03,08

Импедансные спектры кристаллов легированного силиката висмута Bi₁₂SiO₂₀:Ge

© В.Т. Аванесян, Н.М. Абрамова

Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург, Россия

E-mail: avanesyan@mail.ru

(Поступила в Редакцию 23 декабря 2014 г.)

Исследованы особенности поведения импедансных спектров монокристаллов структуры силленита Bi₁₂SiO₂₀, легированных германием. Установлена дисперсия полученных зависимостей, отвечающая распределению времен релаксации. Анализ экспериментальных данных, проведенный с использованием графоаналитического метода, позволил разделить вклады в проводимость, обусловленные объемом кристалла и границей образец—электрод. Отражена роль примесного фактора и электронов неподеленной пары ионов трехвалентного висмута в формировании дефектной структуры кристалла.

1. Введение

Кристаллы со структурой силленита благодаря сочетанию электрических, нелинейно-оптических и магнитооптических свойств широко используются в современной пьезотехнике, акусто- и оптоэлектронике [1]. Кислородсодержащие соединения — силлениты висмута, характеризуемые широкой запрещенной зоной, высоким удельным сопротивлением и низкой подвижностью заряда, в последнее время активно исследуются [2]. В частности, силикат висмута $Bi_{12}SiO_{20}$ (BSO) отличается фотохромными свойствами, хорошей фотопроводимостью, а также высокой скоростью фоторефрактивного отклика, что позволяет использовать указанный материал в качестве сред для записи информации и в устройствах пространственно-временной модуляции света в качестве активного элемента.

Внимание, которое уделяется в современном материаловедении соединениям висмута, в частности силленитам, вызывается присутствием в структуре ионов висмута ${\rm Bi}^{3+}$ с активной неподеленной электронной парой, что обусловливает образование оксидных полярных соединений с уникальными оптическими, пироэлектрическими и другими свойствами [3]. Несмотря на широкую область практического применения, детальное представление об электронных процессах, протекающих в материалах системы ${\rm Bi}{-}{\rm Si}{-}{\rm O}$ в переменных электрических полях и характеризующих дрейфовый механизм переноса заряда, до сих пор отсутствует.

Настоящая работа посвящена экспериментальному исследованию электрофизических характеристик монокристаллов силиката висмута $Bi_{12}SiO_{20}$, легированных германием (BSO:Ge), методом измерения полного комплексного сопротивления в условиях воздействия переменного электрического поля.

2. Образцы и методика эксперимента

Однородные монокристаллы BSO:Ge были выращены методом Чохральского вдоль кристаллографическо-

го направления [001] на воздухе в платиновом тигле. Образцы были изготовлены в виде полированных брусков размером $1 \times 3 \times 5$ mm, в качестве электродов использовалась проводящая паста аквадаг. С использованием прецизионного измерителя иммитанса E7-20 получались частотные зависимости модуля импеданса |Z| и угла сдвига фазы φ между током и напряжением с пошаговым изменением частоты в интервале $f = 5 \cdot 10^2 - 10^6$ Hz при амплитуде измерительного напряжения 1 V. Затем рассчитывались спектры действительной $Z'(f) = |Z| \cos \varphi$ и мнимой $Z''(f) = |Z| \sin \varphi$ компонент импеданса.

Для оценки качества и получения информации о структурных особенностях поверхности образца монокристалла изучалась ее морфология на атомно-силовом микроскопе (ACM) Solver 47 Pro в полуконтактном режиме (tappingmode) в атмосферных условиях при комнатной температуре. Исследования проводили с использованием кремневого кантилевера при топографическом типе сканирования. Полученное изображение (рис. 1) характеризовалось квазипериодическим волновым рельефом с разбросом высот и латеральных размеров образований по основанию.

Рис. 1. ACM-изображение поверхности образца $Bi_{12}SiO_{20}$: Ge.

3. Результаты и обсуждение

На рис. 2 и 3 представлены зависимости Z'(f) и Z''(f) для образца монокристалла $\text{Bi}_{12}\text{SiO}_{20}$ в отсутствие постоянного смещения. Приведенные характеристики обнаруживают дисперсию, которая выражается в уменьшении значений компонентов комплексного импеданса с ростом частоты измерительного электрического поля. В области низких частот в интервале $10^2 - 10^4$ Hz наблюдается резкий спад исследуемых функций, а начиная с частоты $f > 10^4$ Hz спектры мнимой и действительной компонент комплексного импеданса отвечают постоянному минимальному уровню.

Дисперсия импеданса характеризуется временем электрической релаксации, обычно определяемым графоаналитическим методом с помощью годографа, а именно путем построения зависимости мнимой компоненты импеданса Z'' от действительной Z'. Вид полученных кривых (рис. 4), согласно имеющимся сведениям [4], предполагает наличие двух механизмов релаксации, один из которых описывает вклад, связанный с диффузионным механизмом, отражающим градиент концентрации носителей на интерфейсе (рис. 4, *a*), а другой объемные свойства монокристалла, обусловленные мик-

Рис. 2. Спектральная зависимость активной части импеданса монокристалла Bi₁₂SiO₂₀:Ge.

Рис. 3. Спектральная зависимость реактивной части импеданса монокристалла Bi₁₂SiO₂₀:Ge.

