05

Особенности фазового состава и структуры высокоэнтропийной многокомпонентной стали FeWMoCrVSiMnC

© В.Г. Пушин,^{1,2} Н.Н. Куранова,¹ Н.В. Николаева,¹ А.Н. Уксусников,¹ Ю.М. Устюгов,¹ Е.С. Белослудцева,¹ А.В. Пушин,^{1,2} А.Э. Свирид¹

¹ Институт физики металлов УрО РАН, 620990 Екатеринбург, Россия ² Уральский федеральный университет им. первого президента России Б.Н. Ельцина 620990, Екатеринбург, Россия e-mail: pushin@imp.uran.ru

(Поступило в Редакцию 12 июля 2014 г.)

Представлены результаты изучения фазового состава, структуры и твердости в высокоэнтропийной многокомпонентной стали FeWMoCrVSiMnC после синтеза и последующей термообработки. Исследования проведены методами аналитической просвечивающей и растровой структурной и ориентационной электронной микроскопии, оптической металлографии, рентгеновской энергодисперсионной спектроскопии, рентгенофазового и структурного анализов, измерений твердости по Роквеллу. Установлено, что сталь имеет высокую твердость (62 HRC) и находится в ультрамелкозернистом композитном мартенситно-мультикарбидном состоянии. При этом все карбиды однородно распределены по объему стали и имеют нано- и субмикроразмерные масштабы в зависимости от типа карбида.

Развитие современной техники невозможно без разработки и использования новых конструкционных и функциональных материалов со свойствами, превышающими свойства имеющихся и уже применяемых аналогов. В последние годы все большее внимание исследователей направлено на разработку и изучение принципиально нового класса материалов, названных высокоэнтропийными сплавами (ВЭС) [1–10]. Данные сплавы содержат не менее 4-5 химических элементов, причем предлагается, чтобы количество каждого из них было достаточно большим [1,2]. Повышенное значение энтропии смешения и, как следствие, пониженная свободная энергия многокомпонентных сплавов обеспечивают высокую термическую устойчивость твердого раствора и возможность стабилизации многокомпонентных наноразмерных фаз при последующей температурной обработке (и эксплуатации сплавов при повышенных температурах). Важным технологическим обстоятельством синтеза, направленным на сохранение по возможности однофазного твердого раствора и сдерживание его распада, является достаточно высокая скорость охлаждения данных сплавов как в жидком, так и в твердом состояниях. Подавляющее большинство известных работ выполнено на ВЭС, легированных по типу замещения. Очевидно, что легирование тугоплавкими металлами и элементами внедрения, и в частности углеродом, с повышенной диффузионной активностью последних и склонностью к образованию химических соединений (например, карбидов) вносит свои специфические особенности в структурно-фазовые превращения и свойства таких материалов. В настоящей работе на примере изучения фазового состава, структуры и твердости полученных образцов продемонстрирован положительный опыт конструирования высокопрочной твердой высокоэнтропийной многокомпонентной полифазной стали.

В настоящей работе для исследования была синтезирована многокомпонентная сталь FeWMoCrVSiMnC, химический состав которой приведен в табл. 1. Сталь изучали в исходном состоянии, после термообработки и закалки. Исходную пластину толщиной 5 mm разрезали на фрагменты размерами 10 × 10 mm, из которых методами послойной электроискровой резки, механической шлифовки и электролитической полировки были приготовлены шлифы и фольги для исследований. Твердость измеряли на твердомере по Роквеллу (в единицах HRC). Структуру и локальный элементный состав стали изучали методами аналитической растровой электронной микроскопии (РЭМ), используя микроскоп Quanta 200, оборудованный системами рентгеновской энергодисперсионной спектроскопии (EDS) и ориентационной микроскопии (EBSD) [11]. Электронномикроскопические исследования на просвет (ПЭМ) на микроскопах Tecnai G² 30, CM 30 и JEM 200CX проводили в режимах светлого и темного полей [11]. Для идентификации фаз использовали метод микродифракции от выбранного участка. Рентгеноструктурный и фазовый анализы осуществляли на рентгеновском дифрактометре в характеристическом рентгеновском излучении CuK_{α} , монохроматизированном графитовым монокристаллом. Оптическую микроскопию выполняли на металлографическом микроскопе Альтами МЕТ 2С с цифровым фотоаппаратом высокого разрешения. Интегральный хи-

Таблица 1. Интегральный химический состав исследуемой стали

Элемент	Fe	Cr	С	Mo	W	V	Si	Mn
at.%	82.16	4.90	4.70	3.00	2.25	2.05	0.65	0.29
wt.%	79.80	4.46	0.82	5.03	7.39	1.86	0.36	0.28

Рис. 1. Рентгеновские дифрактограммы стали и расчетные штрих-диаграммы фаз для контактной (на подложке) (*a*) и свободной поверхности (*b*).

мический состав определяли, используя эмиссионный спектрометр SPECTROMAX, с площади индивидуальной пробы диаметром 4–5 mm (см. табл. 1).

