
	0.324	1.40	0.27	0.09	Fe3
	0.319	1.74	0.31	0.06	
FH-240-H	0.310	0.35	0.28	0.13	
	0.332	0.63	0.30	0.31	Fe1
	0.327	0.95	0.35	0.37	Fe2
	0.330	1.35	0.41	0.19	Fe3

Мессбауэровские параметры исследованных образцов. *IS* — изомерный сдвиг, *QS* — квадрупольное расщепление, *W* — ширина линии, *A* — заселенность позиций железа

параметры T_B , H_C и χ пропорциональны размеру частиц. На рис. 3 суммированы данные по изменению величин T_B , H_C и $\chi(T = 300 \text{ K})$ в зависимости от времени отжига. Видно, что эти значения возрастают в несколько раз после отжига в течение 240 h, причем самое быстрое возрастание значений T_B , H_C и χ происходит при отжиге до 24 h. Следовательно, можно констатировать, что в условиях проведенной

термообработки происходит увеличение частиц в размерах, что, видимо, связано с агломерацией близко расположенных частиц.

На рис. 2 приведены также данные для образцов, находившихся в насыщенных парах воды: зависимость $\chi(T)$ образца FH-24-H (кривая 4) и M(H) образца FH-240-H (вставка рис. 2). Эти зависимости практически совпадают с данными соответствующих отожженных образцов при умножении восприимчивости (или магнитного момента) на коэффициент, соответствующий изменению массы образца, при этом значения T_B и H_C остаются прежними. И хотя анализ мессбауэровских данных показывает некоторые изменения в локальном окружении железа, на основании магнитных данных можно заключить, что размеры частиц после выдержки образцов в насыщенных парах воды не изменяются.

Анализ результатов исследования по малоугловому рентгеновскому рассеянию образцов, аналогичных исходному FH-0, показали, что частицы имеют характерные размеры несколько nm [12], что соответствует $\sim 2000-2500$ атомам железа в частице [6]. По результатам данной работы можно заключить, что термообработка при достаточно низкой (150°C) температуре в течение 24–240 h приводит к росту среднего объема частиц в несколько раз (линейного размера в ~ 2 раза). При этом увеличиваются значения $H_C(T = 4.2 \text{ K})$, T_B и $\chi(T = 300 \text{ K})$. Контролируемое увеличение магнитной восприимчивости наночастиц при комнатной температуре при сохранении размеров частиц порядка 10 nm может иметь практическое значение, поскольку эта величина напрямую определяет силу, действующую на частицу, находящуюся в жидкой среде. При нахождении в водной среде интегральные магнитные свойства частиц не изменяются, частицы остаются стабильными.

Работа выполнена в рамках Государственного задания Министерства образования и науки РФ на 2014–2016 годы.

Список литературы

- [1] Silva N.J.O., Amaral V.S., Carlos L.D. // Phys. Rev. B. 2005. V. 71. P. 184408.
- [2] Бабанин В.Ф., Горовой Ю.М., Залуцкий А.А., Иванов П.А., Морозов А.В. // Письма в ЖТФ. 2012. Т. 38. В. 5. С. 78–84.
- [3] Райхер Ю.Л., Степанов В.И. // ЖЭТФ. 2008. Т. 134. В. 3(9). С. 514-524.
- [4] Mørup S., Madsen D.E., Fradsen C., Bahl C.R.H., Hansen M.F. // J. Phys.: Condens. Matter. 2007. V. 19. P. 213 202.

- [5] Райхер Ю.Л., Степанов В.И., Столяр С.В., Ладыгина В.П., Балаев Д.А., Ищенко Л.А., Балашою М. // ФТТ. 2010. Т. 52. С. 277.
- [6] Балаев Д.А., Дубровский А.А., Красиков А.А., Столяр С.В., Исхаков Р.С., Ладыгина В.П., Хилажева Е.Д. // Письма ЖЭТФ. 2013. Т. 98. В. З. С. 160.
- [7] Балаев Д.А., Красиков А.А., Дубровский А.А., Семенов С.В., Баюков О.А., Столяр С.В., Исхаков Р.С., Ладыгина В.П., Ищенко Л.А. // ЖЭТФ. 2014. Т. 146. В. 3(9). С. 546–556.
- [8] Столяр С.В., Баюков О.А., Гуревич Ю.Л., Ладыгина В.П., Исхаков Р.С., Пустошилов П.П. // Неорган. материалы. 2006. Т. 42. С. 763.
- [9] Столяр С.В., Баюков О.А., Гуревич Ю.Л., Денисова Е.А., Исхаков Р.С., Ладыгина В.П., ПузырьА.П., Пустошилов П.П., Бихетина М.А. // Неорган. материалы. 2007. Т. 41. С. 1.
- [10] Столяр С.В., Баюков О.А., Ладыгина В.П., Исхаков Р.С., Ищенко Л.А., Яковчук В.Ю., Добрецов К.Г., Поздняков А.И., Пиксина О.Е. // ФТТ. 2011. Т. 53. В. 1. С. 97.
- [11] Stoner E.C., Wohlfarth E.P. // Philos. Trans. Roy. Soc. London. Ser. A. 1948. V. 240. P. 599.
- [12] Balasoiu M., Stolyar S.V., Iskhakov R.S., Ischenko L.A., Raikher Y.L., Kuklin A.I., Orelovich O.L., Kovalev Yu.S., Kurkin T.S. // Rom. J. Phys. 2010. V. 55. N 7–8. P. 782.