Влияние ударной ионизации примесей на динамические характеристики $p^+ - n^- - n^+$ -диодов на основе 4*H*-SiC при низкой температуре (77 K)

© П.А. Иванов[¶], А.С. Потапов, Т.П. Самсонова

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 18 ноября 2014 г. Принята к печати 25 ноября 2014 г.)

Измерены низкотемпературные (77 К) переходные характеристики включения $p^+ - n^- - n^+$ -диодов на основе 4*H*-SiC в импульсном режиме. С помощью простой аналитической модели объяснено влияние примесного пробоя в сильно легированном p^+ -эмиттере на динамику роста тока после подачи на диод импульсов прямого смещения большой амплитуды.

1. Введение

До последнего времени электрическим свойствам карбидкремниевых *p*-*i*-*n*-диодов при низких температурах практически не уделялось внимания. Отсутствие такого интереса связано главным образом с тем, что свободные носители в SiC быстро вымораживаются при понижении температуры из-за сравнительно большой энергии ионизации легирующих примесей. Энергия ионизации основных донорных примесей в 4H-SiC (азот) составляет 52 мэВ, а акцепторных (алюминий) — 200 мэВ [1], т.е. при понижении температуры эффект вымораживания дырок в *p*-слоях *p*-*i*-*n*-диодов проявляется сильнее, чем в *n*-слоях. Простые расчеты показывают, что при температуре 77 К концентрация свободных электронов в *п*-слоях падает в несколько раз, в то время как концентрация дырок в р-слоях падает на несколько порядков величины. При этом в p-i-n-диодах резко возрастает электрическое сопротивление эмиттерных р-слоев и снижается их инжекционная эффективность, которая тоже определяется концентрацией свободных дырок. Недавно интерес к исследованию низкотемпературных электрических характеристик *p*-*i*-*n*-диодов на основе 4H-SiC все же возник в связи с тем, что в таких диодах была обнаружена достаточно эффективная низкотемпературная инжекционная электролюминесценция в терагерцовой (ТГц) области спектра [2,3]. Механизм наблюдаемого ТГц излучения окончательно не выяснен, но есть основания полагать, что он аналогичен механизму ТГц фотолюминесценции при межзонном оптическом возбуждении полупроводников, легированных мелкими примесями [4]. В спектрах низкотемпературной фотолюминесценции SiC обычно обнаруживаются полосы, связанные с рекомбинацией фотовозбужденных носителей на донорно-акцепторных парах, экситонной рекомбинацией, рекомбинацией типа зона-примесь и др. Фотолюминесценция SiC разных политипов, обусловленная указанными механизмами рекомбинации, перекрывает коротковолновую (зелено-фиолетовую) область видимого спектра, а также ближнюю ультрафиолетовую область. Очевидно, что первоначальные переходы неравновесных носителей (электронов и дырок) на уровни примесей могут в принципе сопровождаться излучением в ТГц области (за счет переходов между возбужденными примесными состояниями). Очевидно также, что схожий механизм ТГц излучения возможен и при инжекционной накачке неравновесных носителей в прямосмещенных p-i-n-диодах на основе 4H-SiC.

При работе диода в прямом направлении вполне вероятна ударная ионизация нейтральных акцепторных атомов в электрическом поле, что может способствовать частичному (или даже полному) высвобождению вымороженных дырок. Ранее нами проводились измерения и анализ низкотемпературных (77 K) вольт-амперных характеристик $p^+ - p^- - n^+$ -диодов на основе 4*H*-SiC со слабо легированной p^- -базой (концентрация акцепторов $2 \cdot 10^{15}$ см⁻³) [5]. Как оказалось, вымороженные при температуре 77 K дырки в p^- -базе полностью высвобождаются за счет ударной ионизации атомов алюминия при полях ~ 10 кВ/см.

В настоящей работе исследовались динамические характеристики 4*H*-SiC диодов с $p^+-n^--n^+$ -структурой (в импульсном режиме). Для этого проводились измерения временны́х зависимостей тока при подаче на диод импульсов прямого смещения большой амплитуды. Задачей исследования было изучение влияния примесного пробоя в сильно легированном p^+ -эмиттере на динамику роста прямого тока.

2. Образцы и методика измерений

Диоды (рис. 1) изготавливались на основе пластины 4*H*-SiC n^+ -типа проводимости с последовательно выращенными эпитаксиальными n^- - и p^+ -слоями (пластина была приобретена на коммерческой основе в компании Cree, Inc (США)). В исследованных диодах p^+ -слой имеет толщину 2 мкм и концентрацию акцепторов > 10¹⁹ см⁻³, n^- -слой имеет толщину 40 мкм и концентрацию доноров $1 \cdot 10^{15}$ см⁻³. Площадь диодов составляет $4 \cdot 10^{-2}$ см². Изготовление диодных структур

[¶] E-mail: Pavel.Ivanov@mail.ioffe.ru

Рис. 1. a — поперечное сечение меза-эпитаксиальных $p^+ - n^- - n^+$ -диодов на основе 4*H*-SiC. b — схема импульсных измерений.