По результатам измерений твердости изучаемая сталь находилась в высокопрочном состоянии и отличалась высокими значениями твердости (62 HRC).

Рентеноструктурный и рентгенофазовый анализы показали, что основной объем исследованной стали составляла α-фаза с параметром ОЦК решетки, близким 0.2876 nm. При этом на рентгенограммах наряду с основными а-отражениями регистрировались многочисленные более слабые отражения (рис. 1). Детальный анализ и расшифровка рентгенограмм выявили наличие в стали ряда карбидных фаз. Их объемная доля достаточно велика, что следует из сопоставления интенсивностей зафиксированных отражений (рис. 1). Самые интенсивные линии принадлежали тугоплавким поликомпонентным карбидам M₆C и M₂₃C₆, в состав которых, как известно, могут входить все легирующие элементы изучаемой стали (табл. 1) [12]. Кроме того, идентифицировались как возможные и вторичные монокарбиды типа МС (VC, MoC, WC) (табл. 2). Различия в фазовом составе нижней (контактной) и верхней (свободной) поверхностей стали незначительны (сравни рис. 1, *a*, *b*).

По данным оптической металлографии микроструктура стали состояла из равноосных зерен с характерными размерами в несколько микрометров и большим количеством дисперсных включений как на границах, так и в теле зерен. Эти результаты подтвердились при исследованиях структуры стали методом РЭМ. Так, на рис. 2, а показана типичная картина микроструктуры стали, полученная в обратно рассеянных электронах, на которой видны изображения карбидных фаз и их агломератов в виде округлых пятен различного размера с более светлым контрастом. Поликомпонентный состав карбидов был установлен на основании локального элементного анализа РЭМ и представлен в табл. 3 в весовых (массовых) и атомных процентах. Как известно, латеральная локальность анализируемой поверхности при элементном анализе методами ПЭМ и РЭМ определяется сечением электронного зонда вблизи поверхности образца. Важно отметить, что в приведенном примере при сечении зонда в несколько сотен нанометров были обнаружены значительные вариации химического состава не только по железу, но и по остальным элементам. Так, количество железа составляло 32 wt.% в одном из анализируемых скоплений поликомпонентных крупных карбидов (на рис. 2, b отмечено крестиком). В табл. 4 представлены некоторые статистические данные определения локального элементного состава при

Таблица 2. Параметры и типы кристаллических решеток фаз, наблюдаемых в стали

Фаза	M ₆ C	M ₂₃ C ₆	VC	WC	MoC	
Тип решетки		Куб	Куб	Куб	Куб	Гекс
Параметры,	а	1.1045	1.0635	0.413	0.425	0.2932
nm	с					1.0970

Таблица 3. Данные локального элементного анализа, соответствующие рисунку 2, *b*

Элемент	Fe	Mo	W	Si	Cr	V	Mn
at.%	50.91	16.94	15.87	5.61	5.20	4.88	0.60
wt.%	32.12	20.07	36.04	1.95	3.34	3.07	0.41

Таблица 4. Данные сканирования статистического распределения локального элементного состава (в at.%)

Позиция	Fe	Cr	W	Mo	V	Si	Mn
А	84.87	05.15	03.48	03.44	02.38	00.27	00.40
Б	84.70	05.30	03.00	02.85	02.07	01.37	00.71
В	84.47	05.05	03.90	02.86	02.19	00.74	00.79
Γ	84.72	05.01	03.92	02.83	02.59	00.35	00.58
Д	83.45	05.13	03.10	02.94	02.65	02.00	00.73
E	83.84	05.19	03.35	03.26	02.57	01.10	00.69
Ж	84.36	05.51	03.40	03.62	02.39	00.00	00.73
3	83.59	05.71	02.93	03.15	02.51	01.26	00.87
И	83.68	05.01	03.24	03.36	02.47	01.44	00.79
Κ	83.86	05.46	03.70	03.45	02.24	00.63	00.66

Рис. 2. Типичная микроструктура стали, полученная РЭМ в обратно рассеянных электронах (a, b), в режимах Compo (c) и EBSD (d), данные сканирования по углу разориентации (e, область отмеченная кольцом), гистограмма частотного распределения объемной доли зерен по линейным латеральным размерам (f).

Рис. 3. Светло- (a, b, c, e) и темнопольное (f, в карбидном рефлексе) ПЭМ-изображения α -мартенсита, первичных типа M₆C (a, b) и дисперсных вторичных карбидов типа МС (e, f) и соответствующая электронограмма (d).

другом сечении электронного зонда ($\sim 1 \, \mu$ m). В этом случае имело место уже достаточно хорошее совпадение элементного состава и, как следствие, карбидных фаз по анализируемому объему стали, свидетельствуя о том, что данный размер ($\sim 1 \, \mu$ m) характеризует пространственную однородность их распределения.