Рис. 4. Низкочастотная (a) и высокочастотная (b) части годографа импеданса Z''(Z') для образца $Bi_{12}SiO_{20}$:Ge.

роструктурой материала (рис. 4, b). Наибольшее значение мнимой компоненты импеданса соответствует максимуму кривой годографа, достигаемому на характерной частоте f_{max} . Время электрической релаксации, вычисленное с помощью соотношения $\tau_0 = 1/2\pi f_{\text{max}}$, определяется как среднее время релаксации импеданса образца с электродами и составляет в данном случае величину $\tau_0 = 6.3 \cdot 10^{-6}$ s. Электронное состояние контакта с электродом определяется влиянием заряда, сформированного на локальных поверхностных уровнях, наличием потенциального барьера на интерфейсе, а также энергетической структуры ловушечных уровней в объеме материала.

Физические процессы в исследуемом образце могут быть описаны с использованием аппроксимации экспериментальных дисперсионных характеристик составляющих комплексного импеданса соответствующей эквивалентной электрической схемой. Полученные экспериментальные данные позволяют предложить эквивалентную схему (вставка на рис. 4, *a*), включающую последовательно соединенные элементы Z_b и Z_{int} , отражающие вклады в импеданс процессов переноса заряда в объеме кристалла и на интерфейсе соответственно.

Ранее [5,6] по результатам анализа экспериментальных данных исследования температурно-частотных зависимостей электропроводности были сделаны выводы, свидетельствующие в пользу прыжкового характера электротранспорта в BSO [7,8] по локальным состояниям, природа которых обусловлена дефектами нестехиометрии и присутствием примесных атомов. Также было установлено, что процесс переноса заряда по этим энергетическим состояниям (центрам захвата) связан с одним типом носителей, а именно с электронами. Анализ структурных особенностей исследуемого полупроводника указывает на значительную роль, которую играют электроны неподеленной пары, принадлежащие катионам Bi³⁺, в формировании дефектных центров и соответствующих локальных состояний в запрещенной зоне. Концентрация зарядовых центров при этом определяется содержанием в кристаллах ионов висмута.

Структурные изменения в исследуемом соединении могут быть связаны также с замещением висмута внедренным германием в искаженных октаэдрах [9]. Неполное примесное замещение в составе силленита ионов Bi³⁺ с неподеленной электронной парой может способствовать изменению физических свойств материала путем формирования более симметричной структурной координации. В частности, в процессе легирования монокристаллов BSO вероятным является искажение кислородных тетраэдров структуры с образованием кислородных вакансий, способных захватить электрон в соответствии с условием компенсации. Поскольку кристаллическая решетка BSO является высокополяризуемой, при наличии дефектов в объеме силленита имеют место активные релаксационные процессы, существование которых можно связать с квазидипольной поляризацией [10].

4. Заключение

Итак, на образцах монокристалла силиката висмута, легированного германием, впервые изучены особенности поведения спектров импеданса в диапазоне частот измерения $5 \cdot 10^2 - 10^6$ Hz. Показано, что в исследуемом диапазоне частот измерения кривые активной и реактивной компонент импеданса претерпевают дисперсию, характеризуемую снижением значений Z' и Z'' с ростом частоты электрического поля. В области низких частот ($f < 10^4$ Hz) наблюдается существенное изменение поведения годографа импеданса, отражающее влияние интерфейса на границе образца с электродом на процесс переноса заряда.

Список литературы

[1] А.А. Блистанов, В.С. Бондаренко, Н.В. Переломова, Ф.Н. Стрижевская, В.В. Чкалова, М.П. Шаскольская. Акустические кристаллы. Справочник / Под ред. М.П. Шаскольской. Наука, М. (1982). 632 с.

- [2] С.Ф. Радаев, В.И. Симонов. Кристаллография. (1992). 37, 914 (1992).
- [3] B. Teng, W.T. Yu, J.Y. Wang, X.F. Cheng, S.M. Dong, Y.G. Liu. Acta Cryst. C 58, i25 (2002).
- [4] М.П. Петров, С.И. Степанов, А.В. Хоменко. Фоторефрактивные кристаллы в когерентной оптике. Наука, СПб. (1992). 318 с.
- [5] В.П. Авраменко, А.Ю. Кудзин, Г.Х. Соколянский. ФТТ 22, 10, 3149 (1980).
- [6] V.M. Skorikov, Yu.F. Kargin, A.V. Egorysheva, V.V. Volkov, M. Gospodinov. Inorgan. Mater. 41, 1 (Suppl), 24 (2005).
- [7] В.Т. Аванесян, М.П. Севрюгина. Материалы Междунар. науч.-техн. конф. "Intermatic-2012". М. (2012). Ч. 2. С. 124–126.
- [8] M. Gospodinov, I.Y. Yanchev, D. Petrova, M. Veleva. Mater. Sci. Eng. 77, 1, 88 (2000).
- [9] T.I. Milenov, M.N. Veleva, D.P. Petrova, M.M. Gospodinov, V.M. Skorikov, A.V. Egorysheva, Yu.F. Kargin, A.Ya. Vasil'ev. Inorgan. Mater. 41, 2 152 (2005).
- [10] А.П. Елисеев, В.А. Надолинный, В.А. Гусев. ЖСХ 23, 3, 181 (1982).