01

Влияние оптических свойств на радиационно-кондуктивный теплообмен в слое с фазовым переходом

© С.Д. Слепцов¹, М.А. Гришин^{1,2}, О.В. Шарыпов^{1,2}

¹ Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск ² Новосибирский государственный университет, Новосибирск E-mail: sleptsov@itp.nsc.ru

Поступило в Редакцию 26 сентября 2014 г.

Методами математического моделирования исследован радиационно-кондуктивный теплообмен с плавлением плоского слоя серой полупрозрачной изотропно рассеивающей среды. Нелинейная начально-краевая задача с движущейся свободной границей фазового перехода с учетом теплового излучения рассмотрена в однофазной постановке задачи Стефана. Получены распределения температуры и проанализировано влияние объемных и поверхностных оптических характеристик материала на процесс плавления слоя.

Исследование закономерностей радиационно-кондуктивного теплообмена (РКТ) в полупрозрачных средах с фазовым переходом первого рода важно для понимания процессов, широко распространенных в природе и технике. Описание данных явлений требует решения интегро-дифференциального уравнения переноса излучения. Движущаяся поверхность фазового перехода вносит дополнительные математические трудности. Целью работы является разработка и применение упрощенной эффективной модели РКТ в полупрозрачном изотропно рассеивающем слое с фазовым переходом первого рода. В работе [1] рассмотрен нестационарный РКТ в серой среде с фазовым переходом первого рода в предположении абсолютно черных поверхностей при заданном результирующем радиационно-кондуктивном тепловом потоке на нагреваемой поверхности. В работе [2] обосновано применение модифицированного метода средних потоков для решения радиационной части задачи, проведено термодинамическое обоснование граничных условий нестационарного РКТ при плавлении. В последующих работах [3-5] исследовалось влияние тепловых потоков и оптических

80

свойств поверхности серой среды, однако такие объемные оптические свойства материала, как рассеяние и селективность, не учитывались.

Рассмотрим РКТ при плавлении плоского слоя конечной толщины $(0 \le x \le S(t))$ поглощающей, излучающей и изотропно рассеивающей полупрозрачной серой (без учета селективности) среды при разных значениях степени черноты поверхностей ε . На границу x = S(t) падает внешний радиационный поток с плотностью E^* (рис. 1), температура поверхности повышается от начальной температуры слоя $T(0, x) = T_0$ вплоть до температуры плавления T_f . Предположим, что расплавленный поверхностный подслой уносится и тем самым не оказывает влияния на процесс. Температуропроводность a, теплопроводность λ , плотность ρ , удельная теплоемкость c_p твердой фазы, коэффициенты теплоотдачи $h_{1,2}$, температура окружающей среды $T_{1,2}$ считаются постоянными (индексы 1, 2 обозначают левую и правую границы соответственно). Коэффициенты преломления среды и окружающего пространства соответственно n = 1.5 и $n_{1,2} = 1$.

Решение задачи состоит из двух этапов, на которых решаются начально-краевые задачи: 1) нагрев слоя постоянной толщины S₀ до

достижения температуры фазового перехода на правой границе слоя; 2) РКТ при фазовом переходе, когда положение правой границы слоя S(t) с температурой T_f определяется из решения задачи.

Уравнение энергии имеет вид

$$\frac{\partial T(t,x)}{\partial t} = a \frac{\partial^2 T(t,x)}{\partial x^2} - \frac{1}{\rho c_p} \frac{\partial E(t,x)}{\partial x}, \quad 0 \le x \le S, \ t \ge 0, \quad (1)$$

где *Е* — плотность интегрального по спектру результирующего радиационного потока в слое:

$$E(t,x) = 2\pi \int_0^1 I(rt,x,\mu)\mu d\mu,$$

 $I(t, x, \mu)$ — интегральная по спектру интенсивность излучения в сечении *x* по направлению, определяемому $\mu = \cos \theta$ (θ — угол между направлением излучения и осью *x*). Граничное условие на левой поверхности слоя

$$\lambda \frac{\partial T}{\partial x} + h_1(T_1 - T) + A_1(\sigma T_1^4 + E^-) - \varepsilon_1 \sigma T^4 = 0.$$
⁽²⁾

Условие сопряжения Стефана [4]

$$-\lambda \frac{\partial T}{\partial x} + h_2(T_2 - T) + A_2(E^* + E^+) - \varepsilon_2 \sigma T^4 + \rho \gamma \frac{dS}{dt} = 0, \quad x = S,$$
(3a)

