11,09

Оптические исследования фазовой (T-x)-диаграммы твердых растворов оксифторидов $(NH_4)_2MoO_2F_4-Rb_2MoO_2F_4$

© С.В. Мельникова¹, Н.М. Лапташ²

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Институт химии ДВО РАН, Владивосток, Россия E-mail: msv@iph.krasn.ru

(Поступила в Редакцию 15 декабря 2014 г.)

Выращены монокристаллы твердых растворов $(NH_4)_{2-x}Rb_xMoO_2F_4$ (включая индивидуальный комплекс $Rb_2MoO_2F_4$). Проведено их исследование методами поляризационной оптики. Измерено двупреломление $\Delta n(T)$ в интервале температур 100–400 К. Построена полная фазовая (T-x)-диаграмма твердых растворов.

Работа выполнена при финансовой поддержке гранта Президента РФ для поддержки ведущих научных школ РФ (НШ-924.2014.2).

1. Введение

Кристаллическая структура оксифторидов с эмпирической формулой $A_2MO_2F_4$ ($A = NH_4$, Rb; M = Mo, W) состоит из изолированных полярных октаэдрических групп $[MO_2F_4]^{2-}$ и катионов A, половина которых закреплена на плоскостях симметрии. Полярность комплексов MO_2F_4 привлекает возможностью получить новые функциональные нецентросимметричные материалы с широким диапазоном прозрачности. Однако большинство этих соединений кристаллизуется в центросимметричных пространственных группах вследствие ориентационного разупорядочения структурных элементов. В процессе охлаждения в этих веществах реализуются различные варианты упорядочения структурных групп в результате фазового перехода ($\Phi\Pi$) T_1 .

Аммонийные соединения $(NH_4)_2MoO_2F_4$ и (NH₄)₂WO₂F₄, несмотря на близкие ионные радиусы атомов Мо и W, различаются многими параметрами, в том числе и физической природой искаженных фаз. В $(NH_4)_2WO_2F_4$ при сегнетоэластическом переходе $(T_{1\uparrow} = 202 \text{ K})$ с температурным гистерезисом $\delta T_1 \approx 6 - 12 \,\mathrm{K} \quad (Cmcm \leftrightarrow P\bar{1})$ происходит полное упорядочение О и F и частичное упорядочение аммонийных групп [1]. В $(NH_4)_2MoO_2F_4$ при антисегнетоэлектрическом [2] переходе $(T_{1\uparrow} = 267.8 \text{ K})$ с $\delta T_1 \approx 0.6 \,\mathrm{K} \,(Cmcm \leftrightarrow Pnma)$ установлено частичное упорядочение лигандов и полное упорядочение аммонийных групп с образованием водородных связей типа $N-H\cdots F(0)$ [3]. В $Rb_2MoO_2F_4$ (Стст, Z = 4, a = 5.972 Å, b = 14.273 Å, c = 7.084 Å) при температуре существует комнатной частичное разупорядочение F и O [4]. Согласно оптическим исследованиям [5,6], в аммонийных кристаллах фазовый переход первого рода T₁ сопровождается сильными аномалиями двупреломления, значительно различающимися по величине. В (NH₄)₂MoO₂F₄

аномальная часть двупреломления в 2 раза больше, чем в (NH₄)₂WO₂F₄, что может быть связано с разными механизмами структурных искажений [1,3]. Оптические исследования соединения с атомарным катионом $Rb_2MoO_2F_4$ не проводились, но наличие $\Phi\Pi$ второго рода ($Cmcm \leftrightarrow P\bar{1}$) в нем установлено [7]. Перечисленные выше кристаллы А2MO2F4 выявляют еще одну особую температуру $T_2 \approx 180-200 \, \text{K}$, при наблюдаются дополнительные аномалии которой теплоемкости [5,8] и двупреломления [5,6], не связанные с изменением симметрии. Природа этих аномалий не выяснена, хотя в (NH₄)₂WO₂F₄ [9] объясняется дополнительным упорядочением аммонийных групп. Для выявления роли структурных комплексов [NH₄] и [MO₂F₄] в ФП при T₁ и T₂ безусловный интерес представляет исследование вещества с атомарным катионом ($Rb_2MoO_2F_4$), а также влияния постепенного замещения NH₄ \rightarrow Rb. Фазовая (T-x)-диаграмма твердых растворов (NH₄)_{2-x}Rb_xMoO₂F₄ исследовалась в [7] с помощью теплофизических измерений только в области x = 0-1. Было показано, что в данных соединениях имеет место ФП без изменения сингонии $(Cmcm \leftrightarrow Pnma).$