Анализ микроструктуры методами РЭМ в режимах EBSD и Compo (комбинированный режим съемки в обратноотраженных и вторичных электронах) показал, что сталь отличается ультрамелкозернистостью (рис. 2, *c*, *d*). Полученные частотные количественные распределения по разориентациям и объемной доле кристаллитов даны на рис. 2, е, f. Установлено, что по числу преобладают наноразмерные кристаллиты, а по объемной доле достаточно представлены и субмикро- и микроразмерные кристаллиты. При этом можно было видеть, что структура являлась полимодальной и состояла из зерен α -фазы размером не более нескольких микрометров, субмикроразмерных более крупных первичных много-компонентных карбидов типа M₆C и M₂₃C₆ и более мелких наноразмерных (размером менее 100 nm) вторичных карбидов типа MC.

ПЭМ высокого разрешения позволила адекватно уточнить и достоверно оценить особенности тонкой структуры и фазового состава стали. Анализ показал, что аматрица между крупными первичными карбидами типа M₆C размером 0.7-0.8 µm имела структуру пакетного дислокационного и частично двойникованного мартенсита (рис. 3, a-c). Присутствие в реечном мартенсите гомогенно и гетерогенно выделившихся более дисперсных вторичных карбидных фаз типа МС размерами 50-100 nm (рис. 3, *e*, *f*) подтвердилось при расшифровке микроэлектронограмм (рис. 3, d). Доказательства наличия тонкой пакетной субструктуры мартенситного типа с большеугловыми разориентациями пластин мартенсита внутри пакета были получены и при их измерении в процессе сканирования по углу разориентации в αзернах методом EBSD (рис. 2).

Таким образом, по результатам экспериментальных исследований были сделаны следующие выводы о структуре, фазовом составе и свойствах изученной стали. Сталь имеет ультрамелкозернистую композитную мартенситно-мультикарбидную структуру. Зерна связующей α-матрицы, находящейся в состоянии пакетного, частично двойникованного мартенсита, по размерам не превышали нескольких микрометров. Избыточные фазы представлены более крупными субмикроразмерными первичными карбидами типа M₆C и M₂₃C₆ равноосной формы (с наиболее часто встречаемыми размерами 0.7-0.8 µm) и наноразмерными вторичными монокарбидами типа MC (VC, MoC, WC) в соответствии с данными дифракции рентгеновских лучей и электронов. Распределение а-фазы и мультикарбидной смеси отличалось высокими химической и фазовой пространственными однородностями, начиная с размеров $\sim 1\,\mu m$. Высокая дисперсность и плотность распределения поли- и монокомпонентных карбидов, включающих тугоплавкие элементы W, Mo, V, Cr, в объеме *а*-матрицы, их большая объемная доля (по оценке не менее 50 wt.%) обеспечивают высокую твердость и термическую стабильность структурно-фазового состояния синтезированной стали. Данная твердая сталь может быть использована как самостоятельный материал, так и в качестве износостойких и теплостойких покрытий более экономно легированных сталей и сплавов.

Настоящая работа проведена при частичной поддержке проектом РФФИ 13-02-96012.

Электронно-микроскопические исследования выполняли в отделе электронной микроскопии ЦКП "Ис-

пытательный центр нанотехнологий и перспективных материалов" ИФМ УрО РАН.

Список литературы

- Yeh J.W., Chen Y.L., Lin S.-J. // Mater. Sci. Forum. 2007. Vol. 560. P. 1–9.
- [2] Yeh J.W. High-entropy multielement alloy / Patent № US 2002/0159914A1 // Patent application publication. 2002. Oct. 31.
- [3] Yeh J.W., Chen S.-K., Lin S.-J. // Adv. Eng. Mater. 2004. Vol. 6. N 5. P. 299–303.
- [4] Tong C.J., Chen Y.L., Chen S.-K. // Met. Mater. Trans. 2005.
 Vol. 36A. P. 881–893.
- [5] Wang X.F., Zhang Y., Qiao Y., Chen G.L. // Intermetallics. 2007. Vol. 15. P. 357–362.
- [6] Singh S., Wanderka N., Murty B.S., Glatzel U., Banhart Y. // Acta Mater. 2011. Vol. 59. P. 182–190.
- [7] Кузнецов А.В., Салищев Г.А., Сеньков О.Н., Степанов Н.Д., Шайсултанов Д.Г. // Научные ведомости. Сер. математика, физика. 2012. № 11(130). Вып. 27. С. 191–205.
- [8] Ивченко М.В., Пушин В.Г., Уксусников А.Н., Wanderka N., Коуров Н.И. // ФММ. 2013. Т. 114. № 6. С. 549–560.
- [9] Ивченко М.В., Пушин В.Г., Уксусников А.Н., Wanderka N. // ФММ. 2013. Т. 114. № 6. С. 561-568.
- [10] Ивченко М.В., Пушин В.Г., Wanderka N. // ЖТФ. 2014. Т. 84. Вып. 2. С. 57–69.
- [11] *Пушин В.Г.* Российские нанотехнологии. 2013. Т. 8. № 7–8. С. 95–104.
- [12] Гольдшмидт Х.Дж. Сплавы внедрения. Т. 1. М.: Мир, 1971. 424 с.