используется в качестве граничного условия на первом этапе (dS/dt = 0), а на втором этапе — для определения скорости движения правой границы слоя. Здесь A_i — поверхностный коэффициент поглощения излучения на границе слоя, σ — постоянная Стефана—Больцмана, ε_i — степень черноты границ, γ — скрытая теплота плавления, i = 1, 2. В предположении о гипотезе локально-термодинамического равновесия, при котором рассматривается данная постановка, полагаем, что справедливость закона Кирхгофа на границе $A_i = \varepsilon_i$. Граничное условие на втором этапе — постоянство температуры:

$$T(t,S) = T_f. \tag{3b}$$

Используя модифицированный метод средних потоков (СП-метод) [6,7], выразим E(t, x) через интенсивности излучения "вперед" I^+ и "назад" I^- :

$$E = 2\pi \int_{0}^{1} (I^{+} - I^{-}) \mu d\mu = E^{+} - E^{-}.$$

При этом величины E^{\pm} определяются системой из двух уравнений, к которой сводится интегро-дифференциальное уравнение переноса излучения для плоского слоя изотропно рассеивающей среды [5]:

$$\frac{d}{dx}(E^{+} - E^{-}) + \alpha(m^{+}E^{+} - m^{-}E^{-}) = 4\alpha n^{2}\sigma T^{4};$$

$$\frac{d}{dx}(m^{+}\delta^{+}E^{+} - m^{-}\delta^{-}E^{-}) + (\alpha + \beta)(E^{+} - E^{-}) = 0.$$
(4)

Здесь α и β — коэффициенты объемного поглощения и рассеяния, n — показатель преломления материала, m^{\pm} и δ^{\pm} — коэффициенты распределения интенсивности и диффузии излучения в среде по направлениям в сечении объема слоя.

Граничные условия для уравнений переноса излучения (4), согласно [3]:

— на непрозрачных диффузно излучающих поверхностях

$$E^{+} = \varepsilon_1 n^2 \sigma T^4 + (1 - \varepsilon_1) E^{-}, \quad x = 0;$$

$$E^{-} = \varepsilon_2 n^2 \sigma T^4 + (1 - \varepsilon_2) E^{+}, \quad x = S(t).$$
(5a)

— на прозрачных поверхностях

$$E^{+} = (1 - r_{1})\sigma T_{1}^{4} + \left(1 - \frac{(1 - r_{1})}{n^{2}}\right)E^{-}, \quad x = 0;$$

$$E^{-} = (1 - r_{2})E^{*} + \left(1 - \frac{(1 - r_{2})}{n^{2}}\right)E^{+}, \quad x = S(t).$$
(5b)

Здесь r — коэффициент отражения излучения на границе слоя.

Краевая задача (1)-(3) аппроксимируется неявной конечно-разностной схемой и решается итерациями методом прогонки. Схема

является абсолютно устойчивой и имеет второй порядок аппроксимации по координате и первый — по времени. Радиационные потоки представляют собой внутренние источники и определяются из решения уравнений (4) с известным распределением температуры. При решении радиационной части задачи (4), (5) в СП-методе используется метод матричной факторизации, обеспечивающий быструю сходимость итераций и высокую точность результатов. Шаг по пространству равен 0.01S(t), т.е. изменяется в процессе расчета от 1 до 0.01 mm. Шаг по времени соответствует 1 s.

Расчеты проводились при следующих значениях физических параметров: $S_0 = 0.1m$, $T_0 = 300$ K, $T_f = 1000$ K, $T_1 = 300$ K, $T_2 = 900$ K, $\rho = 2000$ kg/m³, $\gamma = 500$ kJ/kg, $\lambda = 1$ W/m · K, $a = 10^{-6}$ m²/s, n = 1.5, $\alpha = 10$ m⁻¹. Для случая абсолютно поглощающих границ ($\varepsilon_{1,2} = 1$) падающий радиационный поток составлял $E^* = 150$ kW/m², коэффициенты теплоотдачи стенок $h_{1,2} = 10$ W/(m²·K). При моделировании прозрачных границ ($\varepsilon_{1,2} = 0$) были заданы $r_{1,2} = 0$, 1, $E^* = 200$ kW/m², $h_{1,2} = 1$ W/(m²·K) — для сокращения времени полного расплавления слоя. В обоих случаях $\varepsilon_{1,2} = 1$ и $\varepsilon_{1,2} = 0$ расчеты проводились при $\beta = 0$ и $\beta = 10$ m⁻¹. Расчет продолжался до момента времени, когда толщина слоя уменьшалась до 1 mm. Полученные результаты для черных стенок в случае $\beta = 0$ соответствуют известным расчетным данным [8].

На рис. 2 представлены распределения безразмерной температуры $\theta(t, \xi) \equiv T(t, x/S(t))/T_f$ начиная с момента, когда температура правой границы достигает T_f . Максимальное время соответствует толщине слоя S = 1 mm и является временем прекращения итераций. В случае черных границ $\varepsilon_{1,2} = 1$ также приведены распределения температуры в промежуточные моменты времени, когда температура левой стенки достигает 600, 800 К (рис. 2, *a*, *b*). Для прозрачных стенок $\varepsilon_{1,2} = 0$ промежуточные моменты времени соответствуют уменьшению толщины слоя до S = 0.07m и S = 0.04m (рис. 2, *c*, *d*).