В настоящей работе выращены монокристаллы твердых растворов $(NH_4)_{2-x}Rb_xMoO_2F_4$ (x = 0.52, 0.84, 1.01, 1.50, 1.76), а также $(NH_4)_2MoO_2F_4$ (x = 0) и Rb₂MoO₂F₄ (x = 2). Методика выращивания и определения состава кристаллов твердых растворов описана в [7]. На выращенных монокристаллах проведены поляризационно-оптические исследования, измерено двупреломление $\Delta n(T)$ в области температур 100–400 К, построена полная фазовая (T-x)-диаграмма твердых растворов. Эксперименты выполнены на базе поляризационного микроскопа "Ахіоskop-40" с использованием температурной камеры "Linkam LTS 350". Двупреломление измерено по методу компенсатора Берека "Leica" с точностью ±0.0001. а

2. Экспериментальные результаты

Габитус и расположение кристаллографических осей выросших монокристаллов твердых растовров $(NH_4)_{2-x}Rb_xMoO_2F_4$ одинаковы для всех *x* и совпадают с внешними параметрами $(NH_4)_2MoO_2F_4$ [6]. Это призматические кристаллы с удлинением дволь [100] и совершенной плоскостью спайности (010). Кристаллографическое направление [010] расположено вдоль короткого размера кристалла, как в вольфрамовом и молибденовом соединениях [5,6], а направление [001] расположено вдоль среднего размера призмы. Эллипсоид показателей преломления (оптическая индикатриса) кристаллов $(NH_4)_2MoO_2F_4$ всех составов (x = 0-2) при комнатной температуре имеет форму и расположение, подобные наблюдаемым в $(NH_4)_2MoO_2F_4$ [6]: оптические оси лежат в плоскости (100), угол оптических осей близок к 45°.

Наблюдения в поляризованном свете показали, что в пластинках трех ортогональных направлений с составами x = 0-1.5 в области температур 100-400 К имеет место ровное и прямое погасание, характерное для ромбической симметрии [6]. Но исследования Rb₂MoO₂F₄ (x = 2) выявили другую картину. В процессе охлажде-

line and the second sec

Рис. 1. Визуализация полосчатых двойников в пластинках (010) и (001) кристалла $Rb_2MoO_2F_4$ с помощью компенсатора Берека. *а* — четкие компенсационные полосы при T = 260 K, *b* — размытие полос при T = 250 K.

Рис. 2. Температурные зависимости двупреломления в $Rb_2MoO_2F_4$. $I - \Delta n_a(T)$, $2 - \Delta n_b(T)$, $3 - \Delta n_c(T)$.

ния ниже температуры 280 К в образцах (100) появляются оптические неоднородности. В положении погасания они видны в виде звездочек на темном фоне. Ниже $T_1 = 255 \,\text{K}$ на эту картину накладывается система мелких полосчатых двойников с "плывущим" погасанием. В пластинках (001) ниже $T_1 = 255 \,\mathrm{K}$ полосчатые двойники хорошо выявляются при введении компенсатора Берека (рис. 1). На фотографии видно "размытие" интерференционных полос компенсатора на двойниковых границах. В образцах (010) ниже $T_1 = 255$ K отсутствует четкое погасание образца и наблюдается "размытие" компенсационных полос. К сожалению, исследования состава с x = 1.76 ограничились только ростовыми пластинками (010) вследствие очень малой их толщины $(\sim 50-60\,\mu m)$, но хорошее погасание и четкие компенсационные полосы во всем интервале температур свидетельствуют в пользу ромбической симметрии кристалла. Никаких дополнительных изменений наблюдаемой картины в области Т₂ не наблюдалось.