включало стандартные для постростовой технологии 4H-SiC-приборов процессы: оптическую фотолитографию, напыление омических контактов к p^+ -слою (Al/Ti) и к n^+ -подложке (Ni) магнетронным распылением соответствующих мишеней, вжигание контактов в вакууме при температуре 950°С, травление мезаструктур в плазме SF₆ с использованием маски из предварительно напыленного слоя Al, резку пластины на отдельные чипы. Диоды тестировались в бескорпусном варианте. Для проведения низкотемпературных измерений диоды погружались непосредственно в жидкий азот.

Электрические измерения проводились в импульсном режиме. Импульсы, формируемые с помощью релаксационного генератора (длительность 1.3 мкс, частота следования 1 Гц), подавались на диод вместе с последовательно включенной нагрузкой 12 Ом (рис. 1, *b*). Временные зависимости тока через диод и напряжения на нем записывались с помощью многоканального цифрового осциллографа Tektronix DPO 4104.

3. Экспериментальные результаты и их обсуждение

Результаты импульсных измерений показаны на рис. 2: осциллограммы I показывают входной импульс напряжения $(U_1$ на рис. 1, b), осциллограммы 2 — напряжение на нагрузке $(U_2$ на рис. 1, b). При измерениях варьировалась амплитуда входных импульсов напряжения.

В показанном на рис. 2 масштабе по осям заметный рост тока через диод происходит, когда амплитуда напряжения на диоде превышает 66 В. При этом ток начинает возрастать с задержкой по времени относительно фронта входного импульса. Как видно, задержка по времени укорачивается по мере увеличения амплитуды входного импульса. Одновременно с уменьшением длительности фазы задержки уменьшается длительность фазы нарастания тока и резко нарастает амплитуда тока. Отметим, что на осциллограммах тока через диод имеется пьедестал, т. е. через диод протекает достаточно большой по величине начальный ток.

Рис. 2. Осциллограммы напряжений U_1 (1) и U_2 (2) после подачи на диод с последовательно включенной нагрузкой (12 Ом) импульсов напряжения разной амплитуды. Масштаб времени — 200 нс/дел. Масштаб напряжений: U_1 — 50 (*a*-*c*) и 100 В/дел (*d*); U_2 — 20 (*a*-*c*) и 50 В/дел (*d*).

Физика и техника полупроводников, 2015, том 49, вып. 7

Естественно полагать, что за описанные процессы отвечает ударная ионизация нейтральных атомов алюминия в p^+ -областях. На качественном уровне временные зависимости тока могут быть описаны представленной далее простой аналитической моделью, рассматривающей генерацию дырок за счет термической и ударной ионизации нейтральных акцепторных атомов алюминия и обратный захват свободных дырок ионизованными акцепторами.

Кинетика генерационно-рекомбинационных процессов (аналитическая модель). В случае одноуровневой модели акцепторов зависимость концентрации свободных дырок (p) от времени (t) описывается уравнением

$$\frac{dp}{dt} = A_{\rm imp}(N_A - p)p + A_{\rm th}(N_A - p) - Bp^2, \qquad (1)$$

где N_A — концентрация акцепторов, A_{imp} — коэффициент ударной ионизации акцепторов, зависящий от поля, A_{th} — коэффициент термической ионизации, B — коэффициент обратного захвата. Введем следующие обозначения:

$$a = -(A_{\rm imp} + B), \qquad (2)$$

$$b = A_{\rm imp} N_A - A_{\rm th},\tag{3}$$

$$c = A_{\rm th} N_A. \tag{4}$$

Тогда уравнение (1) можно переписать в виде

$$\frac{dp}{dt} = ap^2 + bp + c.$$
(5)

После разделения переменных уравнение (5) легко интегрируется:

$$\int_{p_0}^{p} \frac{dp}{ap^2 + bp + c} = \int_{0}^{t} dt = t.$$
 (6)

Здесь $p(0) = p_0, p(t) = p$.

n

Как следует из формул (2)–(4), $b^2 - 4ac > 0$. В этом случае

$$\int_{p_0}^{p} \frac{dp}{ap^2 + bp + c} = -\frac{2}{\sqrt{b^2 - 4ac}}$$

$$\times \left(\operatorname{artanh} \frac{2ap + b}{\sqrt{b^2 - 4ac}} - \operatorname{artanh} \frac{2ap_0 + b}{\sqrt{b^2 - 4ac}}\right) = t. \quad (7)$$

Введем следующие обозначения:

$$\frac{2}{\sqrt{b^2 - 4ac}} \equiv \tau; \qquad ap_0 + \frac{b}{2} \equiv \frac{1}{t_0}.$$
 (8)

Тогда выражение (7) можно записать в виде

$$\operatorname{artanh}\left[\tau\left(ap+\frac{b}{2}\right)\right] = -\frac{t}{\tau} + \operatorname{artanh}\frac{\tau}{t_0}.$$
 (9)