Для случая $\varepsilon_{1,2} = 1$ (рис. 2, *a*, *b*) характерен быстрый прогрев всей толщины слоя. Температура левой границы достигает $0.8T_f$ за время, когда расплавилось менее 5% вещества: S = 0.096m при t = 687 s (рис. 2, *a*). Дальнейшее плавление происходит при распределении температуры, близком к линейному. Изотропное рассеяние при $\varepsilon_{1,2} = 1$ не влияет на характерные времена изменения температуры в слое, а лишь перераспределяет тепловые потоки, что отчетливо видно при $t \approx 250$ s (рис. 2, *a*, *b*).

Рис. 2. Распределения температуры в слое: черные границы (a, b); абсолютно прозрачные границы (c, d); $\beta = 0$ (a, c); $\beta = 10 \text{ m}^{-1}$ (b, d).

Рис. 3. Температура на левой границе слоя: черные границы (*a*); абсолютно прозрачные границы (*b*); сплошная линия — $\beta = 0$; пунктирная линия — $\beta = 10 \text{ m}^{-1}$.

При абсолютно прозрачных границах слоя $\varepsilon_{1,2} = 0$ динамика прогрева слоя и характер распределения температуры носят принципиально иной характер: вместо монотонного роста температуры во всех сече-

ниях слоя, имеет место временное понижение температуры, особенно заметное вблизи правой границы (рис. 2, *c*, *d*). Только когда слой становится достаточно тонким, температура вновь начинает возрастать во всей области $0 \le x < S$. Изотропное рассеяние, перераспределяя тепловой поток, способствует уменьшению области, в которой наблюдается понижение температуры (рис. 2, *d*).

Изменение температуры левой границы показано на рис. 3. Медленный рост температуры в начале процесса в случае $\varepsilon_{1,2} = 1$ (рис. 3, *a*) относится к первому этапу задачи — нагреву до начала фазового перехода. На втором этапе скорость изменения температуры носит немонотонный характер: быстрый нагрев до $T(t, 0) \approx 0.8T_f$ сменяется при t > 1000 s медленным повышением температуры с резким подъемом в самом конце процесса плавления слоя. Динамика изменения температуры левой поверхности слоя для случая прозрачных границ совершенно иная (рис. 3, *b*). При $\beta = 0$ наблюдается немонотонное изменение температуры с понижением на начальной стадии плавления, а процесс плавления в целом сильно затягивается по сравнению со случаем черных стенок.

Полученные результаты свидетельствуют о том, что изотропное рассеяние излучения в серой среде с черными границами в целом слабо влияет на РКТ в слое с фазовым переходом: качественная картина распределения температуры в слое и время плавления слоя практически не зависят от β . Влияние объемных оптических свойств материала существенно возрастает в случае прозрачных границ. В частности, от рассеяния зависит монотонность изменения температуры в слое, в том числе на левой, "холодной", границе. Оптические свойства поверхности оказывают преобладающее влияние на исследуемые процессы по сравнению с объемными свойствами (рассеянием излучения). Переход от черных границ к прозрачным приводит к резкому возрастанию времени плавления, а также к качественному изменению характера распределения и динамики температуры в слое.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 12-08-00154-а).

Список литературы

[1] Dez V.Le, Yousefian F., Vaillon R., Lemonnier D., Lallemand M. // J. Phys. III. France. 1996. V. 6. P. 373–390.

- [2] Рубцов Н.А. // Теплофизика и аэромеханика. 2004. Т. 11. № 2. С. 313-324.
- [3] Рубцов Н.А., Слепцов С.Д. // Теплофизика и аэромеханика. 2005. Т. 12. № 1. С. 95–103.
- [4] Рубцов Н.А., Слепцов С.Д. // Теплофизика и аэромеханика. 2005. Т. 12. № 3. С. 483–489.
- [5] Рубцов Н.А., Слепцов С.Д. // Теплофизика и аэромеханика. 2009. Т. 16. № 2. С. 299–306.
- [6] *Пономарев Н.Н.* // Изв. СО АН СССР. Сер. техн. наук. 1979. Т. 3. № 13. С. 64–68.
- [7] Рубцов Н.А. Теплообмен излучением в сплошных средах. Новосибирск: Наука. Сиб. отд-ние, 1984. 277 с.
- [8] Рубцов Н.А., Саввинова Н.А., Слепцов С.Д. // Теплофизика и аэромеханика. 2003. Т. 10. № 2. С. 255–264.