Результаты исследования температурных зависимостей двупреломления Δn_a , Δn_b и Δn_c кристалла Rb₂MoO₂F₄ (x = 2) представлены на рис. 2. При комнатной температуре наибольшее значение имеет двупреломление при распространении света вдоль [100] ($\Delta n_a = 0.033$), наименьшее ($\Delta n_b = 0.014$) — вдоль [010]. При направлении света вдоль [001] оптическая анизотропия кристалла составляет ($\Delta n_c = 0.019$). Температурные зависимости этих оптических характеристик кристалла Rb₂MoO₂F₄ имеют линейный характер в области 370–280 K, при 280–255 K наблюдаются небольшие отклонения от линейности. В процессе дальнейшего охлаждения двупреломление $\Delta n_{a,b,c}$ плавно возрастает, формируя две аномалии $\Delta n_i(T)$ при $T_1 = 255$ К и $T_2 \approx 200$ К. В области температур ниже T_2 зависимость $\Delta n_i(T)$ становится линейной. Форма аномалии двупреломления вблизи T_2 зависит от скорости изменения температуры и направления теплового процесса. Наиболее четко виден перегиб кривой $\Delta n_i(T)$ при T_2 в процессе медленного нагревания (рис. 2, кривая 1).

Для исследования фазовой (Т-х)-диаграммы твердых растворов проведены температурные измерения Δn_h для разных х. Такой выбор ориентации образцов объясняется двумя причинами: 1) кристаллы вырастают с развитой гранью (010), что дает возможность воспользоваться пластинками роста; 2) величина и температурное поведение двупреломления $\Delta n_b(T)$ в высокотемпературной области одинаковы для кристаллов (NH₄)₂WO₂F₄ [5], (NH₄)₂MoO₂F₄ [6] и Rb₂MoO₂F₄ (рис. 2, кривая 2). Результаты температурных исследований двупреломления твердых растворов (NH₄)_{2-x}Rb_xMoO₂F₄ представлены на рис. 3. Видно, что в процессе замещения $NH_4 \rightarrow Rb$ наблюдается постепенное и очень значительное (более чем в 10 раз) уменьшение аномалии двупреломления ниже температуры перехода Т1. При этом при температуре Т₂ для всех значений х наблюдается выход зависимости $\Delta n_b(T)$ на насыщение. Более четко перегиб $\Delta n_b(T)$ при $T = T_2$ проявляется в процессах нагревания (рис. 3, кривые 1, 2, 5). Особые температурные точки T_1 и T_2 изменяются от состава к составу, формируя (T-x)-

Рис. 3. Температурное поведение двупреломления $\Delta n_b(T)$ в кристаллах (NH₄)_{2-x}Rb_xMoO₂F₄. x: 1 - 0, 2 - 0.52, 3 - 1.01, 4 - 1.5, 5 - 1.76, 6 - 2.

Рис. 4. Фазовая (T-x)-диаграмма твердых растворов $(NH_4)_{2-x}Rb_xMoO_2F_4$ (*a*) и зависимость $\sqrt{\delta n}(x) \propto \eta(x)$ вблизи температуры T_2 (*b*).

фазовую диаграмму (рис. 4, *a*). Левая часть диаграммы полностью совпадает с полученной ранее в [7] при исследованиях теплоемкости.

3. Обсуждение результатов

Поляризационно-оптические наблюдения кристаллических образцов различной ориентации показали, что в области температур $T < T_1$ погасание пластинок с составами x = 0-1.76 остается ровным и прямым, как при комнатной температуре. Это свидетельствует в пользу ромбической симметрии кристаллов в низкотемпературной области, как в случае $(NH_4)_2MoO_2F_4$ [6]. В Rb₂MoO₂F₄ (x = 2) при $T < T_1$ обнаружена мелкая ($\sim 1 \mu$ m) двойниковая структура с плывущим положением погасания в срезе (100), а также нечеткое погасание в пластинках (010) и (001). Это указывает на низкую симметрию кристалла в области температур $T < T_1$. Таким образом, подобно (NH₄)₂WO₂F₄ [5] в Rb₂MoO₂F₄ при

Рис. 5. Температурные зависимости аномальной части двупреломления в Rb₂MoO₂F₄. $1 - \delta n_a(T)$, $2 - \delta n_b(T)$, $3 - \delta n_c(T)$.