Физика и техника полупроводников, 2015, том 49, вып. 7

Далее введем следующие обозначения:

$$au \operatorname{artanh} \frac{\tau}{t_0} \equiv t_d, \qquad \tau a \equiv -\frac{1}{p^*}.$$
 (10)

Тогда зависимость концентрации свободных дырок от времени можно записать в виде

$$p = p^* \left(\frac{b\tau}{2} + \tanh \frac{t - t_d}{\tau} \right). \tag{11}$$

Смысл последней формулы становится наиболее понятным при условии, если пренебречь скоростью термической ионизации и начальной концентрацией носителей (такое допущение справедливо при достаточно низких температурах). В этом случае

$$c = 0,$$
 $\tau = t_0 = t_d = \frac{2}{b} = \frac{2}{A_{imp}N_A},$ (12)

$$p = p_{\rm st} \left(1 + \tanh \frac{t - \tau}{\tau} \right). \tag{13}$$

В формуле (13) $p_{st} \equiv 2p^*$ представляет собой не что иное, как стационарное значение концентрации свободных дырок при $t \to \infty$, τ — характерное время нарастания концентрации дырок, а $t_d = \tau$ — характерное время задержки. Стационарная концентрация дырок $(p_{st} \leq N_A)$ определяется отношением коэффициентов ударной ионизации и обратного захвата:

$$p_{\rm st} = \frac{N_A}{1 + B/A_{\rm imp}}.\tag{14}$$

На качественном уровне представленные выше экспериментальные результаты описываются рассмотренной выше моделью. Действительно, модель предсказывает следующие наблюдаемые в эксперименте характерные особенности динамики развития примесного пробоя:

 начало роста тока с задержкой по времени, которая уменьшается с ростом величины приложенного электрического поля;

 уменьшение длительности фазы нарастания тока с ростом величины приложенного электрического поля;

— увеличение стационарного (установившегося) значения тока с ростом величины приложенного электрического поля.

Более детальный (количественный) анализ временны́х зависимостей тока через диод с целью установления зависимостей коэффициентов ударной ионизации от электрического поля затруднен по той причине, что достоверно неизвестно, какая часть приложенного внешнего напряжения падает на p^+ -области диода. При температуре жидкого азота сопротивление тонкого сильно легированного p^+ -слоя сравнительно невелико (через диод протекает заметный начальный ток), так что для развития ударной ионизации в p^+ -слое требуется приложить к диоду достаточно большое прямое смещение.

4. Заключение

В заключение можно отметить, что ТГц электролюминесценция в 4*H*-SiC-диодах потенциально может происходить и при более высоких, чем 77 К, температурах, поэтому остаются актуальными исследования электрических характеристик диодов в широком диапазоне пониженных температур. Кроме того, исследования примесного пробоя акцепторов в 4*H*-SiC представляют интерес и с точки зрения возможного создания инверсной заселенности возбужденных состояний примесных атомов и генерации когерентного излучения.

Работа поддержана ОФН РАН (программа "Проблемы радиофизики", раздел "Освоение терагерцового диапазона").

Список литературы

- G. Pensil, F. Ciobanu, T. Fran, M. Krieger, S. Reshanov, F. Schmid, M. Weidner. Int. J. High Speed Electron. Syst., 15 (4), 705 (2005).
- [2] Ю.Б. Васильев, П.А. Иванов, А.С. Потапов, Т.П. Самсонова, Г.Ю. Васильева, Ю.Л. Иванов, А.О. Захарьин, В.И. Санкин, А.В. Бобылев, Ј. Gupta, J. Kolodzey, А.В. Андрианов. *Тр. XVII Междунар. симп. "Нанофизика и наноэлектроника"* (Нижний Новгород, 2013) т. 2 (секция 3), с. 384.
- [3] A.V. Andrianov, J.P. Gupta, J. Kolodzey, V.I. Sankin, A.O. Zakhar'in, Yu.B. Vasilyev. Appl. Phys. Lett., 103, 221 101 (2013).
- [4] А.В. Андрианов, А.О. Захарьин, Ю.Л. Иванов, М.С. Кипа. Письма ЖЭТФ, 91, 102 (2010).
- [5] И.В. Грехов, П.А. Иванов, А.С. Потапов, Т.П. Самсонова. ФТП, 41, 561 (2007).

Редактор Л.В. Шаронова

The effect of impurity impact ionization on dynamic characteristics of 4*H*-SiC $p^+-n^--n^+$ diodes at low temperature (77 K)

P.A. Ivanov, A.S. Potapov, T.P. Samsonova

loffe Institute, 194021 St. Petersburg, Russia

Abstract Low temperature (77 K) transient switch-on characteristics of 4*H*-SiC $p^+ - n^- - n^+$ diodes were measured in pulse regime. With the use of a simple analytical model, the effect of impurity breakdown (in high doped p^+ -emitter) on current rise after applying the forward bias pulses is explained.