 T_1 имеет место сегнетоэластический ФП в триклинную фазу ($Cmcm \leftrightarrow P\bar{1}$), что согласуется с [7]. Из фазовой (T-x)-диаграммы (рис. 4, *a*) видно, что такой переход осуществляется в очень узкой области вблизи x = 2. Во всей остальной области значений *x* при T_1 имеет место изменение симметрии ($Cmcm \leftrightarrow Pnma$) подобно (NH_4)₂MoO₂F₄. Похожая картина наблюдалась при исследованиях постепенного замещения центрального атома в твердых растворах (NH_4)₂ $W_{1-x}Mo_xO_2F_4$ [8]. Было показано, что наиболее устойчивым, т.е. энергетически более выгодным, является антисегнетоэлектрическое состояние, реализующееся при низких температурах и концентрациях молибдена x > 0.3. И только в узкой области значений x < 0.3 в этом твердом растворе реализуется ФП в сегнетоэластическое состояние.

На рис. 5 представлены температурные зависимости аномальной части двупреломления $\delta n_i(T)$ для трех направлений распространения света в Rb₂MoO₂F₄, полученные вычитанием из экспериментальных кривых $\Delta n_i(T)$ (рис. 2) экстраполированного температурного хода двупреломления исходной фазы (штриховые линии). Видно, что в этом кристалле в области $T-T_1 \approx 25$ К имеются предпереходные явления, достигающие 10% от максимального значения аномалии (подобно (NH₄)₂WO₂F₄), что, возможно, является косвенным признаком сегнетоэластической природы $\Phi \Pi$ при T_1 .

Основная аномалия $\delta n_i(T)$ при $T_1 = 255$ К характерна для ФП второго рода. Обращает на себя внимание то, что величина аномальной части двупреломления (δn_i) в кристалле с рубидием намного меньше, чем у аммонийных соединений [5,6]. Так, вблизи температуры $T \ge T_2$ сумма аномальных частей двупреломления $\sum |\delta n_i|$ в кристалле (NH₄)₂WO₂F₄ [5] составляет 0.054, в (NH₄)₂MOO₂F₄ [6] — 0.098, а в настоящей работе для рубидиевого оксифторида получено значение $\sum |\delta n_i| = 0.008$. При этом, согласно [1,3], ниже T_1 в (NH₄)₂WO₂F₄ — полное упорядочение аммонийных групп. Таким образом, прослеживается взаимосвязь между степенью упорядочения аммонийного катиона и величиной аномалии двупреломления вещества, сопровождающей ФП.

В Rb₂MoO₂F₄ на фоне слабой (по сравнению с аммонийными кристаллами [5,6]) аномалии при T_1 более ярко проявляется вторая особенность $\delta n_i(T)$ вблизи T_2 (рис. 5), по величине сравнимая с первой. Следует заметить, что во всех трех кристаллах A_2 MO₂F₄ дополнительные изменения оптической анизотропии, связанные с T_2 , приблизительно одинаковы по величине.

Аномальная часть двупреломления, измеренного в ромбической установке, пропорциональна квадрату параметра перехода и поэтому отражает его температурную зависимость: $\delta n(T) \propto \eta^2(T)$. Учитывая эту взаимосвязь, можно определить температурное поведение параметра перехода $\eta(T)$ или $\eta(x)$ в области $T_1 > T > T_2$. На рис. 4, b показана зависимость $\sqrt{\delta n}(x) \propto \eta(x)$, полученная из данных рис. З при температурах чуть выше Т₂. Видно, что в процессе замещения $NH_4 \rightarrow Rb$ параметр перехода изменяется линейно в области значений 0.4 < x < 1.75. В остальной части значений х замена аммония на рубидий не приводит к сильным изменениям двупреломления. Согласно [3], аммонийные тетраэдры занимают две кристаллографически разные позиции в структуре $(NH_4)_2MoO_2F_4$ и ниже T_1 образуют или не образуют водородные связи с октаэдром. Поэтому исходя из вида кривой на рис. 4, b мы предполагаем, что при постепенном замещении NH₄ -> Rb разные позиции молекул заполняются неравномерно. Вначале замещается аммоний, не имеющий водородных связей с октаэдром. Электронная поляризуемость изменяется слабо. В центральной части фазовой диаграммы происходит замещение в позиции, дающей сильный отклик в оптических свойствах вследствие наличия водородной связи. И при больших значениях х вновь замещение NH₄ → Rb слабо влияет на оптические свойства.

4. Заключение

Проведенные поляризационно-оптические исследования и измерения температурных зависимостей двупреломления кристаллов твердых растворов $(NH_4)_{2-x}Rb_xMoO_2F_4$, индивидуальные включая комплексы (NH₄)₂MoO₂F₄ (x = 0)и Rb₂MoO₂F₄ (x = 2), показали, что все составы имеют схожую последовательность двух фазовых переходов. Ниже температуры ФП T₁ в пластинках трех ортогональных направлений с составами x = 0 - 1.76 наблюдается ровное погасание в поляризованном свете, двойников не видно, т.е. кристаллы остаются в ромбической сингонии подобно $(NH_4)_2MoO_2F_4$ (*Стст* \leftrightarrow *Рпта*). В Rb₂MoO₂F₄ (x = 2) при $T < T_1$ видна мелкая двойниковая структура, указывающая на ФП в триклинную фазу (*Cmcm* \leftrightarrow $P\bar{1}$), как в (NH₄)₂WO₂F₄. Таким образом, в низкотемпературной области наиболее устойчивым, т.е. энергетически более выгодным, является антисегнетоэлектрическое состояние, реализующееся в твердых растворах в широком интервале концентраций рубидия (x = 0-1.8). В процессе замещения NH₄ \rightarrow Rb наблюдается постепенное и очень значительное (в 12 раз) уменьшение аномальной части двупреломления.

Анализ изменений двупреломления при фазовых переходах у трех представителей семейства $A_2MO_2F_4$ показал большое различие в их величине. Однако последовательность двух фазовых переходов в соединениях с аммонийным и атомарным катионами: $(NH_4)_2WO_2F_4$ и $Rb_2MoO_2F_4$ — позволяет предполагать, что первопричиной структурных ФП является постепенное упорядочение октаэдрических групп. Частичное или полное упорядочение лигандов О и F благодаря образовавшимся при T_1 водородным связям изменяет поляризуемость аммония, что приводит к более сильным откликам физических свойств (аномалии двупреломления и теплоемкости) в аммонийных кристаллах, чем в $Rb_2MoO_2F_4$.

Список литературы

- [1] A.A. Udovenko, N.M. Laptash. Acta Cryst. B 64, 645 (2008).
- [2] В.Д. Фокина, Е.В. Богданов, Е.И. Погорельцев, В.С. Бондарев, И.Н. Флёров, Н.М. Лапташ. ФТТ 52, 1, 148 (2010).
- [3] A.A. Udovenko, A.D. Vasiliev, N.M. Laptash. Acta Cryst. B 66, 34 (2010).
- [4] В.С. Сергиенко, М.А. Порай-Кошиц, Т.С. Ходашова. ЖСХ 13, 3, 461 (1972).
- [5] С.В. Мельникова, В.Д. Фокина, Н.М. Лапташ. ФТТ **48**, *1*, 110 (2006).
- [6] С.В. Мельникова, Н.М. Лапташ. ФТТ 50, 3, 493 (2008).
- [7] Е.В. Богданов, А.Д. Васильев, И.Н. Флёров, Н.М. Лапташ. ФТТ 53, 2, 285 (2011).
- [8] Е.В. Богданов, Е.И. Погорельцев, С.В. Мельникова, М.В. Горев, И.Н. Флеров, М.С. Молокеев, А.В. Карташев, А.Г. Кочарова, Н.М. Лапташ. ФТТ 55, 2, 366 (2013).
- [9] A.S. Krylov, S.V. Goryainov, N.M. Laptash, A.N. Vtyurin, S.V. Melnikova, S.N. Krylova. Cryst. Growth Des. 14, 374 (2014).